Islands beyond AdS

Edgar Shaghoulian University of Pennsylvania

Island Hopping 2020: from Wormholes to Averages November 17, 2020

[Hartman, Shaghoulian, Strominger 2004.13857]

[Hartman, Jiang, Shaghoulian 2008.01022]

Introduction

Page curve for Hawking radiation from holography [Penington; Almheiri, Engelhardt, Marolf, Maxfield] and Euclidean gravity path integral [Penington, Shenker, Stanford, Yang; Almheiri, Hartman, Maldacena, ES, Tajdini]

Introduction

- ► Page curve for Hawking radiation from holography [Penington; Almheiri, Engelhardt, Marolf, Maxfield] and Euclidean gravity path integral [Penington, Shenker, Stanford, Yang; Almheiri, Hartman, Maldacena, ES, Tajdini]
- ► These approaches may be the same via Euclidean gravity = holography [Harlow, ES]

Introduction

- ► Page curve for Hawking radiation from holography [Penington; Almheiri, Engelhardt, Marolf, Maxfield] and Euclidean gravity path integral [Penington, Shenker, Stanford, Yang; Almheiri, Hartman, Maldacena, ES, Tajdini]
- ► These approaches may be the same via Euclidean gravity = holography [Harlow, ES]
- ► Euclidean gravity approach is generalizable to other spacetimes; let's consider flat/cosmological spacetimes (→ holography?)

Flat space

CGHS/RST model:

$$I_{\rm cl} = \int d^2x \sqrt{-g} \left[e^{-2\phi} (R + 4(\nabla\phi)^2 + 4) \underbrace{-\frac{c}{24}\phi R}_{\rm RST} \right] + I_{\rm CFT}[g]$$

Conformal anomaly leads to

$$I_{\text{anom}} = -\frac{c}{96\pi} \int d^2x \sqrt{-g} R \Box^{-1} R$$

Flat space

CGHS/RST model:

$$I_{\rm cl} = \int d^2x \sqrt{-g} \left[e^{-2\phi} (R + 4(\nabla\phi)^2 + 4) \underbrace{-\frac{c}{24}\phi R}_{\rm RST} \right] + I_{\rm CFT}[g]$$

Conformal anomaly leads to

$$I_{\text{anom}} = -\frac{c}{96\pi} \int d^2x \sqrt{-g} R \Box^{-1} R$$

Quantum effective action exact at large c. Equivalent to flat-space JT

$$I = \int d^2x \sqrt{-g} \left[\Phi R + 1\right] + I_{\text{CFT}}[g]$$

Conformal gauge

$$ds^2 = -e^{2\rho} dx^+ dx^-$$

U(1) current $\partial_{\mu}(\rho - \phi)$ equivalent to Φ shift symmetry.

Solutions: linear dilaton vacuum

Field redefinitions and further gauge-fixing:

$$\partial_{+}\partial_{-}\Omega = -1$$
, $\partial_{\pm}^{2}\Omega = -T_{x\pm x\pm}^{\text{flat}}$

Restrict to $\Omega \geq 1/4$.

Solutions: linear dilaton vacuum

Field redefinitions and further gauge-fixing:

$$\partial_{+}\partial_{-}\Omega = -1$$
, $\partial_{\pm}^{2}\Omega = -T_{x\pm x\pm}^{\text{flat}}$

Restrict to $\Omega \geq 1/4$.

Linear dilaton vacuum:

$$\Omega = -x^{+}x^{-} - \frac{1}{4}\log(-4x^{+}x^{-}), \qquad ds^{2} = \frac{dx^{+}dx^{-}}{x^{+}x^{-}} = -d\sigma^{+}d\sigma^{-}$$

$$T_{x^{\pm}x^{\pm}} = T_{x^{\pm}x^{\pm}}^{\text{flat}} - ((\partial_{+}\rho)^{2} - \partial_{+}^{2}\rho) \implies T_{x^{\pm}x^{\pm}} = T_{\sigma^{\pm}\sigma^{\pm}} = 0$$

