Holographic duality for averaged free CFTs

Tom Hartman
Cornell University

Island Hopping \downarrow CERN \downarrow November 17, 2020

Based on
[arXiv 2006.04839] with Nima Afkhami-Jeddi, Henry Cohn, and Amir Tajdini and coordinated with Alex Maloney's talk, coming up next
[arXiv 2006.04855] by Maloney and Witten

The proposal

[Afkhami-Jeddi, Cohn, TH, Tajdini '20] and [Maloney, Witten '20]

Consider N free bosons in two dimensions.

This is a CFT with N^{2} moduli.

The proposal

Consider N free bosons in two dimensions.

This is a CFT with N^{2} moduli.
Proposal: the ensemble average is holographically dual to an exotic theory of 3d gravity,

$$
U(1)^{N} \times U(1)^{N}
$$

3d Chern-Simons theory summed over topologies
"U(1) gravity"

The proposal

Consider N free bosons in two dimensions.

This is a CFT with N^{2} moduli.
Proposal: the ensemble average is holographically dual to an exotic theory of 3d gravity,

$$
U(1)^{N} \times U(1)^{N}
$$

3d Chern-Simons theory summed over topologies
"U(1) gravity"
I will discuss the torus partition function

$$
\int d M Z_{\mathrm{CFT}}(\tau, \bar{\tau} ; M)=Z_{\mathrm{bulk}}(\tau, \bar{\tau})
$$

Background: Narain CFTs

N free bosons

$$
S=\int d^{2} x\left(G_{\mu \nu} \delta^{a b} \partial_{a} X^{\mu} \partial_{b} X^{\nu}+i B_{\mu \nu} \epsilon^{a b} \partial_{a} X^{\mu} \partial_{b} X^{\nu}\right)
$$

The is a CFT with central charge $c=N$ and partition function

$$
Z(\tau, \bar{\tau} ; \Lambda)=\frac{1}{|\eta(\tau)|^{2 N}} \sum_{(p, \bar{p}) \in \Lambda} q^{p^{2} / 2} \bar{q}^{\bar{p}^{2} / 2}
$$

$\Lambda=$ Narain lattice in $\mathbb{R}^{N, N}$ (even, self-dual)
example: single compact boson, $\quad \Lambda=\left(\frac{m}{R}-n R, \frac{m}{R}+n R\right)$

All Narain CFTs have (at least) a current algebra

$$
U(1)_{\mathrm{Left}}^{N} \times U(1)_{\mathrm{Right}}^{N}
$$

The Dedekind eta functions account for descendants under this algebra

$$
\frac{1}{|\eta|^{2 N}}=\frac{(q \bar{q})^{-N / 24}}{\left|\prod_{m}\left(1-q^{m}\right)\right|^{2 N}}
$$

So points on the lattice Λ correspond to primaries under $U(1)^{N} \times U(1)^{N}$

$$
(p, \bar{p}) \in \Lambda \quad \Rightarrow \quad \Delta=\frac{1}{2}\left(p^{2}+\bar{p}^{2}\right), \quad \ell=\frac{1}{2}\left(p^{2}-\bar{p}^{2}\right)
$$

Moduli space

All Narain lattices of dimension N are related by $O(N, N)$ rotations

$$
\underset{\text { Narain CFTs }}{\text { Moduli space of }} \quad \mathcal{M} \cong \frac{O(N, N)}{O(N) \times O(N) \times O(N, N, \mathbb{Z})}
$$

example: single compact boson $R \geq 1$

Averaging over lattices

Why average?

In hindsight: because it gives an interesting answer with a holographic interpretation.

Initially: studying modular bootstrap bounds on the spectral gap

$$
\begin{aligned}
& \operatorname{max.} \Delta_{1} \\
& U(1)^{N} \times U(1)^{N}
\end{aligned}
$$

Why average?

In hindsight: because it gives an interesting answer with a holographic interpretation.

Initially: studying modular bootstrap bounds on the spectral gap

$$
\begin{aligned}
& \max . \Delta_{1} \\
& U(1)^{N} \times U(1)^{N}
\end{aligned}
$$

With this chiral algebra, the modular bootstrap gives constraints on sphere packing.

Why average?

In hindsight: because it gives an interesting answer with a holographic interpretation.

