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Wormholes and averaging in gravity
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Duality between JT and RMT  
[Saad, Shenker, Stanford] ‘19

Replica wormholes & Page curve 
[Almheiri, Engelhardt, Marolf, Maxfield] [Penington] ’19 
West/East coast papers ‘19

Hilbert space of baby universes, null states 
[Marolf, Maxfield] ‘20

Transition amplitudes in de Sitter JT, bra-ket wormholes 
[Maldacena, Turiaci, Yang], [Cotler, KJ, Maloney] ’19,  
[Anous, Kruthoff, Mahajan], [Chen, Gorbenko, Maldacena] ‘20



Some questions

1. Whence pure 2+1-dimensional quantum gravity? Is it a 
consistent theory of gravity, with an ensemble dual? 

2. What can we say about wormholes and factorization in 
standard AdS/CFT? In particular, what about d>2? 

3. Non-saddles are important in JT gravity. Can we find the  
“most important” non-saddles in ordinary Einstein gravity? 
Embed them into supergravity?
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The plan: 

1. Pure 3d gravity and random matrix statistics. 

2. Wormholes in d>2 as constrained instantons. 

3. Embedding d>2 wormholes into AdS/CFT.
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Pure 3d gravity

Classical model is exactly soluble on  (global AdS3). 

No bulk gravitons.  

Boundary excitations (boundary gravitons) with power-counting 

renormalizable interactions . 

Analogue of Schwarzian description, a boundary model closely 
related to the quantization of coadjoint orbits of Virasoro. 
[Alekseev, Shatashvili] ’89, [Cotler, KJ] ’18 

The status of the quantum theory is unclear. 

disk × ℝ

∼
G
L

∼
1
c
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Torus partition function

Global AdS3 Classical phase space of metrics 
continuously connected to it is: 
[Banados] ’99, [Maloney, Witten] ‘07

Diff(𝕊1)
PSL(2; ℝ)

Diff(𝕊1)
PSL(2; ℝ)

Quantizing this phase space produces 
a Hilbert space = vacuum Verma module 
of Virasoro2. [Witten] ’89, [Maloney, Witten] ‘07
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Torus partition function

Analytically continuing to imaginary time, 
compactifying, path integral gives trace:

Z(τ, τ̄) = trℋ (qL0− c
24 q̄L̄0− c

24 ) = | χ0,c(τ) |2

Sum over choice of contractible 
cycle on boundary torus:

D × 𝕊1 = ℍ3/ℤ

τ ZD×𝕊1(τ, τ̄) = ∑
γ∈PSL(2;ℤ)/Γ∞

Z(γτ, γτ̄)

Maloney-Witten partition function.
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Torus partition function
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Modular sum diverges. Regularized result is not a partition  
function for a compact, unitary 2d CFT. 
 - continuous d.o.s. 
 - negative norm states (see also [Benjamin, Ooguri, Shao, Wang], ’19,  

    [Benjamin, Collier, Maloney] ’20).

τ

Z(τ, τ̄) =

More importantly, this is an incomplete computation. 
We should (?) sum over all ways of filling in the boundary torus.

Significant evidence that 
contributions from Seifert 
manifolds lead to  
near BTZ threshold. 
[Maxfield, Turiaci] ‘20

ρ ≥ 0



An ensemble dual?

Natural to conjecture that perhaps pure 3d gravity is a 
consistent theory of gravity after all, with an ensemble dual.*

*Sweeping under the rug that we don’t know of chaotic c>1 CFTs out of which to  
make an ensemble.

τ

⟨Z(τ, τ̄)⟩ =

⟨Z(τ1, τ̄1)Z(τ2, τ̄2)⟩ =

τ1 τ2

?

?

etc.
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An ensemble dual?

This conjecture has been floating in the air. 
 - See de Boer’s talk, [Cotler, KJ] ’20, also [Maxfield, Turiaci] ’20 
 - Cf. Narain ensembles 
    [Afkhami-Jeddi, Cohn, Hartman, Tadjini], [Maloney, Witten] ‘20

Consistent with some known facts: 
 - Continuous d.o.s. 
 - Some  wormhole saddles with higher genus boundary. 
   [Maldacena, Maoz] ’04 (One-loop Z given in [Giombi, Maloney, Yin] ‘08) 

 - A controlled JT limit [Ghosh, Maxfield, Turiaci] ‘19

ℍ3/Γ

Goal: give a precise computation of a wormhole amplitude, 
          study fluctuation statistics of putative dual ensemble.
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Simplest Euclidean wormhole