Shock wave impinges on linear dilaton vacuum

$$\Omega = -x^{+}x^{-} - \frac{1}{4}\log(-4x^{+}x^{-}) - M(x^{+} - 1)\theta(x^{+} - 1)$$
$$T_{\sigma^{+}\sigma^{+}} = M\delta(x^{+} - 1), \quad T_{\sigma^{-}\sigma^{-}} = 0$$

Shock wave impinges on linear dilaton vacuum

$$\Omega = -x^{+}x^{-} - \frac{1}{4}\log(-4x^{+}x^{-}) - M(x^{+} - 1)\theta(x^{+} - 1)$$
$$T_{\sigma^{+}\sigma^{+}} = M\delta(x^{+} - 1), \quad T_{\sigma^{-}\sigma^{-}} = 0$$

 $ds^2 \approx -d\sigma^+ d\tilde{\sigma}^-$ near \mathcal{I}^+ with $x^+ = e^{\sigma^+}$, $x^- + M = -e^{-\tilde{\sigma}^-}$, so observer sees

$$T_{\tilde{\sigma}^-\tilde{\sigma}^-} \approx \frac{1}{4} \left(1 - \frac{1}{1 + Me^{\tilde{\sigma}^-}} \right), \quad \tilde{\sigma}^- \in (-\infty, 4M)$$

$$S_{\rm QG}(R) = S_{\rm QFT}(R) = \frac{c}{12} \log(1 + Me^{\tilde{\sigma}^-}) + {\rm UV/IR}$$
 divergences

 $[Fiola,\ Preskill,\ Strominger,\ Trivedi]$

Remnants!

 ${\it CGHS/RST}$ model are defined on fixed topology: no replica wormholes.

CGHS/RST model are defined on fixed topology: no replica wormholes.

Proposed modification: sum over topologies to get

$$S_{\mathrm{QG}}(R) = \min \, \operatorname{ext}_I S_{\mathrm{gen}}(I \cup R) \,, \qquad S_{\mathrm{gen}}(I \cup R) = \frac{\operatorname{Area}(\partial I)}{4} + S_{\mathrm{QFT}}(I \cup R) \,.$$

CGHS/RST model are defined on fixed topology: no replica wormholes.

Proposed modification: sum over topologies to get

$$S_{\mathrm{QG}}(R) = \min \, \operatorname{ext}_I S_{\mathrm{gen}}(I \cup R) \,, \qquad S_{\mathrm{gen}}(I \cup R) = \frac{\operatorname{Area}(\partial I)}{4} + S_{\mathrm{QFT}}(I \cup R) \,.$$

 \mathcal{I}^+ non-dynamical.

CGHS/RST model are defined on fixed topology: no replica wormholes.

Proposed modification: sum over topologies to get

$$S_{\mathrm{QG}}(R) = \min \, \mathrm{ext}_I \, S_{\mathrm{gen}}(I \cup R) \,, \qquad S_{\mathrm{gen}}(I \cup R) = \frac{\mathrm{Area}(\partial I)}{4} + S_{\mathrm{QFT}}(I \cup R) \,.$$

 \mathcal{I}^+ non-dynamical.

Let's revisit the evaporating black hole! cf [Gautason, Schneiderbauer, Sybesma,

Thorlacius; Anegawa, Iizuka]

 $\tilde{\sigma}^- \sim O(M)$ with $M \gg 1$:

$$S_{\mathrm{QG}}(R) = \min \, \mathrm{ext}_{I} S_{\mathrm{gen}}(I \cup R) = \min \frac{c}{24} \{ 2\tilde{\sigma}^{-}, 4M - \tilde{\sigma}^{-} \} + \frac{c}{6} \log \frac{\sigma^{+}}{\epsilon_{\mathrm{uv}}}$$

$$t_{\text{Page}} = 4M/3 = t_{\text{evap}}/3$$
: $-\delta S_{\text{BH}} = 2\delta S_{\text{radiation}}$

