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Observations of Hawking radiation: 
the Page curve and baby universes  
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Black hole information

A hypothesis: “Bekenstein-Hawking (BH) unitarity”

In order to describe measurements of distant observers, black holes 
can be modelled as a unitary quantum system with dim ℋ = eSBH

An old question: is there a standard quantum statistical description 
underlying black hole thermodynamics? 

Should we interpret  as counting internal states?SBH =
A

4GN

Today’s talk: test this idea by computing asymptotic observables, using 
only low-energy, semiclassical gravity



The von Neumann entropy of Hawking radiation
Perturbative QG: radiation is thermal, so  steadily increasesSHawking

BH unitarity:  is bounded by SHawking SBH
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The von Neumann entropy of Hawking radiation

Possibilities: 

• Information loss


• Remnants


• BH unitarity

SHawking(u)SBH(u)
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uPage

In tension while the black hole is still large!
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Perturbative QG: radiation is thermal, so  steadily increasesSHawking

BH unitarity:  is bounded by SHawking SBH



Conclusions

• Perturbative quantum gravity is correct: no significant modifications 
to Hawking’s calculation of the state of radiation are known, &


• BH unitarity is correct: the outcome of experiments predicted by 
semiclassical gravity are consistent with  counting states.SBH =

A
4GN

How is this possible?
Superselection sectors for the algebra of asymptotic observables.
Large entropy of Hawking radiation: entanglement with “baby universes”, 
or superposition of superselection sectors: unobservable!

Semiclassical gravity gives a consistent, coherent picture such that



1. Observables for entropy 

2. Semiclassical gravity & replica wormholes 

3. Spacetime wormholes, baby universes and 
superselection sectors



An operational approach

von Neumann entropy is not directly observable!
Concentrate on predictions for experiments performed by asymptotic observers

Require measurements on multiple copies of the state



An operational approach
Concentrate on predictions for experiments performed by asymptotic observers

Require measurements on multiple copies of the state

Swap test: measure swap operator 𝒮
𝒮 |ψ1⟩ ⊗ |ψ2⟩ = |ψ2⟩ ⊗ |ψ1⟩

Expectation value on two copies of a state :ρ
Tr(𝒮ρ ⊗ ρ) = Tr(ρ2) = e−S2(ρ)
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Require measurements on multiple copies of the state

Swap test: measure swap operator 𝒮
𝒮 |ψ1⟩ ⊗ |ψ2⟩ = |ψ2⟩ ⊗ |ψ1⟩

Expectation value on two copies of a state :ρ
Tr(𝒮ρ ⊗ ρ) = Tr(ρ2) = e−S2(ρ)

More generally:
Sn(ρ) = − 1

n − 1 log Tr(ρn) = − 1
n − 1 log Tr(Uσ ρ⊗n)

th Rényi entropyn Operator enacting cyclic 
permutation σ = (12⋯n)

S(ρ) = lim
n→1

Sn(ρ)

von Neumann entropy: 
formal limit

 copies 
of state 
n

ρ

[Hayden,Preskill]



An operational approach

Sswap
n (u) = − 1

n − 1 log Tr(Uσ ρ(n)(u))

Cyclic permutation operator

State of Hawking radiation 
before time                  

from  identically prepared 
black holes
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n (u)Swap von Neumann entropy:

We’ll study “swap (Rényi) entropies”:

Interpretation: entropy 
deduced by asymptotic 

observer from measurements
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An operational approach

Sswap
n (u) = − 1

n − 1 log Tr(Uσ ρ(n)(u))

Cyclic permutation operator

State of Hawking radiation 
before time                  

from  identically prepared 
black holes

u
n

Sswap(u) = lim
n→1

Sswap
n (u)Swap von Neumann entropy:

We’ll study “swap (Rényi) entropies”:

Interpretation: entropy 
deduced by asymptotic 

observer from measurements

If , then .ρ(n)(u) = ρ(u) ⊗ ⋯ ⊗ ρ(u) Sswap(u) = S(u)

This will fail: !Sswap(u) ≠ S(u)



1. Observables for entropy 

2. Semiclassical gravity & replica wormholes 

3. Spacetime wormholes, baby universes and 
superselection sectors



Framework: semiclassical gravity
Use only low-energy theory of GR + matter

Path integral formulation (Lorentzian):

