

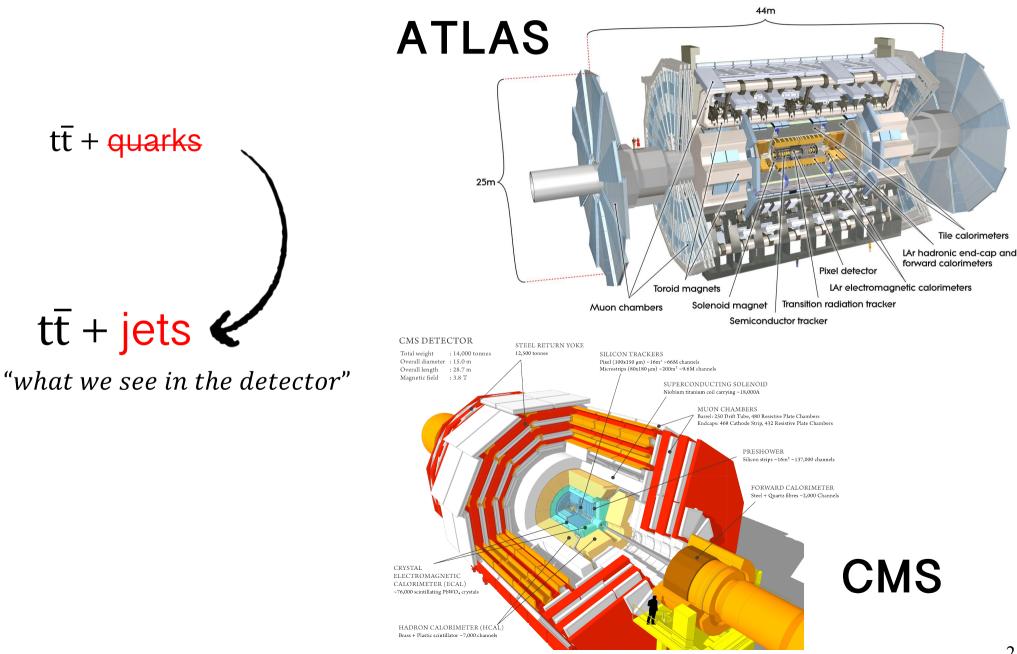
tt+quarks production in ATLAS and CMS

Seth Moortgat

Interuniversity Institute for High Energies (IIHE) Vrije Universiteit Brussel <u>seth.moortgat@cern.ch</u>

<u>Mahsana Haleem</u>

JMU Wuerzburg <u>Mahsana.Ahsan@cern.ch</u>


1

On behalf of the CMS and ATLAS Collaborations

LHCtopWG meeting (virtual), 23-11-2020

Overview

With a detector in between, quarks are observed as jets!

Different jet flavours result in different analyses!

tt + jets ATLAS Collaboration, $t\bar{t}$ + jets differential cross sections (ℓ + jet), Eur. Phys. J. C 79 (2019) 12, 1028 ATLAS Collaboration, jet activity in $t\bar{t}$ production (eµ), Eur. Phys. J. C 77 (2017) 4, 220 ATLAS Collaboration, $t\bar{t}$ differential cross sections (all hadronic), Arxiv: 2006.09274 (Sub. To JHEP) ATLAS Collaboration, $t\bar{t}$ + jets differential cross sections (ℓ + jet), JHEP 10 (2018), 159

CMS Collaboration, $t\bar{t}$ + jets differential cross sections (ℓ + jet), Phys.Rev.D 97 (2018) 11, 112003 CMS Collaboration, $t\bar{t}$ differential cross sections (dilepton), Eur. Phys. J. C 80 (2020) 7, 658

Different jet flavours result in different analyses!

tt + jets ATLAS Collaboration, $t\bar{t}$ + jets differential cross sections (ℓ + jet), Eur. Phys. J. C 79 (2019) 12, 1028 ATLAS Collaboration, jet activity in $t\bar{t}$ production (eµ), Eur. Phys. J. C 77 (2017) 4, 220 ATLAS Collaboration, $t\bar{t}$ differential cross sections (all hadronic), Arxiv: 2006.09274 (Sub. To JHEP) ATLAS Collaboration, $t\bar{t}$ + jets differential cross sections (ℓ + jet), JHEP 10 (2018), 159

CMS Collaboration, $t\bar{t}$ + jets differential cross sections (ℓ + jet), Phys.Rev.D 97 (2018) 11, 112003 CMS Collaboration, $t\bar{t}$ differential cross sections (dilepton), Eur. Phys. J. C 80 (2020) 7, 658

$r - t\bar{t} + heavy-flavour (HF) jets$

ATLAS Collaboration, $t\bar{t}b(\bar{b})$ (inclusive/differential + dilepton/ ℓ +jet), <u>JHEP 04 (2019), 046</u>

CMS Collaboration, $t\bar{t}b\bar{b}$ inclusive (dilepton/ ℓ +jet), JHEP 07 (2020), 125

CMS Collaboration, $t\bar{t}b\bar{b}$ inclusive (all hadronic), Phys.Lett.B 803 (2020), 135285

CMS Collaboration, ttcc inclusive (dilepton), Physics Analysis Summary TOP-20-003

tt + jets ATLAS Collaboration, $t\bar{t}$ + jets differential cross sections (ℓ + jet), Eur. Phys. J. C 79 (2019) 12, 1028 ATLAS Collaboration, jet activity in $t\bar{t}$ production (eµ), Eur. Phys. J. C 77 (2017) 4, 220 ATLAS Collaboration, $t\bar{t}$ differential cross sections (all hadronic), Arxiv: 2006.09274 (Sub. To JHEP) ATLAS Collaboration, $t\bar{t}$ + jets differential cross sections (ℓ + jet), JHEP 10 (2018), 159

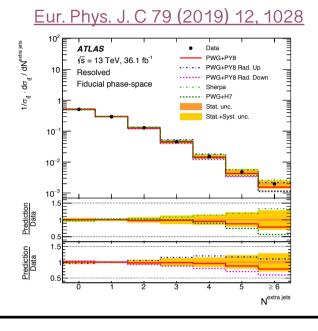
CMS Collaboration, $t\bar{t}$ + jets differential cross sections (ℓ + jet), Phys.Rev.D 97 (2018) 11, 112003 CMS Collaboration, $t\bar{t}$ differential cross sections (dilepton), Eur. Phys. J. C 80 (2020) 7, 658

