Observations of Hawking radiation: the Page curve and baby universes

Island Hopping 2020
[2010.06602],[2002.08950] with Don Marolf

Black hole information

An old question: is there a standard quantum statistical description underlying black hole thermodynamics?

$$
\text { Should we interpret } S_{\mathrm{BH}}=\frac{A}{4 G_{N}} \text { as counting internal states? }
$$

A hypothesis: "Bekenstein-Hawking (BH) unitarity"
In order to describe measurements of distant observers, black holes can be modelled as a unitary quantum system with $\operatorname{dim} \mathscr{H}=e^{S_{\text {BH }}}$

Today's talk: test this idea by computing asymptotic observables, using only low-energy, semiclassical gravity

The von Neumann entropy of Hawking radiation

Perturbative QG: radiation is thermal, so $S_{\text {Hawking }}$ steadily increases BH unitarity: $S_{\text {Hawking }}$ is bounded by $S_{\text {BH }}$

The von Neumann entropy of Hawking radiation

Perturbative QG: radiation is thermal, so $S_{\text {Hawking }}$ steadily increases
BH unitarity: $S_{\text {Hawking }}$ is bounded by $S_{\text {BH }}$

In tension while the black hole is still large!

The von Neumann entropy of Hawking radiation

Perturbative QG: radiation is thermal, so $S_{\text {Hawking }}$ steadily increases
BH unitarity: $S_{\text {Hawking }}$ is bounded by $S_{\text {BH }}$

Possibilities:

- Information loss
- Remnants
- BH unitarity

In tension while the black hole is still large!

Conclusions

Semiclassical gravity gives a consistent, coherent picture such that

- Perturbative quantum gravity is correct: no significant modifications to Hawking's calculation of the state of radiation are known, \&
- BH unitarity is correct: the outcome of experiments predicted by semiclassical gravity are consistent with $S_{\mathrm{BH}}=\frac{A}{4 G_{N}}$ counting states.

How is this possible?

Superselection sectors for the algebra of asymptotic observables.
Large entropy of Hawking radiation: entanglement with "baby universes", or superposition of superselection sectors: unobservable!

1. Observables for entropy
2. Semiclassical gravity \& replica wormholes
3. Spacetime wormholes, baby universes and superselection sectors

An operational approach

Concentrate on predictions for experiments performed by asymptotic observers von Neumann entropy is not directly observable!

Require measurements on multiple copies of the state

An operational approach

Concentrate on predictions for experiments performed by asymptotic observers von Neumann entropy is not directly observable!

Require measurements on multiple copies of the state
Swap test: measure swap operator \mathcal{S}

$$
\mathcal{S}\left|\psi_{1}\right\rangle \otimes\left|\psi_{2}\right\rangle=\left|\psi_{2}\right\rangle \otimes\left|\psi_{1}\right\rangle \quad \text { [Hayden,Preskill] }
$$

Expectation value on two copies of a state ρ :

$$
\operatorname{Tr}(\mathcal{S} \rho \otimes \rho)=\operatorname{Tr}\left(\rho^{2}\right)=e^{-S_{2}(\rho)}
$$

An operational approach

Concentrate on predictions for experiments performed by asymptotic observers von Neumann entropy is not directly observable!

Require measurements on multiple copies of the state
Swap test: measure swap operator \mathcal{S}

$$
\mathcal{S}\left|\psi_{1}\right\rangle \otimes\left|\psi_{2}\right\rangle=\left|\psi_{2}\right\rangle \otimes\left|\psi_{1}\right\rangle \quad \text { [Hayden,Preskill] }
$$

Expectation value on two copies of a state ρ :

$$
\operatorname{Tr}(\mathcal{S} \rho \otimes \rho)=\operatorname{Tr}\left(\rho^{2}\right)=e^{-S_{2}(\rho)}
$$

More generally:

von Neumann entropy: formal limit

$$
S(\rho)=\lim _{n \rightarrow 1} S_{n}(\rho)
$$

An operational approach

We'll study "swap (Rényi) entropies":
State of Hawking radiation
before time u
$S_{n}^{\mathrm{swap}}(u)=-\frac{1}{n-1} \log \operatorname{Tr}\left(U_{\sigma} \rho^{(n)}(u)\right)$ from n identically prepared
Swap von Neumann entropy: $S^{\text {swap }}(u)=\lim _{n \rightarrow 1} S_{n}^{\text {swap }}(u)$
Interpretation: entropy deduced by asymptotic observer from measurements