Initially: studying modular bootstrap bounds on the spectral gap

$$
\begin{aligned}
& \max . \Delta_{1} \\
& U(1)^{N} \times U(1)^{N}
\end{aligned}
$$

With this chiral algebra, the modular bootstrap gives constraints on sphere packing.

In the theory of lattices, averaging is a standard trick to derive bounds on the spectrum at large N.

Recall the moduli space of N free bosons is

$$
\mathcal{M} \cong \frac{O(N, N)}{O(N) \times O(N) \times O(N, N, \mathbb{Z})}
$$

Zamolodchikov metric $=$ Haar measure for $O(N, N)$

Recall the moduli space of N free bosons is

$$
\mathcal{M} \cong \frac{O(N, N)}{O(N) \times O(N) \times O(N, N, \mathbb{Z})}
$$

Zamolodchikov metric $=$ Haar measure for $O(N, N)$

Average partition function:

$$
\langle\langle Z(\tau, \bar{\tau})\rangle\rangle=\frac{1}{\operatorname{vol}(\mathcal{M})} \int d M Z_{\operatorname{Narain}}(\tau, \bar{\tau} ; M)
$$

This converges for $N>2$
Haar $O(N, N)$

The average was calculated by C. Siegel in 1951!

In CFT language, Siegel's result for the average density of states is

$$
\begin{aligned}
& \rho_{\ell}(\Delta)=\frac{2 \pi^{N} \sigma_{1-N}(\ell)}{\Gamma(N / 2)^{2} \zeta(N)}\left(\Delta^{2}-\ell^{2}\right)^{N / 2-1}+\delta_{\ell 0} \delta(\Delta) \\
& \ell=\text { spin } \\
& \Delta=\text { dimension }
\end{aligned}
$$

Comments

- Continuous
- Extends down to the unitarity bound $\Delta \geq|\ell|$
- Vacuum state

Warm-up:

Averaging over Euclidean lattices of unit determinant moduli space $=S L(N, \mathbb{R}) / S L(N, \mathbb{Z})$

Claim: The average density of lattice vectors is

$$
\rho(\vec{x})=\delta(\vec{x})+1
$$

Warm-up:

Averaging over Euclidean lattices of unit determinant moduli space $=S L(N, \mathbb{R}) / S L(N, \mathbb{Z})$

Claim: The average density of lattice vectors is

$$
\rho(\vec{x})=\delta(\vec{x})+1
$$

Proof [Siegel]:
\mathbb{R}^{N} has two orbits under $S L(N, R)$

1. the origin $\{0\}$
2. everything else

Warm-up:

Averaging over Euclidean lattices of unit determinant moduli space $=S L(N, \mathbb{R}) / S L(N, \mathbb{Z})$

Claim: The average density of lattice vectors is

$$
\rho(\vec{x})=\delta(\vec{x})+1
$$

Proof [Siegel]:
\mathbb{R}^{N} has two orbits under $\operatorname{SL}(N, R)$

1. the origin $\{0\}$
2. everything else

Therefore an $S L(N, R)$-invariant measure must take the form

$$
\rho(\vec{x})=a \delta(\vec{x})+b
$$

Warm-up:

Averaging over Euclidean lattices of unit determinant
moduli space $=S L(N, \mathbb{R}) / S L(N, \mathbb{Z})$

Claim: The average density of lattice vectors is

$$
\rho(\vec{x})=\delta(\vec{x})+1
$$

Proof [Siegel]:
\mathbb{R}^{N} has two orbits under $\operatorname{SL}(N, R)$

1. the origin $\{0\}$
2. everything else

Therefore an $S L(N, R)$-invariant measure must take the form

$$
\rho(\vec{x})=a \delta(\vec{x})+b
$$

Warm-up:

Averaging over Euclidean lattices of unit determinant moduli space $=S L(N, \mathbb{R}) / S L(N, \mathbb{Z})$

Claim: The average density of lattice vectors is

$$
\rho(\vec{x})=\delta(\vec{x})+1
$$

Proof [Siegel]:
\mathbb{R}^{N} has two orbits under $\operatorname{SL}(N, R)$

1. the origin $\{0\}$
2. everything else

Therefore an $S L(N, R)$-invariant measure must take the form

Averaging over Narain lattices

$$
(p, \bar{p}) \in \Lambda \quad \Rightarrow \quad \Delta=\frac{1}{2}\left(p^{2}+\bar{p}^{2}\right), \quad \ell=\frac{1}{2}\left(p^{2}-\bar{p}^{2}\right)
$$