- tt + heavy-flavour (HF) jets

ATLAS Collaboration, $t\bar{t}b(\bar{b})$ (inclusive/differential + dilepton/ ℓ +jet), <u>JHEP 04 (2019), 046</u>

CMS Collaboration, $t\bar{t}b\bar{b}$ inclusive (dilepton/ ℓ +jet), JHEP 07 (2020), 125 CMS Collaboration, $t\bar{t}b\bar{b}$ inclusive (all hadronic), Phys.Lett.B 803 (2020), 135285

CMS Collaboration, ttcc inclusive (dilepton), Physics Analysis Summary TOP-20-003


– - Older references · – ·

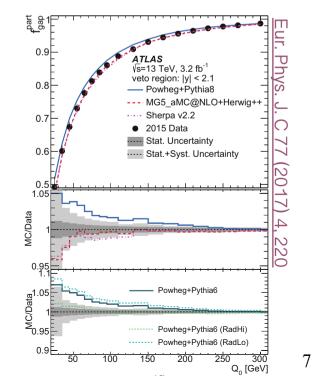
ATLAS Collaboration, $t\bar{t}$ + HF inclusive (dilepton, 7 TeV, 4.7 fb⁻¹), Phys.Rev.D 89 (2014) 7, 072012 ATLAS Collaboration, $t\bar{t}b\bar{b}$ inclusive (dilepton/ ℓ + jet 8 TeV, 20.3 fb⁻¹), Eur.Phys.J.C 76 (2016) 1, 11

CMS Collaboration, $t\bar{t}b\bar{b}$ inclusive (dilepton 13TeV, 2.3 fb⁻¹), Phys.Lett.B 776 (2018), 355-378 CMS Collaboration, $t\bar{t}b\bar{b}$ inclusive (dilepton 8TeV, 19.6 fb⁻¹), Phys.Lett.B 746 (2015), 132-153 CMS Collaboration, $t\bar{t}b\bar{b}$ differential (dilepton 8TeV, 19.6 fb⁻¹), Eur.Phys.J.C 76 (2016) 7, 379

tt̄ + jets

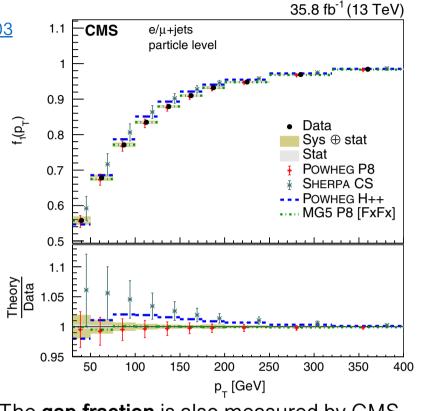
Differential $t\bar{t}$ cross section measurement **as a function of kinematics of the** $t\bar{t}$ **system and jet multiplicities** are presented (in resolved and boosted topologies)

These provide important constraints to several generator setups! (Many results of which I highlight only one!)


Figure shows the normalized differential cross section as a function of the number of additional jets ($p_T > 25$ GeV), with good agreement up to 3 additional jets, and some tension at higher jet multiplicities. \rightarrow **p-values ranging from <0.01 to 0.44** [link]

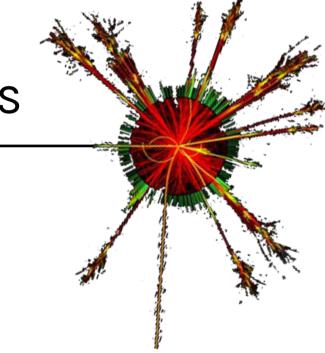
Differential $t\bar{t}$ cross section measurement **as a function of** (top decay and) **additional jet kinematics** are presented.

Gap fraction = fraction of events without any additional radiation above a given kinematic threshold (p_T or H_T).


This is an interesting quantity that provides complementary information on additional jet kinematics rather than additional jet multiplicity.

Significant differences are observed between generators and between data and simulation. \rightarrow **p-values ranging from 3.4**×10⁻⁶ to 0.89 [link] some MC settings have been tuned after this early 13 TeV measurement

CMS result with 35.8 fb⁻¹ (2016) → Phys.Rev.D 97 (2018) 11, 112003 CMS 1.1 Amongst a very rich content of differential measurements, results on tt cross section as a function of additional jet 0.9 multiplicity for different p_T thresholds are shown below. $(p_T)^{\dagger}$ 0.8 0.7 CMS p_ > 30 GeV CMS p_ > 50 Ge e/u+jets e/u+iets particle level particle level 10² 10² Sys ⊕ stat Sys ⊕ stat 0.6 Stat Stat ----POWHEG P8 POWHEG P8 SHERPA CS SHEBPA CS and the second secon 10 POWHEG H++ σ [pb] POWHEG H++ σ [pb] 0.5 10 MG5 P8 [FxFx] MG5 P8 [FxFx] 1.1 Theory Data Theory Data Theory Data 1.5 1.5 0.95 50 0.5 0.5 0 2 3 ≥4 0 1 2 3 ≥ 4 1 Additional jets Additional jets 35 9 th ⁻¹(12 TeV 35.8 fb p_ > 100 Ge p_ > 75 Ge CMS CMS e/u+jets e/u+iets particle level particle level 10² 10² Sys ⊕ stat Svs ⊕ stat Stat Stat POWHEG P8 POWHEG P8 10 SHERPA CS SHERPA CS 10 POWHEG H++ POWHEG H++ σ [pb] σ [pb] MG5 P8 [FxFx] MG5 P8 [FxFx] and the second s 10-10na a cly 2.5 Theory Data Theory Data 2 2 1.5 1.5 0.5 0.5 2 > 4 2 > 4 Additional iets Additional iets



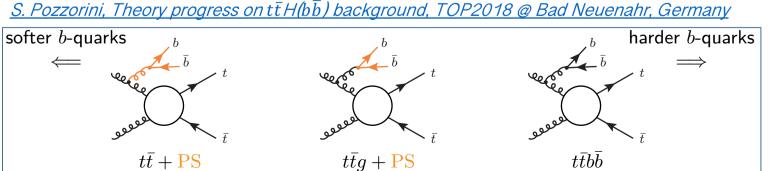
The gap fraction is also measured by CMS.

