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Background: 
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All Narain CFTs have (at least) a current algebra

U(1)NLeft ⇥ U(1)NRight

The Dedekind eta functions account for descendants under this algebra
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Moduli space

All Narain lattices of dimension N are related by O(N,N) rotations

Moduli space of 
Narain CFTs M ⇠=

O(N,N)

O(N)⇥O(N)⇥O(N,N,Z)

example: single compact boson R � 1
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In hindsight: because it gives an interesting answer with a holographic interpretation.

max. �1

U(1)N ⇥ U(1)N

Initially: studying modular bootstrap bounds on the spectral gap

[TH, Mazac, Rastelli ’19]
With this chiral algebra, the modular bootstrap gives constraints on sphere 
packing.  

In the theory of lattices, averaging is a standard trick to derive 
bounds on the spectrum at large N.
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Recall the moduli space of N free bosons is

M ⇠=
O(N,N)

O(N)⇥O(N)⇥O(N,N,Z)

O(N,N)Zamolodchikov metric = Haar measure for

Average partition function:

hhZ(⌧, ⌧̄)ii = 1

vol(M)

Z
dMZNarain(⌧, ⌧̄ ;M)

This converges for N > 2

The average was calculated by C. Siegel in 1951!

Haar O(N,N)



In CFT language, Siegel’s result for the average density of states is

Comments

⇢`(�) =
2⇡N�1�N (`)

�(N/2)2⇣(N)
(�2 � `2)N/2�1

+�`0�(�)

• Continuous
• Extends down to the unitarity bound � � |`|
• Vacuum state

` = spin

� = dimension
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Claim: The average density of lattice vectors is

⇢(~x) = �(~x) + 1

Proof [Siegel]:

RN has two orbits under SL(N,R) 
1. the origin {0}
2. everything else

Therefore an SL(N,R)-invariant measure must take the form

⇢(~x) = a�(~x) + b

1 (obviously) 1 (by asymptotics)
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(p2 + p̄2), ` =

1

2
(p2 � p̄2)

The action of O(N,N) preserves `
So now we have an infinite set of orbits labeled by spin.

On each orbit, symmetry fixes

⇢`(�) /
p

|g| / (�2 � `2)N/2�1

metric on the 
hyperboloid 

p2 � p̄2 = 2`

The orbits are the hyperboloids
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All that’s left is to fix the coefficients; use the asymptotics.

Hardy-Littlewood circle method
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For                        this integral is dominated near the cusps of SL(2,Z)� ! 0

⌧ ⇠ a

b
+ i0+

Use modular invariance to evaluate Z near cusps and sum over coprime (a,b)

(cf. the usual Cardy formula comes from a single cusp.)

This can be done by an explicit counting [Siegel] or by modular invariance.
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Spectral gap

Strictly speaking the gap of the averaged theory is zero. But for large N, the 
low-lying density of states is             so most Narain CFTs have no light 
states!

⌧ 1

�1 = scaling dimension of the lightest nontrivial primary (“spectral gap”)

This is surprisingly large, and suggests 
looking for a holographic dual.



In fact this is the Cardy threshold for a theory with U(1)N symmetry

�1 =
N

2⇡e

This is analogous to the BTZ threshold in a theory with only Virasoro

SCardy = N log
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Status report: 
3d Pure Gravity



3d gravity is dual to a CFT with 

c =
3`

2GN
� 1

Assuming the graviton is the only massless field with spin, the chiral 
algebra in the CFT is Virasoro (nothing more).

A tentative definition of “pure” gravity is a theory with gap

�1 = O(c)

i.e., the only perturbative excitations are gravitons.

No such theory is known.

or �1 ⇡ c

12
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• Spectrum is continuous and non-unitary [Maloney, Witten ’07]

[Benjamin, Ooguri, Shao, Wang ’19]

• Non-unitarity can apparently be fixed by extra contributions.

[Keller, Maloney ’14], [Benjamin, Collier, Maloney ’20], [Maxfield, Turiaci ’20]

• The JT/Random matrix duality suggests an ensemble interpretation. There is 
growing evidence for this, but so far, we do not know how to define an 
“average CFT”.

[Saad, Shenker, Stanford ’19], [Maxfield, Turiaci ’20], [Cotler, Jensen ’20]

Status: Unresolved



Let’s replace

Virasoro ! U(1)N

and try again.



First, we need a 3d theory for which the 1-loop partition function is the correct 
vacuum character.



First, we need a 3d theory for which the 1-loop partition function is the correct 
vacuum character.

SCS =
NX

i=1

Z

M3

⇣
AidAi � ÃidÃi
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First, we need a 3d theory for which the 1-loop partition function is the correct 
vacuum character.

SCS =
NX

i=1

Z

M3

⇣
AidAi � ÃidÃi

⌘

U(1)N ⇥ U(1)N Chern-Simons

Each U(1) gauge field gives a U(1) current algebra at the boundary.  

Therefore perturbatively,

Zpert(⌧, ⌧̄) = �U(1)N

0 =
1

|⌘(⌧)|2N

The tentative definition of bulk theory is this theory summed over topologies.

e.g. [Porrati, Yu ’19]



Poincare series:

Zbulk(⌧, ⌧̄) =
X
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This Poincaré series is proportional to a non-holomorphic Eisenstein series:
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N
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Zpert(⌧, ⌧̄)
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Siegel’s measure on random 
Narain lattices!

“Siegel-Weil formula”

(Eisenstein) =

Z
⇥



N free bosons 

averaged over moduli

U(1)N ⇥ U(1)N

3d Chern-Simons theory 

summed over topologies

=

“U(1) gravity”

We have shown that on the torus,

Recap

for N > 2
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2. This is not Chern-Simons theory

The proposal is that there exists a theory “U(1) gravity” which  

• agrees perturbatively with Chern-Simons.  

• involves a sum over topologies

Compare: ordinary 3d gravity agrees perturbatively with SL(2,C) Chern-Simons 
but is not equivalent.

Note that perturbatively, compact U(1) = non-compact U(1).
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3. Alpha states, etc.

I hope we can use this toy model as a testing ground for averaged holography, alpha 
states, baby universes, …

Thank you