The action of $O(N, N)$ preserves ℓ
So now we have an infinite set of orbits labeled by spin.
The orbits are the hyperboloids

$$
\begin{gathered}
p^{2}-\bar{p}^{2}=2 \ell \\
\text { with "radial coordinate" } \Delta
\end{gathered}
$$

Averaging over Narain lattices

$$
(p, \bar{p}) \in \Lambda \quad \Rightarrow \quad \Delta=\frac{1}{2}\left(p^{2}+\bar{p}^{2}\right), \quad \ell=\frac{1}{2}\left(p^{2}-\bar{p}^{2}\right)
$$

The action of $O(N, N)$ preserves ℓ
So now we have an infinite set of orbits labeled by spin.
The orbits are the hyperboloids

$$
\begin{gathered}
p^{2}-\bar{p}^{2}=2 \ell \\
\text { with "radial coordinate" } \Delta
\end{gathered}
$$

On each orbit, symmetry fixes

$$
\rho_{\ell}(\Delta) \propto \sqrt{|g|} \propto\left(\Delta^{2}-\ell^{2}\right)^{N / 2-1}
$$

All that's left is to fix the coefficients; use the asymptotics.
This can be done by an explicit counting [Siegel] or by modular invariance.

Hardy-Littlewood circle method

$$
\begin{aligned}
& Z \sim \sum_{\ell=-\infty}^{\infty} \int_{|\ell|}^{\infty} d \Delta \rho_{\ell}(\Delta) e^{-\beta \Delta+2 \pi i x \ell} \quad \tau=x+\frac{i \beta}{2 \pi} \\
& \rho_{\ell}(\Delta) \sim \mathcal{L}^{-1}\left[\int_{0}^{1} d x e^{-2 \pi i \ell x} Z\right]
\end{aligned}
$$

For $\beta \rightarrow 0$ this integral is dominated near the cusps of $\operatorname{SL}(2, \mathrm{Z})$

$$
\tau \sim \frac{a}{b}+i 0^{+}
$$

Use modular invariance to evaluate Z near cusps and sum over coprime (a, b)
(cf. the usual Cardy formula comes from a single cusp.)

$$
\rho_{\ell}(\Delta)=\frac{2 \pi^{N} \sigma_{1-N}(\ell)}{\Gamma(N / 2)^{2} \zeta(N)}\left(\Delta^{2}-\ell^{2}\right)^{N / 2-1}+\delta_{\ell 0} \delta(\Delta)
$$

$$
\rho_{\ell}(\Delta)=\frac{2 \pi^{N} \sigma_{1-N}(\ell)}{\Gamma(N / 2)^{2} \zeta(N)}\left(\Delta^{2}-\ell^{2}\right)^{N / 2-1} \quad+\delta_{\ell 0} \delta(\Delta)
$$

Spectral gap

$\Delta_{1}=$ scaling dimension of the lightest nontrivial primary ("spectral gap")
Strictly speaking the gap of the averaged theory is zero. But for large N, the low-lying density of states is $\ll 1$ so most Narain CFTs have no light states!

$$
\rho_{\ell}(\Delta)=\frac{2 \pi^{N} \sigma_{1-N}(\ell)}{\Gamma(N / 2)^{2} \zeta(N)}\left(\Delta^{2}-\ell^{2}\right)^{N / 2-1} \quad+\delta_{\ell 0} \delta(\Delta)
$$

Spectral gap

$\Delta_{1}=$ scaling dimension of the lightest nontrivial primary ("spectral gap")
Strictly speaking the gap of the averaged theory is zero. But for large N, the low-lying density of states is $\ll 1$ so most Narain CFTs have no light states!

Define the gap by

$$
\rho\left(\Delta_{1}\right)=1
$$

Then

$$
\Delta_{1} \approx \frac{N}{2 \pi e}
$$

$$
\rho_{\ell}(\Delta)=\frac{2 \pi^{N} \sigma_{1-N}(\ell)}{\Gamma(N / 2)^{2} \zeta(N)}\left(\Delta^{2}-\ell^{2}\right)^{N / 2-1}+\delta_{\ell 0} \delta(\Delta)
$$

Spectral gap

$\Delta_{1}=$ scaling dimension of the lightest nontrivial primary ("spectral gap")
Strictly speaking the gap of the averaged theory is zero. But for large N, the low-lying density of states is $\ll 1$ so most Narain CFTs have no light states!