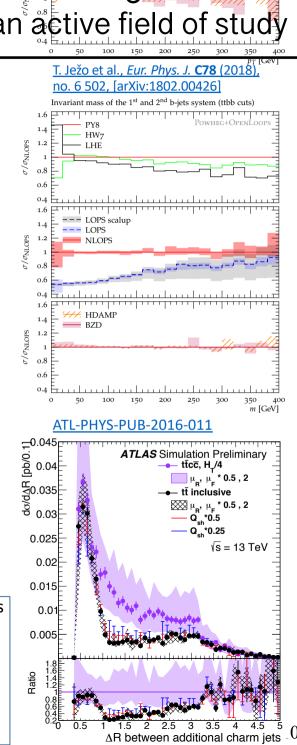
Increased sensitivity results in uncertainties at the O(1%) level (more accurate than the predictions from simulations)! \rightarrow data provides constraints on theory.

Description from Powheq+Pythia8 seems to follow the data much better compared to the ATLAS configuration with the same ME/PS. 8

$t\bar{t}$ + heavy-flavour jets

Theoretical modelling of $t\overline{t} + H\overline{f}$ Simulating these processes remains an active field of study


Theory predictions / Simulation of the $t\bar{t}$ +HF final state is highly non-trivial. It deals with very different scales from the top quark mass down to momenta of the relatively soft additional jets.


- Matrix Element vs Parton Shower.
- ttbb@LO vs NLO vs ttbbj@NLO (large k-factor, depending on scale choice) [Buccioni F. et al, JHEP 12 (2019), 015].
- Factorization/Renormalization/Shower/matching scales.
- Inclusive $t\bar{t}$ +jets versus dedicated $t\bar{t}b\bar{b}$ and $t\bar{t}c\bar{c}$ simulation.

Still a very active field of study!

Sigert F, Jan 2020, Zürich Phenomenology Workshop Pozorrini et al., October 2020, ttH-HXSWG meeting

→ Important backgrounds to $t\bar{t}H$ (H → $b\bar{b}$) measurements!

1 150 200 250 300

Dilepton / *l*+jet

Inclusive / differential cross sections

ME comparisons: Powheg, MadGraph, Sherpa, PowHel inclusive / ttbb in the ME

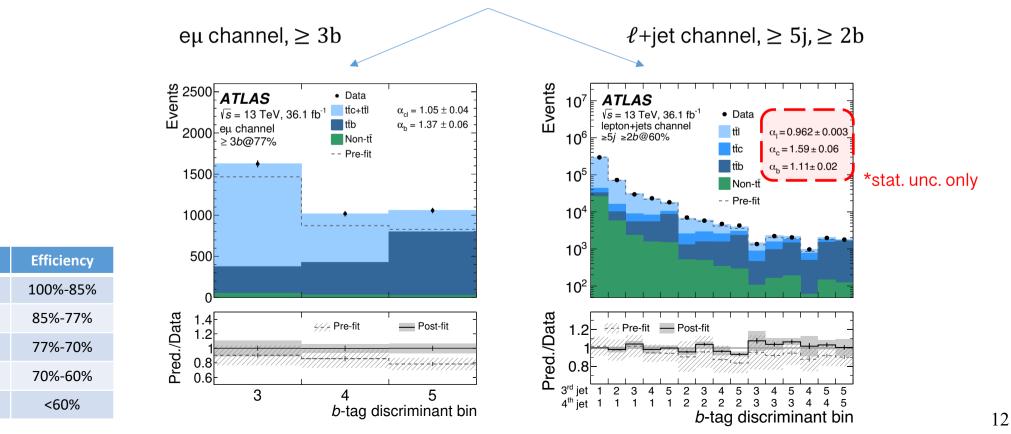
PS comparisons: Pythia, Herwig, Sherpa

(*)