⟨Z(τ1, τ̄1)Z(τ2, τ̄2)⟩ =

τ1 τ2

= x +

+ (higher topologies)

[Cotler, KJ] ‘20

Two copies of ZMW

A × 𝕊1 = 𝕋2 × I

“AdS3 double trumpet”
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Simplest Euclidean wormhole

⟨Z(τ1, τ̄1)Z(τ2, τ̄2)⟩ =

τ1 τ2

= x +

+ (higher topologies)

[Cotler, KJ] ‘20
A × 𝕊1 = 𝕋2 × INo coupling constant that explicitly suppresses 

flucs of topology. However, 3d gravity has a JT limit  
as  with . [Ghosh, Maxfield, Turiaci] ’19 

Expect  dominated by  at low  
temperature, high spin.

τ → i∞ S0 ∝ c |s |
⟨Z1Z2⟩conn 𝕋2 × I
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We would like to compute:

Z𝕋 2×I(τ1, τ̄1, τ2, τ̄2) = ∫
[dg]𝕋 2×I

diff
e

1
16πG ∫ d3x g(R+2)

=

τ1 τ2

Immediate problem: no smooth saddle points!



Hamiltonian path integral

In 2006.08648, we took a somewhat indirect approach. 

Work in Lorentzian signature, first-order formalism.  
(For global AdS3, this is an easy way to obtain the phase space, 
which can then be quantized via canonical or path integral methods.)

gMN → (eA
M, ωB

CN)

Gravitational action becomes first order in derivatives:

S = −
1

16πG ∫ εABC (eA ∧ (dωBC + ωB
D ∧ ωDC) +

1
3

eA ∧ eB ∧ eC)

gMN = ηABeA
MeB

N
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Hamiltonian path integral

Action is linear in time derivatives! 

We are dealing with a Hamiltonian path integral. 

Integrate over trajectories in a phase space, rather than  
configuration space.

S ∼ ∫ dt (pi
·qi − H(p, q) + λa𝒞a(p, q))

The time-components  and  enforce curvature, torsion 
constraints, analogues to Hamiltonian & momentum in ADM.

eA
0 ωA

B0
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Our approach

Our computation contains some subtleties and assumptions. 

We start in Lorentzian signature, on annulus x time. We “constrain first.”  
Solving the constraints leads to a phase space, labeled by boundary  
configurations of bulk fields, a la CS/WZW. 

We then perform a path integral quantization of this phase space,  
and define the Euclidean theory by analytic continuation (rather than 
starting with Euclidean gravity). 

Strictly speaking this is only guaranteed to work semiclassically, as  
gauge-fixing may modify the constraints, but we have strong reason to  
believe our answer goes beyond semiclassics, like WZW partition function.
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AdS3 double trumpet

At an intermediate point in our computation, our amplitude 
closely mirrors the “double trumpet” amplitude in JT gravity.  
[Saad, Shenker, Stanford] ‘19

τ1 τ2

b, b̄

b, b̄

Z̃ = V∅ ∫
∞

0
dbdb̄ bb̄ ZT(τ1, τ̄1 |b, b̄) ZT(τ2, τ̄2 |b, b̄)

twist zero modes pseudomoduli

“trumpet”

ZT = χh,c(τ)χh̄,c(τ̄)

h −
c

24
=

Cb2 − 1
24
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Amplitude and preamplitude

This Euclidean path integral produces a “preamplitude,” 
the sum over spaces of the sort pictured:

We find Z̃(τ1, τ̄1, τ2, τ̄2) =
1

2π2
Z0(τ1, τ̄1)Z0(τ2, τ̄2)

Im(τ1)Im(τ2)
|τ1 + τ2 |2

Z0(τ) =
1

Im(τ) |η(τ) |2“Non-compact boson partition function”:
18



Amplitude and preamplitude
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The full answer includes a sum over Dehn twists of one boundary 
torus relative to the other.

This result satisfies an important consistency check.  

Invariant under simultaneous modular transformations:

Z̃(γτ1, γτ̄2, γ−1τ2, γ−1τ̄2) = Z̃(τ1, τ̄1, τ2, τ̄2)

Z𝕋 2×I(τ1, τ̄1, τ2, τ̄2) = ∑
γ∈PSL(2;ℤ)

Z̃(τ1, τ̄1, γτ2, γτ̄2)

Final answer is invariant under independent modular transformations.