Define the gap by

$$
\rho\left(\Delta_{1}\right)=1
$$

Then

$$
\Delta_{1} \approx \frac{N}{2 \pi e}
$$

This is surprisingly large, and suggests looking for a holographic dual.

In fact this is the Cardy threshold for a theory with $U(1)^{N}$ symmetry

$$
\begin{aligned}
& S_{\text {Cardy }}=N \log \left(\frac{\Delta}{\Delta_{1}}\right) \\
& \Delta_{1}=\frac{N}{2 \pi e}
\end{aligned}
$$

This is analogous to the BTZ threshold in a theory with only Virasoro

$$
\begin{aligned}
& S_{\text {Cardy }}=2 \pi \sqrt{\frac{c}{3}\left(\Delta-\Delta_{1}\right)} \\
& \Delta_{1} \approx \frac{c}{12}
\end{aligned}
$$

Status report:
3d Pure Gravity

3d gravity is dual to a CFT with

$$
c=\frac{3 \ell}{2 G_{N}} \gg 1
$$

Assuming the graviton is the only massless field with spin, the chiral algebra in the CFT is Virasoro (nothing more).

A tentative definition of "pure" gravity is a theory with gap

$$
\Delta_{1}=O(c) \quad \text { or } \quad \Delta_{1} \approx \frac{c}{12}
$$

i.e., the only perturbative excitations are gravitons.

No such theory is known.

In 2007 Maloney and Witten studied the sum over saddles

$$
Z_{3 \mathrm{~d} \text { gravity }}(\tau, \bar{\tau})=\sum_{\mathrm{SL}(2, \mathrm{Z}) / \Gamma_{\infty}} \chi_{0}^{\mathrm{Virasoro}}(\tau, \bar{\tau})
$$

In 2007 Maloney and Witten studied the sum over saddles

$$
Z_{3 \mathrm{~d} \text { gravity }}(\tau, \bar{\tau})=\sum_{\mathrm{SL}(2, \mathrm{Z}) / \Gamma_{\infty}} \chi_{0}^{\operatorname{Virasoro}}(\tau, \bar{\tau})
$$

In 2007 Maloney and Witten studied the sum over saddles

$$
Z_{3 \mathrm{~d} \text { gravity }}(\tau, \bar{\tau})=\sum_{\mathrm{SL}(2, \mathrm{Z}) / \Gamma_{\infty}} \chi_{\substack{\text { Sum over topologies } \\ \text { of the BTZ black hole }}}^{\mathrm{Virasoro}(\tau, \bar{\tau})} \text { (1-loop exact) }
$$

In 2007 Maloney and Witten studied the sum over saddles

$$
Z_{3 \mathrm{~d} \text { gravity }}(\tau, \bar{\tau})=\sum_{\mathrm{SL}(2, \mathrm{Z}) / \Gamma_{\infty}} \chi_{\substack{\text { Sum over topologies } \\ \text { of the BTZ black hole }}}^{\operatorname{Virasoro}(\tau, \bar{\tau})}
$$

"Poincaré Series"

In 2007 Maloney and Witten studied the sum over saddles

$$
Z_{3 \mathrm{~d} \text { gravity }}(\tau, \bar{\tau})=\sum_{\mathrm{SL}(2, \mathrm{Z}) / \Gamma_{\infty}} \chi_{\substack{\text { Sum over topologies } \\ \text { of the BTZ black hole }}}^{\operatorname{Virasoro}(\tau, \bar{\tau})}
$$

"Poincaré Series"

- Spectrum is continuous and non-unitary

In 2007 Maloney and Witten studied the sum over saddles

$$
Z_{3 \mathrm{~d} \text { gravity }}(\tau, \bar{\tau})=\sum_{\mathrm{SL}(2, \mathrm{Z}) / \Gamma_{\infty}} \chi_{\substack{\text { Sum over topologies } \\ \text { of the BTZ black hole }}}^{\operatorname{Virasoro}}(\tau, \bar{\tau})
$$

"Poincaré Series"

- Spectrum is continuous and non-unitary
[Maloney, Witten '07] [Benjamin, Ooguri, Shao, Wang '19]
- Non-unitarity can apparently be fixed by extra contributions.