∫ 𝒟g eiSEH[g] ∫ 𝒟ϕ eiSmatter[g,ϕ] = ∫ 𝒟g ei(SEH[g]+Seff[g])

Semiclassical: saddle-points of gravitational action + matter effective action SEH[g] + Seff[g]

Boundary conditions: fix asymptotic geometry

Saddle-points with any topology allowed

Geometries with regions of strong curvature excluded



Hawking’s calculation
QFT on fixed background (canonical)

i−

i0

i+

I −|ψ〉
=
|0〉

I
−

I +

r
=

0

Collapsing
star

Compute EV of operator  on 𝒪 ℐ+
𝒪

Heisenberg evolve back to ℐ−

Evaluate in initial state (ingoing vacuum)

am(ℐ+) = ∑
n

(αmn an(ℐ−) + βmn a†
n(ℐ−))

⟨Nm(ℐ+)⟩ = ∑
n

|βmn |2 .

e.g. free matter

e.g. occupation numbers

No evolution through strong curvature 
regions required



Hawking’s calculation
QFT on fixed background (path integral)

Identify

Σ+
Σ+

O+

|0〉I −I −〈0|

𝒪

Compute EV of operator  on 𝒪 ℐ+

Heisenberg evolve back to ℐ−

Boundary conditions at : initial state

No need to specify final state

ℐ−

In-in (Schwinger-Keldysh) formalism

Identify “bra” and “ket” spacetimes 
on future Cauchy surface Σ+

Strong curvature regions not part of geometry

Integrate over matter fields 
on “doubled” spacetime:



|0〉I −

E

u = uE
NE

Perturbative quantum gravity

|j〉uu〈i|

Black hole evaporates:

Concentrate on measurements before evaporation ( ): 
no assumptions about endpoint  or singularity necessary

u < uℰ
ℰ

Perturbatively corrected saddle-point for the 
density matrix of Hawking radiation :u⟨i |ρ(u) | j⟩u

Shrinking event 
horizon

“Endpoint” of 
evaporation: 

A ∼ GN

A dynamical metric



Computing the swap entropy
Swap operator  acting on two sets 
of Hawking radiation, :

𝒮
ρ(2)(u)

?

?

Boundary conditions for computing the 
expectation value Tr (𝒮ρ(2)(u))
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Computing the swap entropy
Swap operator  acting on two sets 
of Hawking radiation, :

𝒮
ρ(2)(u)

?

?

Boundary conditions for computing the 
expectation value Tr (𝒮ρ(2)(u))

Σu

SBH(u)

u

Sswap

A saddle point:

Two copies of “Hawking” saddle

I
Σextγ Another saddle!


“Replica wormhole”

SBH(u)

u

Sswap



Geometry of a replica wormhole

I
Σextγ Split future Cauchy surface in two pieces 

(  and ) along a surface .Σext I γ

Exterior piece  identifies “bra” & “ket”  
as required by boundary conditions

Σext

But the “island”  is identified with a “swap”:

joins replicas with a “spacetime wormhole”!

I

Geometry — including location of  —
dynamically determined to get a saddle

γ = ∂I

[Penington,Shenker,Stanford,Yang] 
[Almheiri,Hartman,Maldacena,Shaghoulian,Tajdini]



I
Σextγ

Replica wormholes & QES rule for Sswap

• Hard to construct saddles for integer  


• Reformulate path integral for  to 
make sense for real 


• Simplifies when  is small: saddle-point 
if  is a quantum extremal surface

n ≥ 2

Sswap
n (u)

n > 1

n − 1
γ

Sswap(u) ∼ min ext
I

Sgen(I; u)

• Finite : saddle-point geometry is complex. 
Captures contribution of oscillatory integral 
over real Lorentzian geometries

n

[Ryu,Takayanagi] [Hubeny,Rangamani,Takayanagi] 
[Faulkner,Lewkowycz,Maldacena][Engelhardt,Wall]

[Lewkowycz,Maldacena] 
[Dong,Lewkowycz]



Sum of two saddle-points

Dominant at early times Dominant at late times
Together: Page curve for !Sswap(u)