An operational approach

We'll study "swap (Rényi) entropies":
State of Hawking radiation before time u

$$
S_{n}^{\mathrm{swap}}(u)=-\frac{1}{n-1} \log \operatorname{Tr}\left(U_{\sigma} \rho^{(n)}(u)\right) \quad \begin{gathered}
\text { from } n \text { identically prepared } \\
\text { black holes }
\end{gathered}
$$

Swap von Neumann entropy: $S^{\text {swap }}(u)=\lim _{n \rightarrow 1} S_{n}^{\text {swap }}(u)$
Interpretation: entropy deduced by asymptotic observer from measurements

$$
\text { If } \rho^{(n)}(u)=\rho(u) \otimes \cdots \otimes \rho(u), \text { then } S^{\text {swap }}(u)=S(u) .
$$

An operational approach

We'll study "swap (Rényi) entropies":
State of Hawking radiation before time u
$S_{n}^{\mathrm{swap}}(u)=-\frac{1}{n-1} \log \operatorname{Tr}\left(U_{\sigma} \rho^{(n)}(u)\right)$ from n identically prepared
Swap von Neumann entropy: $S^{\text {swap }}(u)=\lim _{n \rightarrow 1} S_{n}^{\text {swap }}(u)$
Interpretation: entropy deduced by asymptotic observer from measurements

$$
\text { If } \rho^{(n)}(u)=\rho(u) \otimes \cdots \otimes \rho(u), \text { then } S^{\text {swap }}(u)=S(u) .
$$

This will fail: $S^{\text {swap }}(u) \neq S(u)$!

1. Observables for entropy
2. Semiclassical gravity \& replica wormholes
3. Spacetime wormholes, baby universes and superselection sectors

Framework: semiclassical gravity

Use only low-energy theory of GR + matter
Path integral formulation (Lorentzian):

$$
\int \mathscr{D} g e^{i S_{\mathrm{EH}}[g]} \int \mathscr{D} \phi e^{i S_{\mathrm{matter}}[g, \phi]}=\int \mathscr{D} g e^{i\left(S_{\mathrm{EH}}[g]+S_{\mathrm{eff}}[g]\right)}
$$

Semiclassical: saddle-points of gravitational action + matter effective action $S_{\text {EH }}[g]+S_{\text {eff }}[g]$
Boundary conditions: fix asymptotic geometry
Saddle-points with any topology allowed
Geometries with regions of strong curvature excluded

Hawking's calculation QFT on fixed background (canonical)

Compute EV of operator \mathcal{O} on \mathscr{J}^{+} Heisenberg evolve back to \mathscr{J}^{-}
e.g. free matter $a_{m}\left(\mathcal{J}^{+}\right)=\sum_{n}\left(\alpha_{m n} a_{n}\left(\mathcal{J}^{-}\right)+\beta_{m n} a_{n}^{\dagger}\left(\mathscr{J}^{-}\right)\right)$

Evaluate in initial state (ingoing vacuum)
e.g. occupation numbers $\left\langle N_{m}\left(\mathscr{J}^{+}\right)\right\rangle=\sum_{n}\left|\beta_{m n}\right|^{2}$.

No evolution through strong curvature regions required

Hawking's calculation
 QFT on fixed background (path integral)

Integrate over matter fields on "doubled" spacetime:

Compute EV of operator \mathcal{O} on \mathscr{J}^{+} Heisenberg evolve back to \mathcal{J}^{-}

In-in (Schwinger-Keldysh) formalism
Boundary conditions at \mathscr{J}^{-}: initial state No need to specify final state Identify "bra" and "ket" spacetimes on future Cauchy surface Σ_{+}

Strong curvature regions not part of geometry

Perturbative quantum gravity

A dynamical metric

Black hole evaporates:
Perturbatively corrected saddle-point for the density matrix of Hawking radiation ${ }_{u}\langle i| \rho(u)|j\rangle_{u}$:

Concentrate on measurements before evaporation $\left(u<u_{\mathscr{C}}\right)$: no assumptions about endpoint \mathscr{E} or singularity necessary

Computing the swap entropy

Swap operator \mathcal{S} acting on two sets of Hawking radiation, $\rho^{(2)}(u)$:

Boundary conditions for computing the expectation value $\operatorname{Tr}\left(\mathcal{S} \rho^{(2)}(u)\right)$

Computing the swap entropy

Swap operator \mathcal{S} acting on two sets of Hawking radiation, $\rho^{(2)}(u)$:

Boundary conditions for computing the expectation value $\operatorname{Tr}\left(\mathcal{S} \rho^{(2)}(u)\right)$

A saddle point:
Two copies of "Hawking" saddle

Computing the swap entropy

Swap operator \mathcal{S} acting on two sets of Hawking radiation, $\rho^{(2)}(u)$:

Boundary conditions for computing the expectation value $\operatorname{Tr}\left(\mathcal{S} \rho^{(2)}(u)\right)$

A saddle point:
Two copies of "Hawking" saddle

Another saddle!
"Replica wormhole"

Geometry of a replica wormhole

Split future Cauchy surface in two pieces ($\Sigma_{\text {ext }}$ and I) along a surface γ.