In 2007 Maloney and Witten studied the sum over saddles

$$
Z_{3 \mathrm{~d} \text { gravity }}(\tau, \bar{\tau})=\sum_{\mathrm{SL}(2, \mathrm{Z}) / \Gamma_{\infty}} \chi_{\substack{\text { Sum over topologies } \\ \text { of the BTZ black hole }}}^{\operatorname{Virasoro}}(\tau, \bar{\tau})
$$

"Poincaré Series"

- Spectrum is continuous and non-unitary
[Maloney, Witten '07] [Benjamin, Ooguri, Shao, Wang '19]
- Non-unitarity can apparently be fixed by extra contributions.
[Keller, Maloney '14], [Benjamin, Collier, Maloney '20], [Maxfield, Turiaci '20]
- The JT/Random matrix duality suggests an ensemble interpretation. There is growing evidence for this, but so far, we do not know how to define an "average CFT".

In 2007 Maloney and Witten studied the sum over saddles

$$
Z_{3 \mathrm{~d} \text { gravity }}(\tau, \bar{\tau})=\sum_{\mathrm{SL}(2, \mathrm{Z}) / \Gamma_{\infty}} \chi_{\substack{\text { Sum over topologies } \\ \text { of the BTZ black hole }}}^{\operatorname{Virasoro}(\tau, \bar{\tau})}
$$

"Poincaré Series"

- Spectrum is continuous and non-unitary
- Non-unitarity can apparently bernind
- The JT/Random mat _uatity suggests an ensemble interpretation. There is growing evidence for this, but so far, we do not know how to define an "average CFT".

Let's replace

Virasoro $\rightarrow U(1)^{N}$
and try again.

First, we need a 3d theory for which the 1-loop partition function is the correct vacuum character.

First, we need a 3d theory for which the 1-loop partition function is the correct vacuum character.
$U(1)^{N} \times U(1)^{N} \quad$ Chern-Simons

$$
S_{\mathrm{CS}}=\sum_{i=1}^{N} \int_{M_{3}}\left(A_{i} d A_{i}-\tilde{A}_{i} d \tilde{A}_{i}\right)
$$

First, we need a 3d theory for which the 1-loop partition function is the correct vacuum character.
$U(1)^{N} \times U(1)^{N} \quad$ Chern-Simons

$$
S_{\mathrm{CS}}=\sum_{i=1}^{N} \int_{M_{3}}\left(A_{i} d A_{i}-\tilde{A}_{i} d \tilde{A}_{i}\right)
$$

Each $\mathrm{U}(1)$ gauge field gives a $\mathrm{U}(1)$ current algebra at the boundary.
Therefore perturbatively,

$$
\begin{equation*}
Z_{\mathrm{pert}}(\tau, \bar{\tau})=\chi_{0}^{U(1)^{N}}=\frac{1}{|\eta(\tau)|^{2 N}} \tag{Porrati,Yu'19}
\end{equation*}
$$

The tentative definition of bulk theory is this theory summed over topologies.

Poincare series:

$$
Z_{\mathrm{bulk}}(\tau, \bar{\tau})=\sum_{S L(2, Z) / \Gamma_{\infty}} Z_{\mathrm{pert}}(\tau, \bar{\tau})
$$

Poincare series:

$$
Z_{\mathrm{bulk}}(\tau, \bar{\tau})=\sum_{S L(2, Z) / \Gamma_{\infty}} Z_{\mathrm{pert}}(\tau, \bar{\tau})
$$

This Poincaré series is proportional to a non-holomorphic Eisenstein series:

$$
\begin{aligned}
& Z_{\mathrm{bulk}}(\tau, \bar{\tau})=(\operatorname{Im} \tau)^{-N / 2}|\eta|^{-2 N} E\left(\tau, \frac{N}{2}\right) \\
& E(\tau, s)=\sum_{\gamma \in S L(2, Z) / \Gamma_{\infty}}(\operatorname{Im} \gamma \tau)^{s}
\end{aligned}
$$

