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I In conventional AdS/CFT, spacetime wormholes lead to the
“Factorization Problem” [Maldacena, Maoz].

I For example, the “cylinder” (in two dimensions) appears to
prevent products of partition functions from factorizing.



I Perhaps spacetime wormholes should not be included in the
bulk path integral, or somehow sum to zero?

I However, there are indications that spacetime wormholes
should play a nontrivial role. For other quantities, for which
there is no “factorization problem”, they seem to give sensible
answers even in theories with a fixed Hamiltonian.

I The page curve of Hawking radiation [AHMST, PSSY], and the
ramp in the time-averaged spectral form factor [P.S., Shenker,

Stanford] are both quantities for which there are indications
spacetime wormholes give a sensible answer, but those same
spacetime wormholes lead to factorization problems in closely
related quantities. [P.S., Shenker, Stanford; Stanford]



Wormholes and the spectral form factor

I In this talk we will often use the analytically continued
partition function Z (� + iT ), or its fixed-energy (with a
smooth window) counterpart YE ,�E (T ), as an example.

I The mod squared of this quantity (spectral form factor) is
noisy for su�ciently long times.

I The time-averaged h|Y (T )|2i�T is smooth, and the answer
given by wormholes matches our expectations for this quantity
(as well as higher moments) based on random matrix
universality [P.S., Shenker, Stanford].

I In a bulk description, how do we describe the noise?



I We seek an “e↵ective description” of gravity with “microstate
noise”, which captures some aspects of the noise and includes
wormholes.

I Roughly analogous to “hydrodynamics with quantum noise”
[Stanford], or hydrodynamics souped up to include Brownian
motion.



Periodic orbits and Berry’s diagonal approximation

I An analogy that may be useful is the computation of the
spectral form factor in a non-gravitational system - chaotic
billiards.

I The path integral for Y (T ) can be done by saddle point; sum
over orbits of period T
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I The mod squared is a double-sum over orbits. Time averaging
leaves only the diagonal part of the sum [Berry].
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I We will think of this diagonal piece as analogous to the
wormhole.



I This motivates a cartoon of factorization in AdS/CFT; we
view the wormhole as a diagonal part of a sum over “broken
cylinders”, and add in the o↵-diagonal terms.

I Is there evidence for this picture in a gravitational theory? We
will find that this is related to an e↵ective description for
some theories.

I In this cartoon, the wormhole is emergent, not a fundamental
ingredient in the calculation. Factorization is manifest.



Background about spacetime wormholes and ensemble
averaging

I Now we will move on to discussing the factorization problem
in some simple gravitational theories which are dual to
ensemble averages of boundary theories - di↵erent than
conventional, non-averaged AdS/CFT.

I We can study factorization by focusing on a single member of
the ensemble.

I In these theories, wormholes are fundamental.

I We first illustrate this using a simple toy model of gravity
introduced by Marolf and Maxfield- a topological theory of
two-dimensional surfaces.

I This model builds on old ideas of Coleman, Giddings, and
Strominger.



I Instead of products of partition functions Z (�), we compute
correlation functions of a boundary operator Ẑ in states | i
of closed universes.

I In the No-Boundary state |NBi (like the vacuum of the closed
universes), correlation functions do not factorize.

I In other states, Ẑ |NBi, Ẑ 2|NBi, or generally
| i ⌘  (Ẑ )|NBi, we include “state boundaries” in the path
integral.

I In eigenstates (“↵ states”), Ẑ |z0i = z0|z0i, correlation
functions factorize. The eigenstate corresponds to a single
member of an ensemble of boundary theories.



I How do correlation functions factorize in an eigenstate?

I Surfaces with many boundaries and high genus complicate the
story; in an exact eigenstate, these surfaces are not suppressed
order by order in the topological expansion.

I In approximate eigenstates, these surfaces are not important,
and we can ignore them.

I Approximate Gaussian eigenstates ignore the e↵ects from the
discreteness of the spectrum of Ẑ , and correspond to only
keeping disks and cylinders. The
“Coleman-Giddings-Strominger” model.

I Study an approximate version of the factorization problem.