Bin

1

2

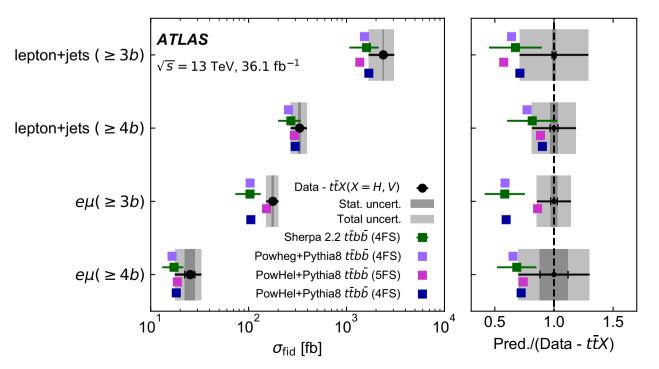

3

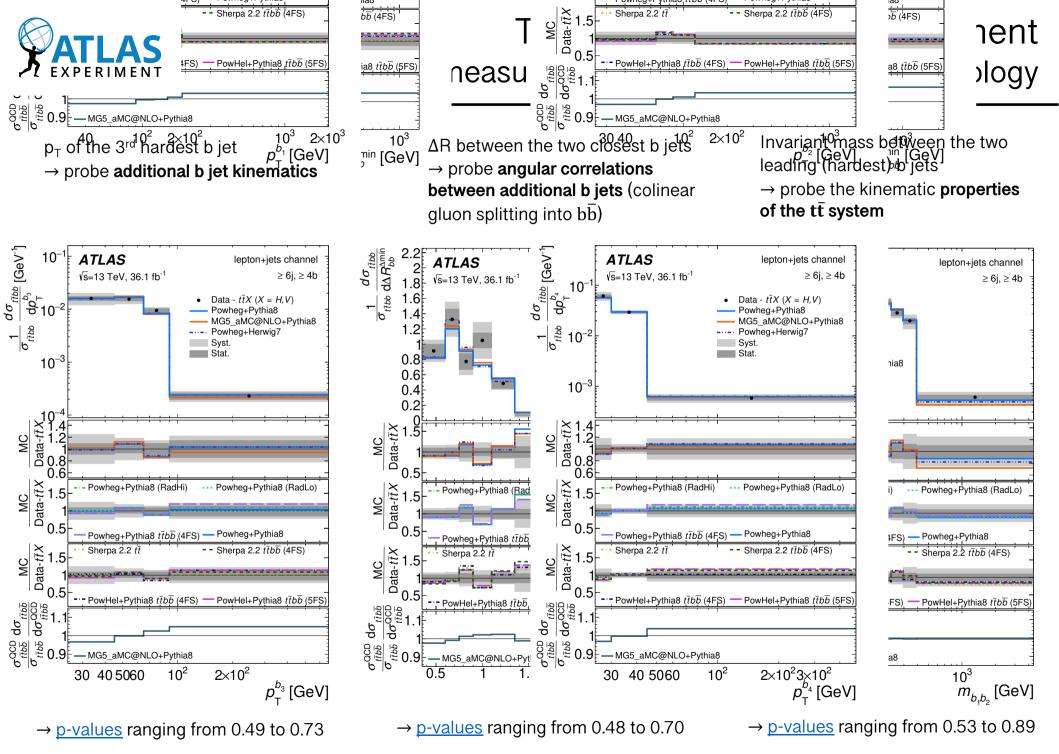
5

Differential $t\bar{t}$ +jet measurements are agnostic about jet flavour.

 \rightarrow The normalizations of t \bar{t} +>1b, t \bar{t} +>1c, and t \bar{t} +>1l are fitted in a "control region"

- 1. Rank jets according to the b-tagging discriminator value
- 2. Take the 3rd (and 4th in ℓ +jet) ranked jet (proxies for additional radiation)
- 3. Divide in bins that represent different b-tagging efficiency ranges^(*)

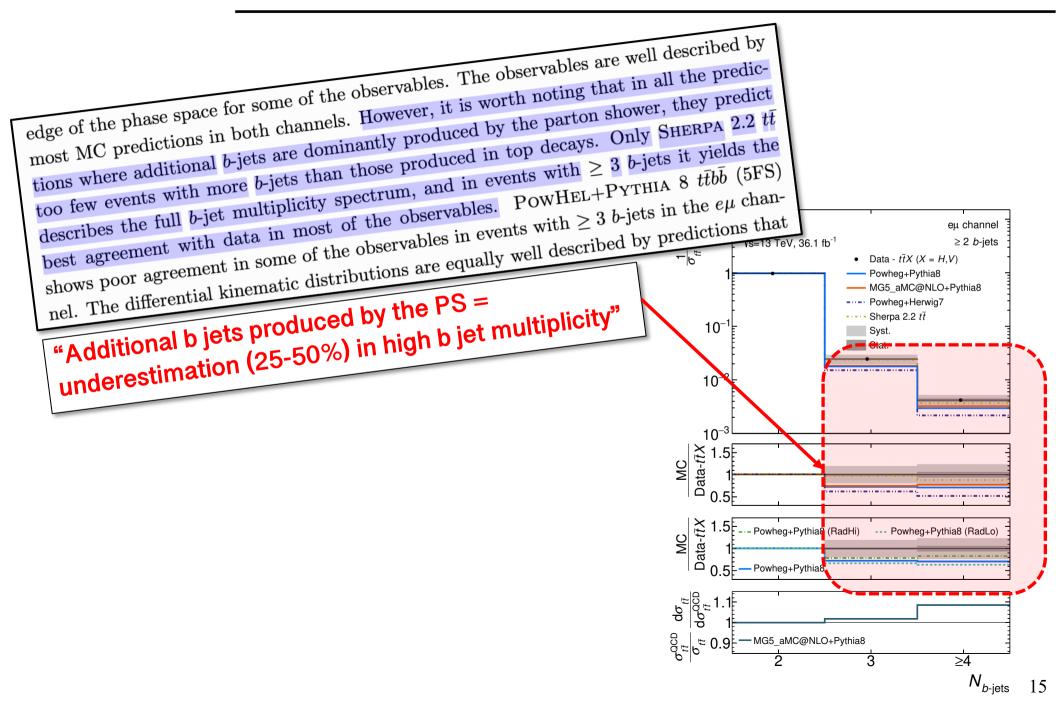

Inclusive fiducial cross sections are reported (backgrounds and ttH/ttV "signals" are subtracted using MC predictions)


Separate results for \geq 3b and \geq 4b (i.e. for \geq 1 or \geq 2 'additional' b jets)

Uncertainties dominated by systematics: b-tagging, Jet Energy Scale, Modelling (PS)

Compared to several simulations

 \rightarrow Overall higher $t\bar{t}b(\bar{b})$ cross section observed in data compared to MC predictions!


Overall good agreement between data and simulation!

14_

 p_2

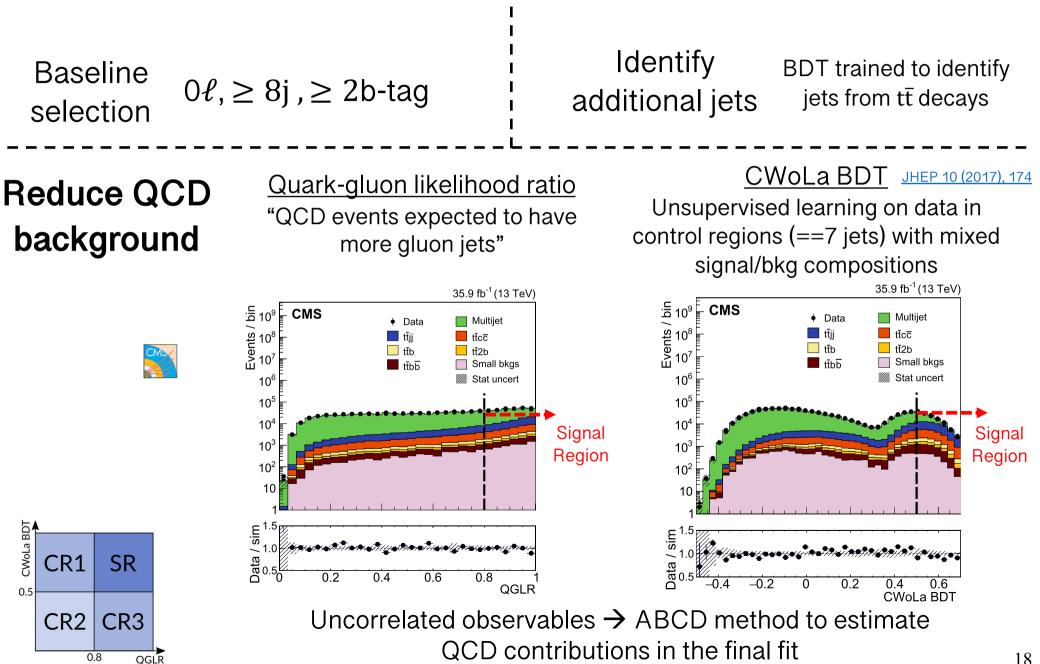
The ATLAS $t\overline{t}b(\overline{b})$ measurement An interesting part of the conclusion