Exterior piece $\Sigma_{\text {ext }}$ identifies "bra" \& "ket" as required by boundary conditions

But the "island" I is identified with a "swap": joins replicas with a "spacetime wormhole"!

Geometry - including location of $\gamma=\partial I-$ dynamically determined to get a saddle

[^0] [Almheiri,Hartman,Maldacena,Shaghoulian, Tajdini]

Replica wormholes \& QES rule for $S^{\text {swap }}$

- Hard to construct saddles for integer $n \geq 2$
- Reformulate path integral for $S_{n}^{\text {swap }}(u)$ to make sense for real $n>1 \quad$ [Lewkowycz,Maldacena] [Dong,Lewkowycz]
- Simplifies when $n-1$ is small: saddle-point if γ is a quantum extremal surface

$$
S^{\text {swap }}(u) \sim \underset{I}{\min } \underset{\mathrm{gen}}{ } S_{\mathrm{gen}}(I ; u)
$$

[Ryu,Takayanagi] [Hubeny,Rangamani,Takayanagi] [Faulkner,Lewkowycz,Maldacena][Engelhardt,Wall]

- Finite n : saddle-point geometry is complex. Captures contribution of oscillatory integral over real Lorentzian geometries

Sum of two saddle-points

Dominant at early times Dominant at late times
Together: Page curve for $S^{\text {swap }}(u)$!

Page curve for $S^{\text {swap }}(u)$ from first-order phase transition between semiclassical saddle-points

1. Observables for entropy
2. Semiclassical gravity \& replica wormholes
3. Spacetime wormholes, baby universes and superselection sectors

A puzzle

We have not found anything new to modify Hawking's calculation of the state of radiation ${ }_{u}\langle i| \rho(u)|j\rangle_{u}$

Meanwhile, we have a new saddle-point for the swap $\operatorname{Tr}\left(\mathcal{S} \rho^{(2)}(u)\right)$!

Resolution: $\rho^{(2)}(u) \neq \rho(u) \otimes \rho(u)!$

For more detail: what is the Hilbert space interpretation of replica wormholes?

Polchinski-Strominger wormholes

A simplified setting

Extrapolate to late time

$I \longrightarrow \sum_{\mathrm{int}}$
Cauchy surface for black hole interior

No longer semiclassical. Makes
assumptions about evaporation endpoint.
Here: a simplification to explain the main ideas.

Polchinski-Strominger wormholes

Two-copy density matrix on \mathscr{J}^{+}:
$\left\langle j_{1}, j_{2}\right| \rho^{(2)}\left|i_{1}, i_{2}\right\rangle=\left\langle j_{1}\right| \rho_{H}\left|i_{1}\right\rangle\left\langle j_{2}\right| \rho_{H}\left|i_{2}\right\rangle+\left\langle j_{2}\right| \rho_{H}\left|i_{1}\right\rangle\left\langle j_{1}\right| \rho_{H}\left|i_{2}\right\rangle$

Polchinski-Strominger wormholes

Two-copy density matrix on \mathscr{J}^{+}:

$$
\begin{gathered}
\left\langle j_{1}, j_{2}\right| \rho^{(2)}\left|i_{1}, i_{2}\right\rangle=\left\langle j_{1}\right| \rho_{H}\left|i_{1}\right\rangle\left\langle j_{2}\right| \rho_{H}\left|i_{2}\right\rangle+\left\langle j_{2}\right| \rho_{H}\left|i_{1}\right\rangle\left\langle j_{1}\right| \rho_{H}\left|i_{2}\right\rangle \\
\rho^{(2)}=(1+\mathcal{S}) \rho_{H} \otimes \rho_{H} \\
\rho^{(2)} \text { invariant under } \mathcal{S} \Longrightarrow\langle\mathcal{\delta}\rangle=1 \Longrightarrow S_{2}^{\text {swap }}=0
\end{gathered}
$$