I In the Gaussian disk-and-cylinder approximation, Ẑ is like the
coordinate of a (shifted) harmonic oscillator. It is useful to
introduce creation and annihilation operators, a, a†,
[a, a†] = Cyl, such that

Ẑ = Disk + a+ a†

and
a|NBi = 0

I We think of |ni / (a†)n|NBi as an n-universe state.

I The state |Z ki ⌘ Ẑ k |NBi is a superposition of states |ni with
at most n = k universes.



I It is also useful to think about these correlation functions as
overlaps of states.

hẐ ki = h (Ẑ ) Ẑ k  (Ẑ )iNB = hZ k | 2i

We’ve defined the (not normalized!) state | 2i ⌘  (Ẑ )2|NBi
(combining  (Ẑ ) from the bra and ket).

I Then correlation functions hẐ ki only involve the
components of the state | 2i with up to k universes

hẐ ki = hZ k | 2i =
kX

n=0

hZ k |nihn| 2i



I For example,
hẐ i = Disk + h1| 2i

I The red boundary represents the wavefunction h1| 2i, this
wavefunction is prepared by summing over surfaces with many
boundaries.

I The two-point function with the disk subtracted only involves
the two-universe component

h(Ẑ � Disk)2i = Cyl + h2| 2i



I For | i an eigenstate, factorization requires that the two-point
function is equal to the square of the one-point function.

I In this model, the two-point function has a fundamental
wormhole, but the square of the one-point function does not.

I So the square of the one-universe component h1| 2i must
“contain” the cylinder.

h1| 2i2 = h2| 2i+ Cyl

I Making an analogy with the periodic orbits, the cylinder plays
the role of the diagonal sum, while the component h2| 2i is
tuned so that it behaves like the “o↵-diagonal” sum.

I Analogy is sharper in JT gravity, where there is a natural
double-sum.



JT gravity on the ramp
I In JT gravity, instead of a single operator Ẑ we have many

operators Ẑi , such as Ẑ (� + iT ) or Ŷ (T ) for di↵erent values
of T .

I On the ramp, the Ŷ (T ) for (su�ciently) di↵erent T behave
like independent Gaussian variables in the No-Boundary state.
Many copies of the Marolf-Maxfield model.

I After subtracting the disk, Ŷ (T ) creates and annihilates
approximately orthogonal one-universe states |T i. More
general Ẑi create one-universe states |ii, and the Hilbert space
is spanned by n-universe states |i1 . . . ini.

I The overlaps between one-universe states |T i are roughly

hT |T 0i ⌘ Cyl(T ,T 0) ⇠ T �(T � T 0)



I The disk-and-cylinder approximation works for many
observables in approximate eigenstates. Here this corresponds
to ignoring the discreteness of the spectrum of the random
matrix dual- ⇢(E ) = ⇢smooth(E ) + �⇢(E ), with �⇢(E )
continuous and Gaussian-distributed. After a Fourier
transform, the �⇢(E ) behave like the independent Gaussian
variables Y (T ).

I In this approximation we can calculate the noisy part of the
spectral form factor on the ramp (up to a time which depends
on the allowed error).

I Our approach is related to Eigenbranes [Blommaert, Mertens,

Verschelde], a method for constructing exact eigenstates,
including the discreteness. However, the gravity computations
are di�cult to control in these states.



I It is useful to define another (approximately) orthogonal basis.
In the one-universe sector, these are states |bi corresponding
to circular spatial slices with length b and zero extrinsic
curvature.

hb|b0i = 1

b
�(b � b0)

I In the n-universe sector, we have states |b1 . . . bni,
corresponding to n universes with lengths b1 . . . bn.

I This basis allows us to describe the cylinder as two
“trumpets” glued together

Cyl(T ,T 0) ⌘ hT |T 0i =
Z 1

0

bdb hT |bihb|T 0i



I In this basis, what is the condition on | 2i such that
correlation functions factorize?