CMS	The CMS dilept	on/ ℓ +jet ttbb measurement The strategy outlined
	Dilepton	ℓ+jet
Baseline selection	2ℓ, ≥ 4j , ≥ 2b-tag	1ℓ, ≥ 6j, ≥ 2b-tag
Identify additional jets	3 rd and 4 th largest b- tagging discriminator score	Kinematic fit to reconstruct tī system + take largest remaining b- tag scores
	2D template fit \rightarrow extract $\sigma_{t\bar{t}}$	r_{jj} and $R_{t\bar{t}b\bar{b}/t\bar{t}jj} = \frac{\sigma_{t\bar{t}b\bar{b}}}{\sigma_{t\bar{t}jj}}$
Extract	CMS Simulation 13 TeV Dilepton tibb 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $
results	CMS Simulation 13 TeV 0.6 0.6 0.6 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	$1 \qquad \qquad$

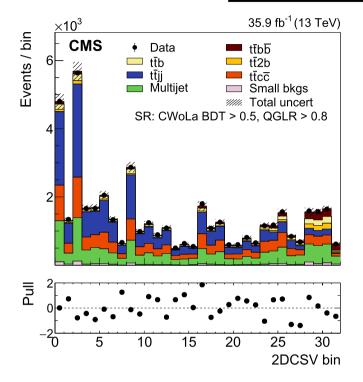
Inclusive cross sections (and ratio) measured in the fiducial phase space and unfolded into the full phase space \rightarrow Acceptance and efficiency corrections derived from simulations.

Uncertainties dominated by b-tagging and theoretical modeling (ME/PS scales) Precision of ~ 13% on $\sigma_{t\bar{t}b\bar{b}}$

 $\sigma_{t\bar{t}jj}$ well modelled, but $R_{t\bar{t}b\bar{b}/t\bar{t}jj}$ (and therefore also $\sigma_{t\bar{t}b\bar{b}}$) underestimated in the simulation.