Observables match with pure state of Hawking radiation

Hilbert space interpretation

Hilbert space interpretation: comes from cutting open path integral
One set of Hawking radiation:

"Ket" computes pure state wavefunction on \mathscr{J}^{+}and $\Sigma_{\text {int }}$:

$$
|\psi\rangle=\sum_{i, a} \psi_{a i}|i\rangle_{\mathcal{F}^{+}} \otimes|a\rangle_{\sum_{\text {int }}}
$$

Hilbert space interpretation

Hilbert space interpretation: comes from cutting open path integral

One set of Hawking radiation:

Identification sums over intermediate states on $\Sigma_{\text {int }}$:

$$
\langle j| \rho|i\rangle=\sum_{a} \bar{\psi}_{a j} \psi_{a i}
$$

ρ mixed due to entanglement with
"closed universe" $\Sigma_{\text {int }}$
"Ket" computes pure state wavefunction on \mathscr{J}^{+}and $\Sigma_{\text {int }}$:

$$
|\psi\rangle=\sum_{i, a} \psi_{a i}|i\rangle_{\mathscr{F}^{+}} \otimes|a\rangle_{\Sigma_{\mathrm{int}}}
$$

Wormholes and the BU inner product

Several sets of Hawking radiation:

$\left\langle j_{1}, j_{2}\right| \rho^{(2)}\left|i_{1}, i_{2}\right\rangle=$

$$
+
$$

Pure state on 2 copies of \mathscr{J}^{+}and $\Sigma_{\text {int }}$:

$$
\left|\psi^{(2)}\right\rangle=\sum_{\substack{i_{1}, \psi_{2} \\ a_{1}, a_{2}}} \psi_{a_{1} i_{1}} \psi_{a_{a_{2} i_{2}}}\left|i_{1}, i_{2}\right\rangle_{\mathscr{F}+} \otimes\left|a_{1}, a_{2}\right\rangle_{\mathrm{BU}}
$$

Wormholes and the BU inner product

Several sets of Hawking radiation:
$\left\langle j_{1}, j_{2}\right| \rho^{(2)}\left|i_{1}, i_{2}\right\rangle=$

Pure state on 2 copies of \mathscr{J}^{+}and $\Sigma_{\text {int }}$:

$$
\left|\psi^{(2)}\right\rangle=\sum_{\substack{i_{1}, \nu_{2} \\ a_{1}, a_{2}}} \psi_{a_{1},} \psi_{a_{a_{2}}{ }_{2}}\left|i_{1}, i_{2}\right\rangle_{\mathcal{F}+} \otimes\left|a_{1}, a_{2}\right\rangle_{\mathrm{BU}}
$$

Inner product on "baby universes" induced by PS wormholes:

$$
\begin{aligned}
\left\langle b_{1}, b_{2} \mid a_{1}, a_{2}\right\rangle_{\mathrm{BU}} & =\left\langle b_{1} \mid a_{1}\right\rangle_{\Sigma_{\mathrm{int}}}\left\langle b_{2} \mid a_{2}\right\rangle_{\Sigma_{\mathrm{int}}} \\
& +\left\langle b_{2} \mid a_{1}\right\rangle_{\Sigma_{\mathrm{int}}}\left\langle b_{1} \mid a_{2}\right\rangle_{\Sigma_{\mathrm{int}}}
\end{aligned}
$$

Not just factorised inner product on $\mathscr{H}_{\Sigma_{\text {int }}} \otimes \mathscr{H}_{\Sigma_{\text {int }}}$!

Closed universes are indistinguishable bosons

$$
\mathscr{H}_{\mathrm{BU}}=\bigoplus_{n=0}^{\infty} \operatorname{Sym}^{n} \mathscr{H}_{\Sigma_{\mathrm{int}}}
$$

Wormholes and the BU inner product

Several sets of Hawking radiation:
$\left\langle j_{1}, j_{2}\right| \rho^{(2)}\left|i_{1}, i_{2}\right\rangle=$

$$
+
$$

Pure state on 2 copies of \mathscr{J}^{+}and $\Sigma_{\text {int }}$:

$$
\left|\psi^{(2)}\right\rangle=\sum_{\substack{i_{1}, i_{2} \\ a_{1}, a_{2}}} \psi_{a_{1} i_{1}} \psi_{a_{a_{2} i_{2}}}\left|i_{1}, i_{2}\right\rangle_{\mathcal{F}+} \otimes\left|a_{1}, a_{2}\right\rangle_{\mathrm{BU}}
$$