The sum can be done explicitly to read off the density of states:

$$
\begin{aligned}
Z_{\text {bulk }}(\tau, \bar{\tau}) & =\sum_{S L(2, Z) / \Gamma_{\infty}} Z_{\text {pert }}(\tau, \bar{\tau}) \\
& =\frac{1}{|\eta|^{2}} \sum_{\ell} \int_{|\ell|}^{\infty} d \Delta \rho_{\ell}(\Delta) q^{(\Delta-\ell) / 2} \bar{q}^{(\Delta+\ell) / 2}
\end{aligned}
$$

The sum can be done explicitly to read off the density of states:

$$
\begin{aligned}
Z_{\text {bulk }}(\tau, \bar{\tau}) & =\sum_{S L(2, Z) / \Gamma_{\infty}} Z_{\text {pert }}(\tau, \bar{\tau}) \\
& =\frac{1}{|\eta|^{2}} \sum_{\ell} \int_{|\ell|}^{\infty} d \Delta \underbrace{}_{\begin{array}{l}
\text { Siegel's measure on random } \\
\rho_{\ell}(\Delta) \\
\text { Narain lattices! }
\end{array}}(\Delta-\ell) / 2 \bar{q}^{(\Delta+\ell) / 2}
\end{aligned}
$$

The sum can be done explicitly to read off the density of states:

$$
\begin{aligned}
Z_{\text {bulk }}(\tau, \bar{\tau}) & =\sum_{S L(2, Z) / \Gamma_{\infty}} Z_{\text {pert }}(\tau, \bar{\tau}) \\
& =\frac{1}{|\eta|^{2}} \sum_{\ell} \int_{|\ell|}^{\infty} d \Delta \underbrace{}_{\begin{array}{l}
\text { Siegel's measure on random } \\
\rho_{\ell}(\Delta) \\
\text { Narain lattices! }
\end{array}}(\Delta-\ell) / 2 \bar{q}^{(\Delta+\ell) / 2}
\end{aligned}
$$

"Siegel-Weil formula"
$($ Eisenstein $)=\int \Theta$

Recap

We have shown that on the torus,

$$
=\begin{gathered}
U(1)^{N} \times U(1)^{N} \\
\text { 3d Chern-Simons theory } \\
\text { summed over topologies }
\end{gathered}
$$

"U(1) gravity"

Remarks

1. This is not ordinary gravity
2. This is not ordinary gravity

Obviously.

1. This is not ordinary gravity

Obviously.

But is it really so different at large N ?

1. This is not ordinary gravity

Obviously.

But is it really so different at large N ?

It has a composite boundary gravity,

$$
T(z) \sim \sum_{i=1}^{N} J^{(i)}(z)^{2}
$$

1. This is not ordinary gravity

Obviously.

But is it really so different at large N ?

It has a composite boundary gravity,

$$
T(z) \sim \sum_{i=1}^{N} J^{(i)}(z)^{2}
$$

It has a large spectral gap,

$$
\Delta_{1} \approx \frac{N}{2 \pi e}
$$

compare: $\quad \Delta_{1}^{\mathrm{BTZ}} \approx \frac{c}{12}$

2. This is not Chern-Simons theory

2. This is not Chern-Simons theory

The proposal is that there exists a theory " $\mathrm{U}(1)$ gravity" which

- agrees perturbatively with Chern-Simons.
- involves a sum over topologies

2. This is not Chern-Simons theory

The proposal is that there exists a theory " $\mathrm{U}(1)$ gravity" which

- agrees perturbatively with Chern-Simons.
- involves a sum over topologies

Compare: ordinary 3d gravity agrees perturbatively with SL(2,C) Chern-Simons but is not equivalent.

2. This is not Chern-Simons theory

The proposal is that there exists a theory " $\mathrm{U}(1)$ gravity" which

- agrees perturbatively with Chern-Simons.
- involves a sum over topologies

Compare: ordinary 3d gravity agrees perturbatively with SL(2,C) Chern-Simons but is not equivalent.

Note that perturbatively, compact $\mathrm{U}(1)=$ non-compact $\mathrm{U}(1)$.

3. Alpha states, etc.

I hope we can use this toy model as a testing ground for averaged holography, alpha states, baby universes, ...

3. Alpha states, etc.

I hope we can use this toy model as a testing ground for averaged holography, alpha states, baby universes, ...

Thank you