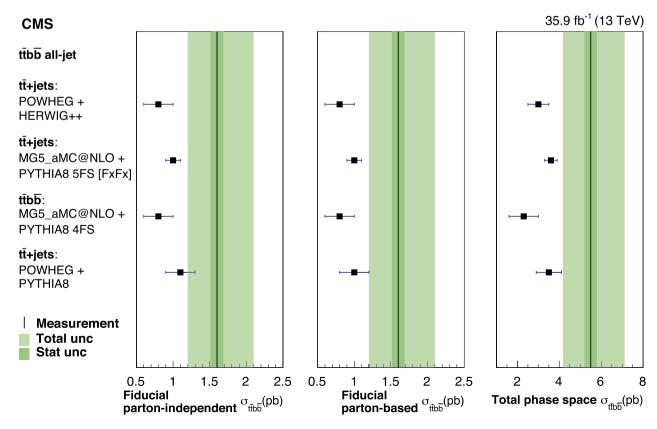


The CMS fully hadronic $t\overline{t}b\overline{b}$ measurement


Phys.Lett.B 803 (2020), 135285

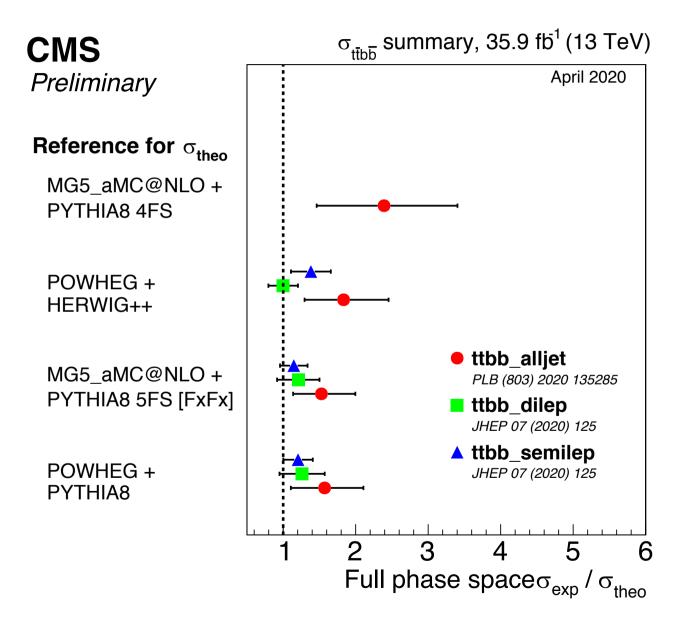
The strategy outlined

The CMS fully hadronic ttbb measurement 2D template fit to extract the results

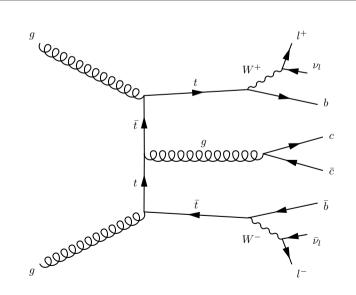


Fit in (2D) bins of b-tagging score of the two additional jets

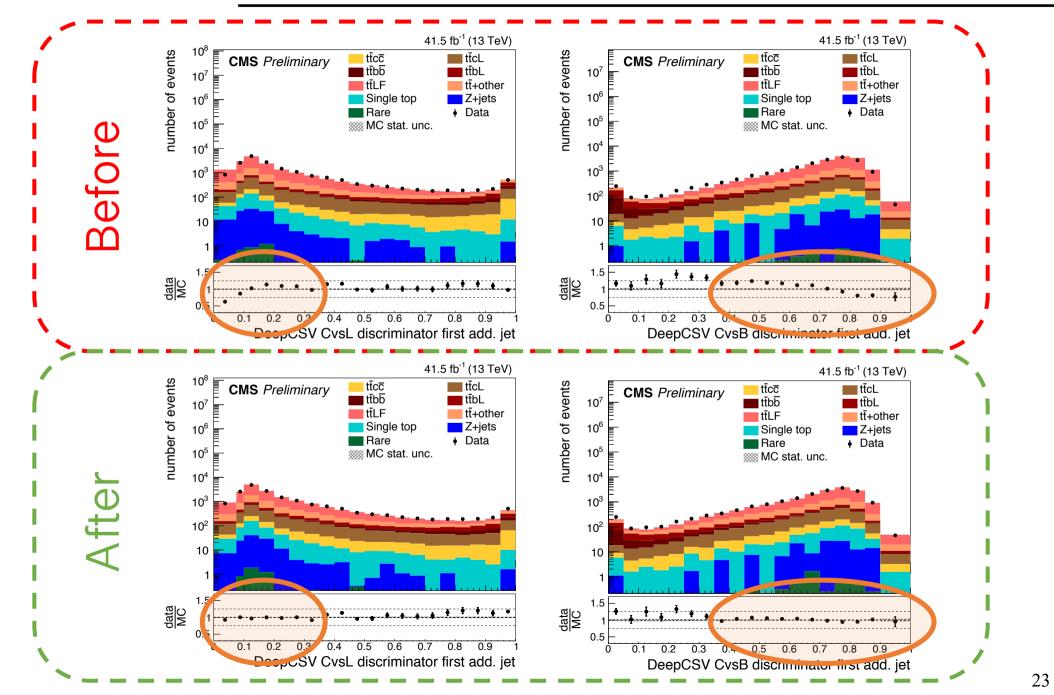
Uncertainties dominated by QGLR and b-tagging calibrations + signal/background modelling.


Precision of ~ 30%!

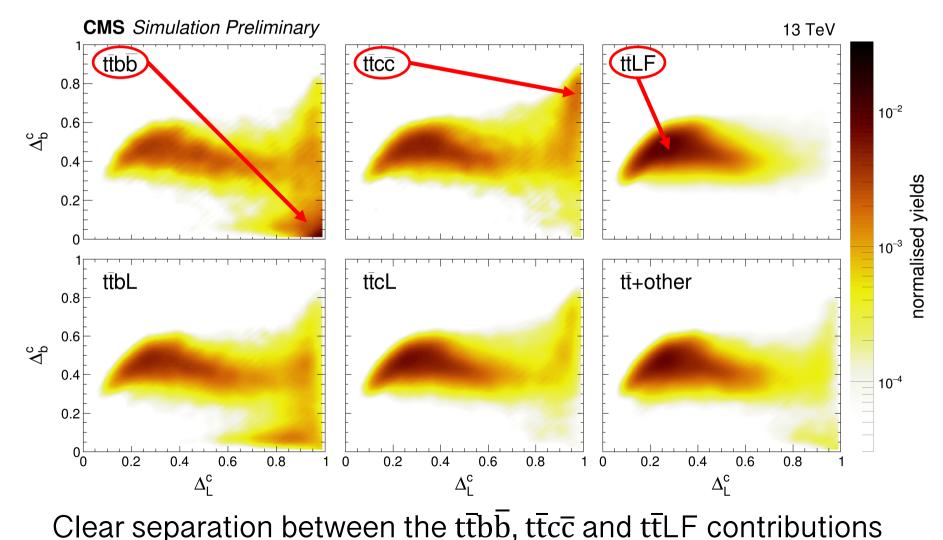
Again, $\sigma_{t\bar{t}b\bar{b}}$ is under-predicted in the simulation.

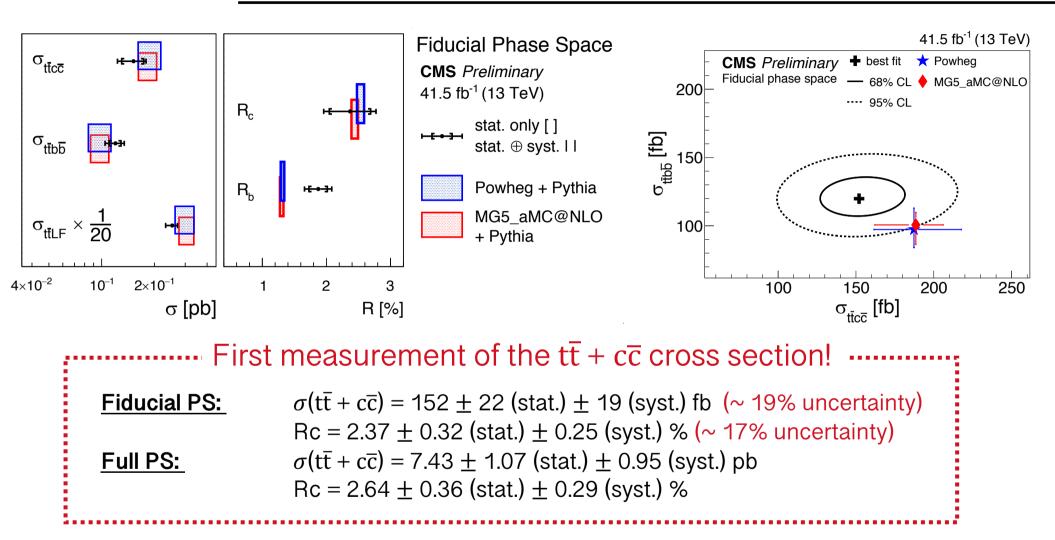


Comparison of the CMS $t\overline{t}b\overline{b}$ measurements Consistently, the $t\overline{t}b\overline{b}$ cross section is under-estimated in simulations