Replica wormholes

Consider general dilaton gravity

$$I = \int_{\Sigma_2} (\phi R + U(\phi)) + I_{CFT}$$

Replica wormholes

Consider general dilaton gravity

$$I = \int_{\Sigma_2} (\phi R + U(\phi)) + I_{CFT}$$

 $ds^2=e^{2\rho}dzd\bar{z},$ place defect (represents $\partial I)$ at z=0 and take $z\sim 0,\, n\sim 1$:

$$\rho \to \rho + (n-1)\delta\rho, \qquad \phi \to \phi + (n-1)\delta\phi, \qquad T_{\mu\nu}^{\rm flat} \to T_{\mu\nu}^{\rm flat} + (n-1)\delta T_{\mu\nu}^{\rm flat}$$

Smoothness on replica manifold $w=z^{1/n}$ implies $\delta \rho \sim -\frac{1}{2}\log(z\bar{z})$.

Replica wormholes

Consider general dilaton gravity

$$I = \int_{\Sigma_2} (\phi R + U(\phi)) + I_{CFT}$$

 $ds^2=e^{2\rho}dzd\bar{z}$, place defect (represents ∂I) at z=0 and take $z\sim 0,\, n\sim 1$:

$$\rho \to \rho + (n-1)\delta\rho, \qquad \phi \to \phi + (n-1)\delta\phi, \qquad T_{\mu\nu}^{\text{flat}} \to T_{\mu\nu}^{\text{flat}} + (n-1)\delta T_{\mu\nu}^{\text{flat}}$$

Smoothness on replica manifold $w = z^{1/n}$ implies $\delta \rho \sim -\frac{1}{2} \log(z\bar{z})$.

Conformal ward identity gives

$$2\pi\delta T_{zz}^{\text{flat}} = \frac{c/12}{z^2} - \frac{\partial S_{CFT}^{\text{flat}}}{z} + \text{reg}, \quad \text{barred}$$

Expanding dilaton in series respecting replica symmetry around z=0 and solving singular terms of constraint equations (g_{zz} and $g_{\bar{z}\bar{z}}$ equations) gives

$$\partial \left(\frac{\operatorname{Area}(\partial I)}{4} + S_{CFT} \right) = \bar{\partial} \left(\frac{\operatorname{Area}(\partial I)}{4} + S_{CFT} \right) = 0.$$

$Looking \ for \ islands \ _{\rm [Hartman, \ Jiang, \ ES]}$

How do we guide our search for islands in general dimensions/spacetimes?

Looking for islands [Hartman, Jiang, ES]

How do we guide our search for islands in general dimensions/spacetimes?

Necessary condition 1 [Almheiri, Engelhardt, Marolf, Maxfield]:

$$\frac{d}{d\lambda_{+}}S_{\text{gen}}(I \cup R) = 0 \Longrightarrow$$

$$\frac{d}{d\lambda_{+}} \left[S_{\text{QFT}}(I) + \frac{\text{Area}(\partial I)}{4} \right] + \frac{d}{d\lambda_{+}} \left[S_{\text{QFT}}(I \cup R) - S_{\text{QFT}}(I) - S_{\text{QFT}}(R) \right] = 0$$

for outgoing null derivative. Monotonicity of mutual information gives

$$\frac{d}{d\lambda_{+}}S_{\text{gen}}(I) = \frac{d}{d\lambda_{+}}I_{\text{QFT}}(I,R) \ge 0$$

For inward null derivative

$$\frac{d}{d\lambda_{-}}S_{\text{gen}}(I) = \frac{d}{d\lambda_{-}}I_{\text{QFT}}(I,R) \le 0$$

So ∂I is in "quantum normal region":

$$\pm \frac{d}{d\lambda_{\pm}} S_{\text{gen}}(I) \ge 0$$

Looking for islands

Necessary condition 2:

$$\frac{\operatorname{Area}(\partial I)}{4} + S_{\operatorname{QFT}}(I \cup R) < S_{\operatorname{QFT}}(R)$$

Looking for islands

Necessary condition 2:

$$\frac{\operatorname{Area}(\partial I)}{4} + S_{\mathrm{QFT}}(I \cup R) < S_{\mathrm{QFT}}(R)$$

Rearrange to get

$$S_{\mathrm{QFT}}(I) - \frac{\mathrm{Area}(\partial I)}{4} > S_{\mathrm{QFT}}(I) + S_{\mathrm{QFT}}(I \cup R) - S_{\mathrm{QFT}}(R)$$