I For a general operator Ẑi , the one-point function is a “sum”
over b

hẐi � Diski i =

Z
bdb hi |bihb| 2i

I The two-point function with the disks subtracted is the
cylinder plus a “double sum” over b1 and b2

h(Ẑi � Diski )(Ẑj � Diskj)i 

= Cylij +

Z
b1db1b2db2 hi |b1ihj |b2i hb1b2| 2i



I Cylij ⌘ hi |ji =
R
b1db1 hi |b1ihb1|ji. This allows us to write

both the two-point function and the square of the one-point
function as “double sums” over b1 and b2, with the cylinder
contributing a “diagonal “part of the sum.

I The condition on | 2i so that they are equal is

hb1| 2ihb2| 2i = hb1b2| 2i+ 1

b1
�(b1 � b2)

I The “diagonal” is being singled out with the delta function;
this gives the cylinder in the two-point function.

I The two-universe component hb1b2| 2i is analogous to the
o↵-diagonal terms in the periodic orbit sum; adding it to the
“diagonal” cylinder gives a factorized answer.



An e↵ective description with dynamical boundaries
I What is special about this diagonal component in the

many-universe description?

I The many-universe state | 2i is shared by the Ẑi s in the
correlation function. A consequence of this is that they
cannot connect to the same closed universe with a cylinder
simultaneously.

I For | i an eigenstate, | 2i is tuned so that the two-universe
component almost factorizes, except for a correction from
subtracting the cylinder due to this geometric “exclusion”
e↵ect.



An e↵ective description with dynamical boundaries

I We now introduce an e↵ective model which takes advantage
of the simple description in terms of the single-universe
wavefunction hb| 2i.

I In the full model, the gravity computation involves many
“closed universe state” boundaries which represent the full | i
and | 2i. However, for simple correlators we only need the
components of | 2i on a few boundaries, which are simple
functions of the single-universe components hb| 2i.

I In the e↵ective model we trade the component hb| 2i, created
by summing over many ”state” boundaries, for a single
“dynamical boundary” with a random boundary condition.



I We can describe this random boundary condition with a
random Gaussian function  (b), with variance
h (b) (b0)i = 1

b�(b � b0). This replaces the single-universe
component hb| 2i. For example, the equation for Y (T )
becomes

Y (T ) = Disk(T ) +

Z
bdb hT |bi  (b)

I For a single draw of  (b), this reproduces the noisy signal on
the ramp.



I Now, instead of summing over many “state” boundaries, we
only need a few. For k partition functions, we need up to k
dynamical boundaries.

I We could also choose a di↵erent boundary condition for the
dynamical boundaries, instead of the zero extrinsic curvature
boundary condition related to the hb| 2i wavefunctions. We
focus on this choice for simplicity.



I Taking the answer for a single Y and squaring it, then
averaging over the ensemble (the random  (b) with
h (b) (b0)i = 1

b�(b � b0)), we recover the wormhole by
gluing together the random boundaries.

I However, the gravitational path integral for two Y s includes
an explicit wormhole and the pairs of random boundaries- we
appear to have overcounted. By giving up the many-universe
description, we’ve given up the geometrical mechanism for
“excluding” the cylinder.

I In order for this e↵ective model to match with the full model,
we must introduce an ad hoc modification to the sum over
geometries- the “exclusion rule”.



I The exclusion rule instructs us to view a “diagonal” part of
the pairs of dynamical boundary contributions as equivalent
to the cylinder. We should include one or the other, not
overcount them.



I This “exclusion rule” was introduced by hand to match the full
theory - we did not derive it directly from any bulk reasoning.

I The origin of the exclusion rule in the full many-universe
theory is geometrical.

I However, it is tempting to take the “no overcounting” idea
more seriously. Are there other theories described by this
e↵ective model in which the exclusion arises because the full
theory views the cylinder and the corresponding diagonal piece
of the dynamical boundary contributions as two descriptions
of the same object- related by some sort of “quantum
equivalence” or “gauge equivalence” (Marolf and Maxfield), or
“duality”? Reminiscent of recent work by Eberhardt, Ja↵eris.



SYK
I The SYK model provides a possible example of this. [Harlow;

Harlow, Ja↵eris]

I In the SYK model, partition functions are typically averaged
over the couplings Ji1...iq . These averaged partition functions
can be represented with a path integral over G � ⌃ collective
fields.