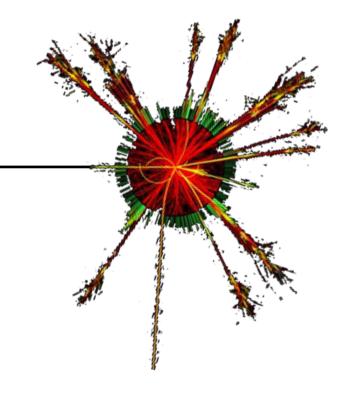

tt + charm jets! (NEW)

CMS	The Physics Analysis Summary TOP	CMS dilepton ttcc measurement The strategy outlined				
Goal and scope	First measurement of the measure $\sigma(t\bar{t} + b\bar{b})$, $\sigma(t\bar{t} - b\bar{b})$	First measurement of the $t\bar{t} + c\bar{c}$ cross section, but simultaneously measure $\sigma(t\bar{t} + b\bar{b})$, $\sigma(t\bar{t} + LF)$ and $R_{c/b} = \frac{\sigma(t\bar{t} + c\bar{c}/b\bar{b})}{\sigma(t\bar{t} + jj)}$				
	Measurement performed i dataset, 41.5 fb ⁻¹	n the dilepton channel, using 2017				
Baseline selection	2ℓ , $\geq 4j$, $\geq 2b$ -tag	Identify NN trained to identify additional jets additional HF jets				
Properties fro between thos <mark>tagging discri</mark>		= 0.5				
$P(CvsL) = \frac{1}{P(c)}$	$\frac{P(c)}{P(udsg)}, \qquad P(CvsB) = \frac{P(c) + B}{P(c) + B}$	$\frac{P(c)}{P(b) + P(bb)}.$ $-\frac{1}{1} - 0.8 - 0.6 - 0.4 - 0.2 - 0 - 0.2 - 0.4 - 0.6 - 0.8 - 1 - 0.2 - 0 - 0.2 - 0.4 - 0.6 - 0.8 - 1 - 0.2 - 0 - 0.2 - 0.4 - 0.2 - 0 - 0.2 - 0.4 - 0.2 - 0 - 0.2 - 0.4 - 0.2 - 0 - 0.2 - 0.4 - 0.2 - 0 - 0.2 - 0.4 - 0.2 - 0 - 0.2 - 0.4 - 0.2 - 0 - 0.2 - 0.4 - 0.2 - 0 - 0.2 - 0.4 - 0.2 - 0 - 0.2 - 0.4 - 0.2 - 0 - 0.2 - 0.4 - 0.2 - 0 - 0.2 - 0.4 - 0.2 - 0 - 0.2 - 0.4 - 0.2 - 0 - 0.2 - 0.4 - 0.2 - 0 - 0.2 - 0 - 0.4 - 0.2 - 0 - 0.2 - 0 - 0.4 - 0.2 - 0 - 0.2 - 0 - 0.4 - 0.2 - 0 - 0.2 - 0 - 0.4 - 0.2 - 0 - 0.2 - 0 - 0.4 - 0.2 - 0 - 0.2 - 0 - 0.4 - 0.2 - 0 - 0.2 - 0 - 0.4 - 0.2 - 0 - 0.2 - 0 - 0.4 - 0.2 - 0 - 0.2 - 0 - 0.4 - 0.2 - 0 - 0.2 - 0 - 0.4 - 0.2 - 0 - 0.2 - 0 - 0.4 - 0.2 - 0 - 0.2 - 0 - 0.4 - 0.2 - 0 - 0.2 - 0 - 0.4 - 0.2 - 0 - 0.2 - 0 - 0.4 - 0.2 - 0 - 0.2 - 0 - 0.4 - 0.4 - 0.2 - 0 - 0.4 - 0.4 - 0.2 - 0 - 0.4 - 0.4 - 0.4 - 0.2 - 0 - 0.4 $				


The CMS dilepton $t\overline{t}c\overline{c}$ measurement Calibration of the c-tagger shape


Another NN is trained to distinguish $t\bar{t}c\bar{c}$ from $t\bar{t}b\bar{b}$ (Δ_{b}^{c}) and from $t\bar{t}LF$ (Δ_{L}^{c}).

The fit is performed on two-dimensional distributions. Uncertainties dominated by ctagging calibration, JES, modelling (ME and PS scales and matching)


The CMS dilepton $t\overline{t}c\overline{c}$ measurement Summary of the results

Also in this analysis we see an underestimation of $\sigma(t\bar{t}+b\bar{b})$ and R_b , but an overestimation of $\sigma(t\bar{t}+c\bar{c})$ and $\sigma(t\bar{t}+LF)$ (everything within 1-2 stdandard deviations)

ATLAS tr̄c reco-level scaling factor (slide 12): $\alpha_c^{ATLAS} = 1.59 \pm 0.06$ (stat) ± 0.7 (model) hints at **underestimation of ttc signal strength** in MC, whereas CMS observes: $\alpha_c^{CMS} = 0.81 \pm 0.12$ (stat) ± 0.10 (syst) ₂₅

Conclusions

Summary and conclusions

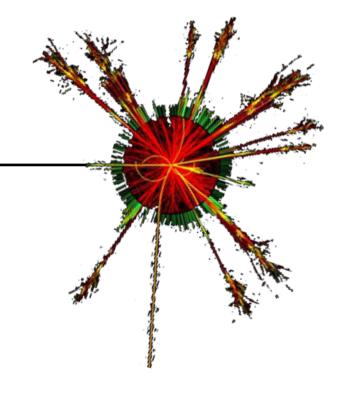
Differential t \bar{t} +jets analyses from CMS and ATLAS allow to probe kinematics of the additional radiation (PS) and puts different ME/PS simulators to the test.

 \rightarrow Full Run-2 combinations of these analyses will greatly improve the precision (lower statistical errors allow for much finer binning!)

Both CMS and ATLAS have explored the $t\bar{t}b\bar{b}$ landscape in different channels using the 2016 dataset, reaching a precision of roughly 13-16%.