Wormholes \longrightarrow modified inner product of $\mathscr{H}_{\mathrm{BU}} \longrightarrow \rho^{(2)} \neq \rho \otimes \rho$

Wormholes and the BU inner product

Wormholes \longrightarrow modified inner product of $\mathscr{H}_{\mathrm{BU}} \longrightarrow \rho^{(2)} \neq \rho \otimes \rho$

$$
\left\langle j_{1}, \ldots, j_{n}\right| \rho^{(n)}\left|i_{1}, \ldots, i_{n}\right\rangle=\sum_{\substack{a_{1}, \ldots, a_{n} \\ b_{1}, \ldots, b_{n}}} \psi_{a_{1} i_{1}} \bar{\psi}_{b_{1} j_{1}} \cdots \psi_{a_{n} i_{n}} \bar{\psi}_{b_{n} j_{n}}\left\langle b_{1}, \ldots, b_{n} \mid a_{1}, \ldots, a_{n}\right\rangle_{\mathrm{BU}}
$$

Can write any such inner product as $\left\langle b_{1}, \ldots, b_{n} \mid a_{1}, \ldots, a_{n}\right\rangle_{\mathrm{BU}}=\int d \mu(\alpha) \alpha_{a_{1}} \cdots \alpha_{a_{n}} \bar{\alpha}_{b_{1}} \cdots \bar{\alpha}_{b_{n}}$
for an appropriate choice of integration measure $d \mu(\alpha)$ for the parameters α_{a}.

Gives

$$
\begin{gathered}
\left\langle j_{1}, \ldots, j_{n}\right| \rho^{(n)}\left|i_{1}, \ldots, i_{n}\right\rangle=\int d \mu(\alpha) \Psi_{i_{1}}^{\alpha} \bar{\Psi}_{j_{1}}^{\alpha} \ldots \Psi_{i_{n}}^{\alpha} \bar{\Psi}_{j_{n}}^{\alpha} \quad \text { where } \quad \Psi_{i}^{\alpha}=\sum_{a} \psi_{a i} \alpha_{a} \\
\Longrightarrow \rho^{(n)}=\int d \mu(\alpha)\left(\left|\Psi^{\alpha}\right\rangle\left\langle\Psi^{\alpha}\right|\right)^{\otimes n}
\end{gathered}
$$

Correlations between copies of Hawking radiation

From replica wormholes, $\rho^{(n)}(u) \neq\left(\rho_{\mathrm{H}}(u)\right)^{\otimes n}$. But correlations have a special form:

$$
\rho^{(n)}(u)=\int d \mu(\alpha)\left(\rho_{\alpha}(u)\right)^{\otimes n}
$$

Classical statistical mixture (ensemble) of possibilities $\rho_{\alpha}(u)$
One copy of Hawking radiation: $\rho_{\mathrm{H}}(u)=\int d \mu(\alpha) \rho_{\alpha}(u)$

Labels α correspond to a basis of "baby universe" states $|\alpha\rangle \in \mathscr{H}_{\mathrm{BU}}$
Asymptotic observers will "measure" $\alpha \longrightarrow$ superselection sector

Some comments

- This is not a departure from ordinary quantum mechanics.
- Asymptotic observables are superselected because they commute.
- Hawking's calculation had an implicit assumption: initial state of closed universes. No-boundary state $|\mathrm{NB}\rangle$, measure $d \mu(\alpha)=|\langle\alpha \mid \mathrm{NB}\rangle|^{2} d \alpha$.
- α-states resemble final state: project onto wavefunction α_{a}.
- "Integrating out" wormholes \longrightarrow nonlocality on horizon scale.
- Sum over topologies becomes uncontrolled when α-parameters are welldetermined: a principled reason to expect breakdown of semiclassical approx.
- Info paradox evaporates if we accept superselection sectors: coherent, consistent picture using only semiclassical gravity.

AdS/CFT

- Ensemble duality: α-states \longleftrightarrow CFTs in the ensemble: $\mathscr{H}=\oplus_{\alpha} \mathscr{H}_{\alpha}$
- Quantum code: equivalent to α-state. Random! To decode must perform many measurements. Compare Petz map [Penington,Shenker,Stanford, Yang].
- To avoid this, need new physics (semiclassical or beyond). Are replica wormholes still "correct"?
- Information problem remains for non-ensemble duals.... but with new clues!
- Becomes an instance of the factorisation problem: a failure of factorisation between "ket" and "bra" boundaries

[^0]: [Penington, Shenker,Stanford, Yang]