Fluctuation statistics

Recall our provisional assumption:

⟨Z(τ1, τ̄1)Z(τ2, τ̄2)⟩conn = Z𝕋 2×I + (other connected geometries)

Useful to consider the primary-counting partition function .ZP

⟨ZP(τ1, τ̄1)ZP(τ2, τ̄2)⟩conn =
1

2π2 Im(τ1)Im(τ2) ∑
γ∈PSL(2;ℤ)

Im(τ1)Im(γτ2)
|τ1 + γτ2 |2 + ( . . . )

Next, Fourier transform in  to work at fixed spin.Re(τ1), Re(τ2)
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Fluctuation statistics

At low temperature, fixed spin, we find

⟨ZP
s1

(β1)ZP
s2

(β2)⟩conn =
1

2π
β1β2

β1 + β2
e−2π( |s1 | − 1

12 )(β1+β2) (δs1,s2
+ O(β−1))

Subleading terms involve sums of Kloosterman sums. 
Absolute convergence for nonzero spin. .Z0,0 = ln Λ + Z̄0,0(β1, β2)

Terms in modular sum with 
at least one S-transformation.
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Eigenvalue repulsion in random matrix theory

This function is familiar. It is (after a field redefinition) 
a two-point function in an ensemble of large Hermitian matrices 
in the double scaling limit:

⟨tr (e−β1H) tr (e−β2H)⟩MM,conn =
1

2π
β1β2

β1 + β2
e−E0(β1+β2) + O(e−2S0)

⟨O(H)⟩MM = ∫ dH e−NtrV(H)O(H) ,

E

E0

This result is universal, independent of the details of the potential, 
and steps from eigenvalue repulsion. 
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Eigenvalue repulsion in random matrix theory

In a random matrix ensemble with a global symmetry,  may  
be block diagonalized into different superselection sectors, 
and eigenvalues in different sectors do not repel. 

H

⟨tr (e−β1Hq1) tr (e−β2Hq2)⟩MM,conn =
1

2π
β1β2

β1 + β2
e−E0(β1+β2)δq1q2

+ O(e−2S0)

Precisely matches what we find from AdS3, with spin the conserved 
quantum number. 

Further, the offset  is the threshold energy of a  

BTZ black hole with spin s.

E0 = 2π ( |s | −
1

12 )
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Some lessons

We made sense of the wormhole amplitude. If pure 3d gravity 
is a consistent theory of gravity, this is significant evidence that  
it is dual to an ensemble. 

Fluctuation statistics of BTZ microstates near threshold  
are precisely described by RMT with Virasoro symmetry!*  
The full answer appears to generalize RMT. 

In particular, BTZ microstates corresponding to Virasoro  
primaries at fixed spin exhibit eigenvalue repulsion.  

*In fact, the entire amplitude may be obtained by taking an RMT ansatz 
for , inverse Fourier transform, restore descendants,  
and then take a modular sum.

⟨ZP
s1

(β1)ZP
s2

(β2)⟩conn
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Another approach

I don’t have the time to discuss it, but I did want to mention 
that, given my comments about “constrain first,” in 2007.15653  
we found another way to arrive at . 

The idea was to use some physical inputs from 3d gravity 
to then “bootstrap” the wormhole amplitude. 

Most important is that there is a preamplitude  invariant under 
simultaneous modular transformations. 

We recovered the result above for , using the JT limit of 3d 
gravity to fix its normalization.

Z𝕋 2×I

Z̃

Z̃
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Going forward

So, what about more general manifolds? Is pure 3d gravity 
a consistent theory? 

Answering that question is, to put it mildly, a daunting task.  

For torus boundaries, the JT limit should help. Indeed, the 
“AdS3 double trumpet” may be reconstructed purely from 
the JT double trumpet, but it is not yet clear if this should 
persist beyond . 

What to make of wormholes with sphere, g>1 boundary? 
Requires metric approach.

𝕋2 × I
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The plan: 

1. Pure 3d gravity and random matrix statistics. 

2. Wormholes in d>2 as constrained instantons. 

3. Embedding d>2 wormholes into AdS/CFT.
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We would like to compute:

Z𝕋 2×I(τ1, τ̄1, τ2, τ̄2) = ∫
[dg]𝕋 2×I

diff
e

1
16πG ∫ d3x g(R+2)

=

τ1 τ2

Hope: develop a framework for computing this amplitude 
in the second-order formalism, at least to one-loop. 

If we can, we can then try to go to d>3, embed into AdS/CFT..



Reminder: non-saddles in JT

Problem: No saddle point solutions. 

A thread to follow: In Euclidean JT gravity,  is the only saddle. 