Araki-Lieb $S(I \cup R) \ge |S(I) - S(R)|$ gives

$$\widehat{S}_{ ext{QFT}}(I) \gtrsim rac{\operatorname{Area}(\partial I)}{4}$$

Looking for islands

Necessary condition 2:

$$\frac{\operatorname{Area}(\partial I)}{4} + S_{\operatorname{QFT}}(I \cup R) < S_{\operatorname{QFT}}(R)$$

Rearrange to get

$$S_{\text{QFT}}(I) - \frac{\text{Area}(\partial I)}{4} > S_{\text{QFT}}(I) + S_{\text{QFT}}(I \cup R) - S_{\text{QFT}}(R)$$

Araki-Lieb $S(I \cup R) \ge |S(I) - S(R)|$ gives

$$\widehat{S}_{ ext{QFT}}(I) \gtrsim rac{ ext{Area}(\partial I)}{4}$$

"Phenomenology": in our past lightcone, for thermal matter entropy, bound violated at $T \sim 1$ TeV.

Necessary conditions 1 and 2 **independent of** R:

$$\boxed{\pm \frac{d}{d\lambda_{\pm}} S_{\rm gen}(I) \geq 0, \qquad \widehat{S}_{\rm QFT}(I) \gtrsim \frac{{\rm Area}(\partial I)}{4}}$$

Necessary conditions 1 and 2 **independent of** R:

$$\boxed{\pm \frac{d}{d\lambda_{\pm}} S_{\rm gen}(I) \ge 0, \qquad \widehat{S}_{\rm QFT}(I) \gtrsim \frac{{\rm Area}(\partial I)}{4}}$$

Necessary conditions 1 and 2 **independent of** R:

$$\pm \frac{d}{d\lambda_{\pm}} S_{\text{gen}}(I) \ge 0, \qquad \widehat{S}_{\text{QFT}}(I) \gtrsim \frac{\text{Area}(\partial I)}{4}$$

Necessary conditions 1 and 2 **independent of** R:

$$\pm \frac{d}{d\lambda_{\pm}} S_{\text{gen}}(I) \ge 0, \qquad \widehat{S}_{\text{QFT}}(I) \gtrsim \frac{\text{Area}(\partial I)}{4}$$

Necessary conditions 1 and 2 **independent of** R:

$$\boxed{\pm \frac{d}{d\lambda_{\pm}} S_{\rm gen}(I) \geq 0, \qquad \widehat{S}_{\rm QFT}(I) \gtrsim \frac{{\rm Area}(\partial I)}{4}}$$

Necessary conditions 1 and 2 **independent of** R:

$$\pm \frac{d}{d\lambda_{\pm}} S_{\mathrm{gen}}(I) \ge 0, \qquad \widehat{S}_{\mathrm{QFT}}(I) \gtrsim \frac{\mathrm{Area}(\partial I)}{4}$$

Necessary conditions 1 and 2 **independent of** R:

$$\boxed{\pm \frac{d}{d\lambda_{\pm}} S_{\rm gen}(I) \geq 0, \qquad \widehat{S}_{\rm QFT}(I) \gtrsim \frac{{\rm Area}(\partial I)}{4}}$$

CGHS/RST hide information: modify models with sum over topology \longrightarrow unitary Page curve

CGHS/RST hide information: modify models with sum over topology \longrightarrow unitary Page curve

Consistency conditions guide search in higher dimensions \longrightarrow certain cosmological islands ruled out

CGHS/RST hide information: modify models with sum over topology \longrightarrow unitary Page curve

Consistency conditions guide search in higher dimensions \longrightarrow certain cosmological islands ruled out

Islands found for 4d crunching cosmology with matter in thermal state

CGHS/RST hide information: modify models with sum over topology \longrightarrow unitary Page curve

Consistency conditions guide search in higher dimensions \longrightarrow certain cosmological islands ruled out

Islands found for 4d crunching cosmology with matter in thermal state

Hint of dual description, using Euclidean gravity = holography?