+
Σu I

Σextγ

SBH(u)

u

Sswap

Hawking 
saddle

Replica 
wormhole

Dominant 
saddle

Page curve for  from 
first-order phase transition 

between semiclassical 
saddle-points

Sswap(u)



1. Observables for entropy 

2. Semiclassical gravity & replica wormholes 

3. Spacetime wormholes, baby universes and 
superselection sectors



A puzzle
|j〉uu〈i|

We have not found anything new to 
modify Hawking’s calculation of the 
state of radiation u⟨i |ρ(u) | j⟩u

I
Σextγ

Meanwhile, we have a new saddle-point for 
the swap !Tr(𝒮ρ(2)(u))

Resolution:  !ρ(2)(u) ≠ ρ(u) ⊗ ρ(u)

For more detail: what is the Hilbert space interpretation of replica wormholes?



Polchinski-Strominger wormholes
A simplified setting

I
Σextγ

Extrapolate to late time

No longer semiclassical. Makes 
assumptions about evaporation endpoint.

Cauchy surface for 
black hole interior

I ⟶ Σint

Here: a simplification to explain the main ideas.



|i1〉〈j1|

|i2〉〈j2|

Polchinski-Strominger wormholes

⟨j1, j2 |ρ(2) | i1, i2⟩ = ⟨j1 |ρH | i1⟩⟨j2 |ρH | i2⟩ + ⟨j2 |ρH | i1⟩⟨j1 |ρH | i2⟩

|i1〉〈j1|

|i2〉〈j2|

+

Two-copy density matrix on :ℐ+



Polchinski-Strominger wormholes

⟨j1, j2 |ρ(2) | i1, i2⟩ = ⟨j1 |ρH | i1⟩⟨j2 |ρH | i2⟩ + ⟨j2 |ρH | i1⟩⟨j1 |ρH | i2⟩|i1〉〈j1|

|i2〉〈j2|

ρ(2) = (1 + 𝒮) ρH ⊗ ρH

 invariant under ρ(2) 𝒮 ⟹ ⟨𝒮⟩ = 1 ⟹ Sswap
2 = 0

Observables match with pure 
state of Hawking radiation

Two-copy density matrix on :ℐ+



|i1〉〈j1|

|i2〉〈j2|

Hilbert space interpretation
Hilbert space interpretation: comes from cutting open path integral

|ψ⟩ = ∑
i,a

ψai | i⟩ℐ+ ⊗ |a⟩Σint

⟨j1 |ρ | i1⟩ =

One set of Hawking radiation:

“Ket” computes pure state wavefunction 
on  and :ℐ+ Σint

Orthonormal basis of states on Σint



|i1〉〈j1|

|i2〉〈j2|

Hilbert space interpretation
Hilbert space interpretation: comes from cutting open path integral

|ψ⟩ = ∑
i,a

ψai | i⟩ℐ+ ⊗ |a⟩Σint

⟨j1 |ρ | i1⟩ =

One set of Hawking radiation:

“Ket” computes pure state wavefunction 
on  and :ℐ+ Σint

Identification sums over intermediate 
states on :Σint

⟨j |ρ | i⟩ = ∑
a

ψ̄ajψai

 mixed due to entanglement with 
“closed universe” 

ρ
Σint

Orthonormal basis of states on Σint



|i1〉〈j1|

|i2〉〈j2|

|i1〉〈j1|

|i2〉〈j2|

+⟨j1, j2 |ρ(2) | i1, i2⟩ =

Several sets of Hawking radiation:

Pure state on 2 copies of  and :ℐ+ Σint

|ψ(2)⟩ = ∑
i1, i2
a1, a2

ψa1i1ψa2i2 | i1, i2⟩ℐ+ ⊗ |a1, a2⟩BU

Wormholes and the BU inner product



|i1〉〈j1|

|i2〉〈j2|

|i1〉〈j1|

|i2〉〈j2|

+⟨j1, j2 |ρ(2) | i1, i2⟩ =

Several sets of Hawking radiation:

Pure state on 2 copies of  and :ℐ+ Σint

|ψ(2)⟩ = ∑
i1, i2
a1, a2

ψa1i1ψa2i2 | i1, i2⟩ℐ+ ⊗ |a1, a2⟩BU

⟨b1, b2 |a1, a2⟩BU = ⟨b1 |a1⟩Σint
⟨b2 |a2⟩Σint

+⟨b2 |a1⟩Σint
⟨b1 |a2⟩Σint

Inner product on “baby universes” 
induced by PS wormholes:

Closed universes are 
indistinguishable bosons

ℋBU =
∞

⨁
n=0

Symn ℋΣint

Not just factorised inner 
product on !ℋΣint

⊗ ℋΣint

Wormholes and the BU inner product
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+⟨j1, j2 |ρ(2) | i1, i2⟩ =

Several sets of Hawking radiation:

Pure state on 2 copies of  and :ℐ+ Σint
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⟨b1, b2 |a1, a2⟩BU = ⟨b1 |a1⟩Σint
⟨b2 |a2⟩Σint

+⟨b2 |a1⟩Σint
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Inner product on “baby universes” 
induced by PS wormholes:

Closed universes are 
indistinguishable bosons

ℋBU =
∞

⨁
n=0

Symn ℋΣint

Not just factorised inner 
product on !ℋΣint

⊗ ℋΣint

Wormholes and the BU inner product

Wormholes  modified inner product of   ⟶ ℋBU ⟶ ρ(2) ≠ ρ ⊗ ρ



⟨j1, …, jn |ρ(n) | i1, …, in⟩ = ∑a1, …, an

b1, …, bn

ψa1i1ψ̄b1j1⋯ψaninψ̄bn jn⟨b1, …, bn |a1, …, an⟩BU

Wormholes and the BU inner product
Wormholes  modified inner product of   ⟶ ℋBU ⟶ ρ(2) ≠ ρ ⊗ ρ

Complicated inner product 
induced by replica wormholes
(Invariant under permutations)

⟨b1, …, bn |a1, …, an⟩BU = ∫ dμ(α)αa1
⋯αan

ᾱb1
⋯ᾱbn

Can write any such inner product as

for an appropriate choice of integration measure  for the parameters .dμ(α) αa

⟨j1, …, jn |ρ(n) | i1, …, in⟩ = ∫ dμ(α)Ψα
i1Ψ̄

α
j1⋯Ψα

inΨ̄
α
jn

Ψα
i = ∑

a

ψaiαawhere

⟹ ρ(n) = ∫ dμ(α)( |Ψα⟩⟨Ψα |)⊗n

Gives



Correlations between copies of Hawking radiation
From replica wormholes,  . But correlations have a special form:ρ(n)(u) ≠ (ρH(u))⊗n

ρ(n)(u) = ∫ dμ(α)(ρα(u))⊗n

ρH(u) = ∫ dμ(α) ρα(u)One copy of Hawking radiation:

Each fixed : 
Page curve

α
Average over : 
Hawking result

α

Classical statistical mixture (ensemble) of possibilities ρα(u)

Labels  correspond to a basis of “baby universe” states α |α⟩ ∈ ℋBU

[Coleman][Giddings,Strominger]

Asymptotic observers will “measure”   superselection sectorα ⟶

u

S



Some comments
• This is not a departure from ordinary quantum mechanics.


• Asymptotic observables are superselected because they commute.


• Hawking’s calculation had an implicit assumption: initial state of closed 
universes. No-boundary state , measure .


• -states resemble final state: project onto wavefunction .


• “Integrating out” wormholes   nonlocality on horizon scale.


• Sum over topologies becomes uncontrolled when -parameters are well-
determined: a principled reason to expect breakdown of semiclassical approx.


• Info paradox evaporates if we accept superselection sectors: coherent, 
consistent picture using only semiclassical gravity.

|NB⟩ dμ(α) = |⟨α |NB⟩ |2 dα

α αa

⟶

α



• Ensemble duality: -states  CFTs in the ensemble: 


• Quantum code: equivalent to -state. Random! To decode, must perform 
many measurements. Compare Petz map [Penington,Shenker,Stanford,Yang].


• To avoid this, need new physics (semiclassical or beyond). Are replica 
wormholes still “correct”?


• Information problem remains for non-ensemble duals… but with new clues! 


• Becomes an instance of the factorisation problem: a failure of factorisation 
between “ket” and “bra” boundaries

α ⟷ ℋ = ⊕α ℋα

α

AdS/CFT