Dilaton (after continuing its contour) enforces constraint . 

There is a moduli space of  surfaces, on which the 
JT action varies. Path integral given by an integral over  
moduli and pseudomoduli. [Saad, Shenker, Stanford] ‘19

ℍ2

R = − 2

R = − 2

Zg,n(β1, . . , βn) ∝ ∫
∞

0
b1db1 . . bndbn Vg,n(bi)

e− b2
1

β1

β1
. . .

e− b2n
βn

βn
29



Reminder: non-saddles in JT

Zg,n(β1, . . , βn) ∝ ∫
∞

0
b1db1 . . bndbn Vg,n(bi)

e− b2
1

β1

β1
. . .

e− b2n
βn

βn

30

1. Formal saddle point at , where bottlenecks pinch off. 
Dominant contributions near there. 

2. There are configurations at fixed  which are saddles wrt 
all other fluctuations in field space. Z obtained by summing 
over fluctuations at fixed , then integrate over .

bi = 0

bi

bi bi

Fixing the  amounts to fixing the energy on each boundary. 
The ensuing spacetime is a “constrained instanton,” not a  
true saddle. [Affleck], ’81 [Affleck, Dine, Seiberg] ‘83 

bi



Gravitational constrained instantons

Let’s adapt this procedure to d>2 Einstein gravity. 

Say, look for wormhole with topology 𝕋d × ℝ

ds2 = gρρ(ρ)dρ2 + gij(ρ)dxidxj

Reduce on torus to one-dimensional problem in . 

Can look for saddle points where we: (c.f. [Stanford] ’20) 

1. Fix the length between the two boundaries. 

2. Fix the energy of the boundary .

ρ

Tij



Gravitational constrained instantons
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For example:

ds2 = dρ2 + b2 cosh4
d ( dρ

2 ) δijdyidyj (yi = xi + f i(ρ))

Interpolates between tori of equal conformal structure. 

Twist zero modes, plus pseudomodulus . (Bottleneck .)b ∼ bd



Gravitational constrained instantons
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ds2 = dρ2 + b2 cosh4
d ( dρ

2 ) δijdyidyj

However we got here, these spaces have interesting properties:

1. EH action evaluates to a pure boundary term, . 

2. Fluctuations of the metric with fixed BC can be divided into  

flucs of , twists (zero modes), everything else . 

So these appear to be important contributions to the 
connected two-boundary problem.

SEH ∝
bd

G
vol(𝕋d)

b ( δ2SEH

δh2
≥ 0)



Gravitational constrained instantons

What about the integral over b?

Z = ∫ db ρ(b)e−Swormhole 𝒟−1/2
b (1 + GL2(b) + G2L3(b) + . . )

How does one-loop determinant behave as ? 

Presumably stringy effects are important in the loop 
corrections around small wormholes. 

What we can in principle reliably obtain is the exponentially 
suppressed contribution from wormholes with AdS-scale 
bottlenecks, with .

b → 0

Swormhole = O(1/G)



Other instantons

We can find many other configurations of this sort, e.g.

1. Wormholes in 3d which interpolate between tori with , 
as well as between two spheres. 

2. Wormholes with  cross-section, which interpolate 

between boundaries at general . 
(Ends up being analytic continuation of “double cone” [Saad, Shenker, Stanford] ’18) 

3. 5d wormholes with  cross-section.

τ1, τ2

𝕊1
β × 𝕋d−1

β1, β2

𝕊1
β × 𝕊3



Other instantons

In cases with  cross-sections, we have:𝕊1
β × 𝕋d−1 , 𝕊1

β × 𝕊3

Swormhole = (β1 + β2)E , E ∼
bd

G
V

In a natural renormalization scheme, the  wormhole has 
with  and  the small BH mass threshold. 

Recalls how our  wormhole “knows” about BTZ threshold.

𝕊1 × 𝕊3

E = b4E0 , b ≥ 1 E0

AdS3



The plan: 

1. Pure 3d gravity and random matrix statistics. 

2. Wormholes in d>2 as constrained instantons. 

3. Embedding d>2 wormholes into AdS/CFT.
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Work in progress with Cotler.



Embedding into supergravity

The metrics presented above are rather simple configurations 
which are asymptotically  with various boundary geometries 
(torus, sphere, , etc.)

ℍd+1

𝕊1 × 𝕊d−1

In particular they are not supported by gauge fields or matter. 

So it is rather easy to embed them into Freund-Rubin 
compactifications of 10d or 11d supergravity with an AdSd+1 factor. 