I For example, for hYL(T )YR(T 0)⇤iJ we have a 2⇥ 2 matrix of
collective fields, with same-side (LL and RR) and o↵-diagonal
(LR) fields.

I The G � ⌃ collective fields are closely related to the JT
gravity approximation of SYK. The “double-cone” saddle
point of the LR field plays the role of a spacetime wormhole
[P.S., Shenker, Stanford].

I What happens when we don’t average over the couplings?



I If we don’t average over the couplings, and instead focus on a
single choice, partition functions factorize.

I We can still introduce the G � ⌃ collective fields and
integrate out the fermions (in principle). This adds a noisy
term, depending on the couplings, to the action.

I For two copies of Y (T ), we may choose to introduce, or not
introduce, the LR collective fields. The result of the
calculation is the same - the fields integrate to one.

I Computing with the LR fields and without them is analogous
to calculating h|Ŷ |2i vs.

��hŶ i 
��2 in JT gravity - The first

computation has a fundamental wormhole plus “o↵-diagonal”
corrections, the second is a “double-sum” which manifestly
factorizes, with a potentially emergent wormhole.

I This gives an example of an “equivalence” between something
like the wormhole, and matched “disconnected”
configurations. How does this work?



I The noisy term in the action depends on whether or not we
include the LR fields. If we do include the LR fields, do we see
the “diagonal plus o↵-diagonal” structure, with configurations
of the LR field playing the role of the “diagonal” sum, and the
noisy terms behaving like the “o↵-diagonal” terms?

I Di�cult to control the model with exactly fixed couplings.
Can use small J perturbation theory as a tool.

I Perturbative fluctuations of the LR fields sum up certain
fermion diagrams with the flavor indices of the L and R
fermions matched - GLR ⇠

P
a �

L
a�

R
a . However, it is di�cult

to connect this to the double-cone saddle point [CGHPSSSST].

I To have better control, we approximately fix the couplings in
a way which allows us to indirectly study these noisy terms
using the G � ⌃ saddle points.



I We can copy our procedure from JT gravity and work in an
ensemble for which Y (T ) is approximately fixed for an
interval on the ramp.

I We can enforce this by inserting approximate delta functions
into the usual J-average. Representing these approximate
delta functions as tight Gaussians,

exp


� (Y (T )� y0(T ))2

2�2

�
, �⌧ 1,

we can expand out the exponential and introduce G �⌃ fields
for these “auxiliary” copies of Y (T ).

I For appropriate observables the many-replica G � ⌃ integral
can then be done by saddle point. The result mirrors the
calculation in JT gravity, with the double-cone saddle point
playing the role of the cylinder, and the auxiliary Y (T )’s
playing the role of the state boundaries.



I Like in JT, we can find an e↵ective description for
YL(T )YR(T 0) with just two auxiliary boundaries.

I If we integrate out the auxiliary boundaries we would find an
approximate action for just the “physical” G � ⌃ fields, with
the anticipated noisy terms. The e↵ective description allows
us to study these terms using saddle points.

I If we do not introduce the LR fields, the resulting noisy terms
contribute a manifestly factorizing double-sum.

I If we do introduce the LR fields, the noisy terms give a purely
“o↵-diagonal” contribution, with the “diagonal” double cone
excluded.

I There are two equivalent representations of the G � ⌃
integral: with the LR fields and including the double-cone; or
without the LR fields and including the corresponding
“diagonal” noisy terms.



Discussion and questions

I Can a variant of this e↵ective description apply to
conventional AdS/CFT, like SYM?

I What would provide a microscopic realization of the
dyanamical boundaries? Perhaps periodic “fuzzball”
configurations? We would also need a bulk explanation for the
exclusion rule.

I The Disk (Euclidean black hole) also poses a similar problem-
in a full bulk description, is the black hole “equivalent” to
some contributions of “microstates”?

I For the tensionless string in AdS3, Eberhardt found an
equivalence between the black hole and “microstate”
contributions, as well as indications of an equivalence between
the wormhole and disconnected quantities. It would be nice to
understand how this works in more detail.