One simply adds the internal space, constant dilaton (in 10d), 
and a profile for RR flux* fixed by Gauss’ Law. 

*  compactifications from 10d may be supported by general NS/RR 3-form fluxes.AdS3 38



Example: wormholes in ℍ5 × 𝕊5

Other simple examples with AdS3, AdS4, and AdS7 factors.

ds2 = dρ2 + b2 cosh ( 2ρ
L ) δijdxidxj + L2dΩ2

5 ,

φ = gs

C4 =
Lb4

8 ( 3
L

+ sinh ( 4ρ
L ) +

1
8

sinh ( 8ρ
L )) dx1 ∧ dx2 ∧ dx3 ∧ dx4 + (angular)

The wormhole is threaded by RR flux!
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Stability?

We should now assess whether these wormholes are stable 
configurations in supergravity.  

Q: Is there a sharp factorization paradox? 

Perturbative fluctuations of the 10d, 11d supergravity fields? 

For , the 5d spectrum includes a tower of minimally 
coupled scalars with fermions, 5d gauge fields, and of 
course the metric. 

(Non-perturbative) Brane/string nucleation?

AdS5 × 𝕊5

m2 ≥ − 4 ,

40



Supergravity fluctuations

This story is still developing, and is work in progress.

What we can show:

Minimally coupled scalars with  are always stable. 
(Essentially due to a result of [Maldacena, Maoz] ’04) 

YM fields are always stable. (Trivial) 

Metric fluctuations are stable for symmetric , and for 
 wormholes in AdS4 down to relatively small 

bottleneck, where our numerics our breaking down.

m2 ≥ m2
BF

𝕋d × I
𝕊1 × 𝕊2 × I
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Probe D3-branes and nucleation

Consider putting a probe D3-brane in this geometry, wrapping 
the torus at fixed .ρ

The brane experiences an attractive gravitational force due to  
the DBI term, repulsive RR force from WZ term:

SD3 = T3 (∫ d4x P[g] − ∫ P[C4])
42
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Probe D3-branes and nucleation

In pure , these two effects precisely cancel.  
Probe D3 encodes points on the Coulomb branch with 

. 

In a black hole background, gravity wins, and probe D3s  
fall into the BH. 

In the wormhole, RR wins, and the probe D3 is repelled  
infinitely far from the bottleneck. 

AdS5 × 𝕊5

SU(N) → SU(N − 1) × U(1)

43



Probe D3-branes and nucleation

In fact, this leads to a pair production instability of 3-branes 
in the wormhole. You lose  action by letting a D3-  pair  
nucleate, thereby screening the RR flux by two units, which 
shrinks the size of the bottleneck. 

O(N) D3

44



Probe branes and nucleation

D3s are BPS, so . It is instructive to study the problem 
for (As for nearly BPS branes in .)

m = q
m ≥ |q | . AdS3 × 𝕊3 × M4

For the torus wormholes in any d, we find two brane nucleation 

instabilities for .x =
|q |
m

≳ 0.836

1. A pair on opposite sides of the bottleneck, at a position 
determined by x. 

2. See the next slide. A brane instanton, akin to the 
Schwinger instanton for  production in an electric field.e− − e+
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Probe branes and nucleation

x1

ρ

46



Stringy censorship?

47

Once embedded into SUGRA, our wormholes are almost always 
unstable to some brane nucleation. 

Tempting to assert a “stringy censorship” proposal for Euclidean 
wormholes in AdS, but..



We have found two exceptions, both asymp. : 

1. The [Maldacena, Maoz] wormhole with  cross-section. 

2. Our wormholes with  cross-section, and relatively 
small bottlenecks.

ℍ5 × 𝕊5

𝕊4

𝕊1 × 𝕊3

ds2
10 = dρ2 +

b2

4
cosh2(2ρ)

b2 cosh(2ρ) − 1
dτ2 +

1
2

(b2 cosh(2ρ) − 1)dΩ2
3 + dΩ2

5

There are D3-brane nucleation instabilities for , but 
no apparent instabilities for smaller b.

b ≥ 1.355

Stringy censorship?



What does this mean?

49

We are inching towards a sharp factorization paradox for 
. It remains to nail down whether SUGRA 

fluctuations around these wormholes are stable. 

A full stability analysis is non-trivial, but tractable. 
(The main technical problem is dealing with the negative 
norm fluctuations of the trace, which couples to other flucs.) 

What if these configurations are stable? 
Is there a fundamental constraint in string theory which  
forbids them?

AdS5 × 𝕊5



Thank you!
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