- \rightarrow Consistent underestimation of $\sigma(t\bar{t}b\bar{b})$ in different simulators.
- \rightarrow CMS managed to conquer the fully-hadronic channel.
- \rightarrow ATLAS provided a first set of differential measurements.

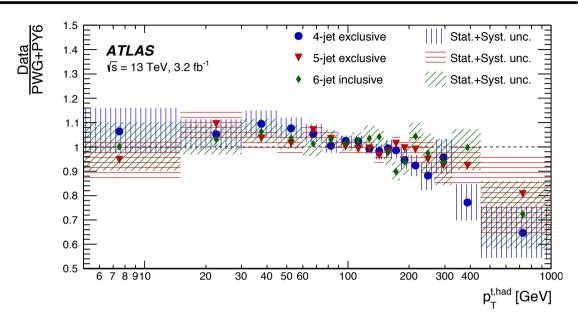
CMS presented a first measurement of $\sigma(t\bar{t}c\bar{c})$ with a precision of around 20%.

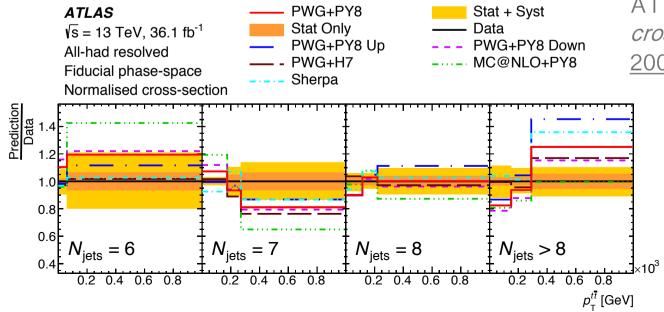

- \rightarrow CMS result reveals a slight overestimation of t $\bar{t}c\bar{c}$ yield in MC (within unc.)
- \rightarrow charm-tagging tools (and calibration) are a vital component.

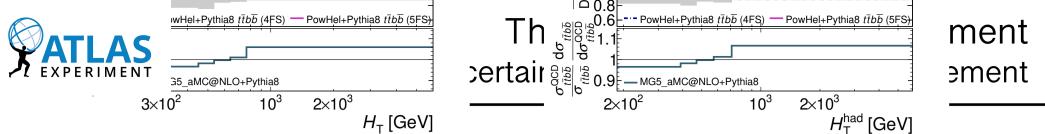
 \rightarrow ATLAS scaling factor for t $\bar{t}c$ at detector level hints at possibly underestimation ttc signal strength in MC compared to data

Important steps in my opinion:

- \rightarrow Come up with a **uniform phase space definition** for fair comparisons.
- \rightarrow Stay in touch with the **theory community** to improve the simulations.
- \rightarrow Work towards **full Run-2** results (all channels, inclusive+differential, ttcc, ttbb, ttLF)
- \rightarrow EFT interpretation? (qqqq and qqH operators in a combined tt+HF/tttt/ttH interp.)

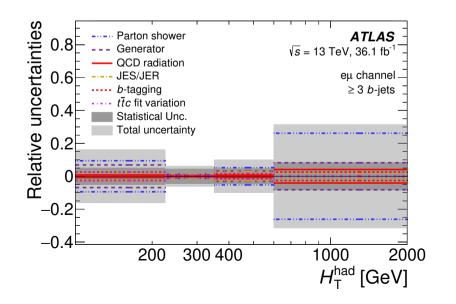

Backup

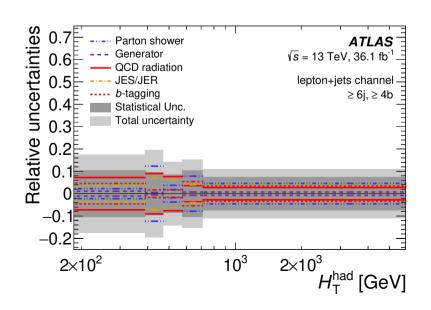



Some additional ATLAS differential measurements

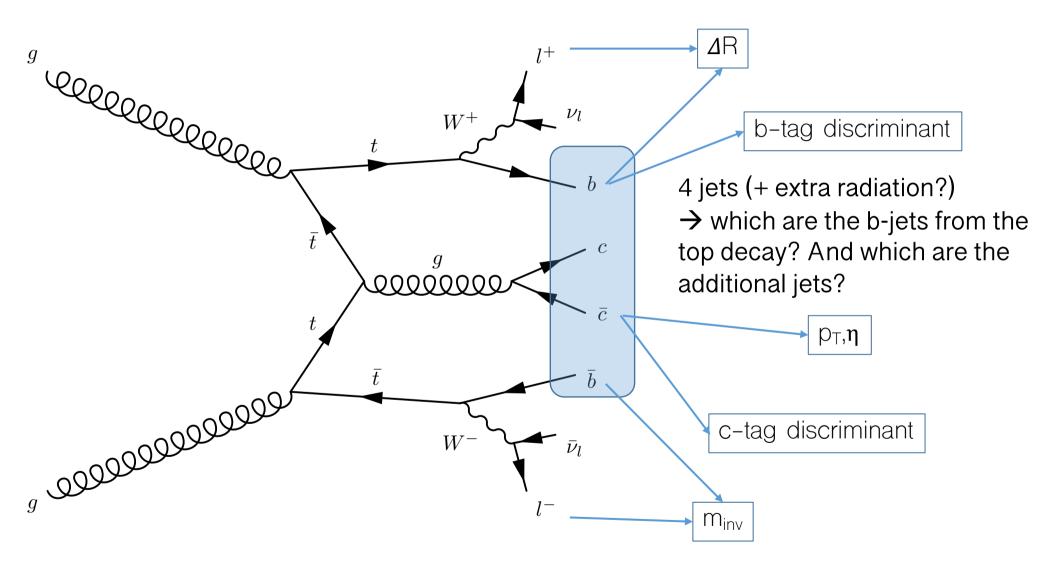
ATLAS Collaboration, $t\bar{t}$ +jets differential cross sections (ℓ +jet), JHEP 10 (2018), 159

ATLAS Collaboration, *tī differential cross sections (all hadronic)*, <u>Arxiv:</u> 2006.09274 (Sub. To JHEP)



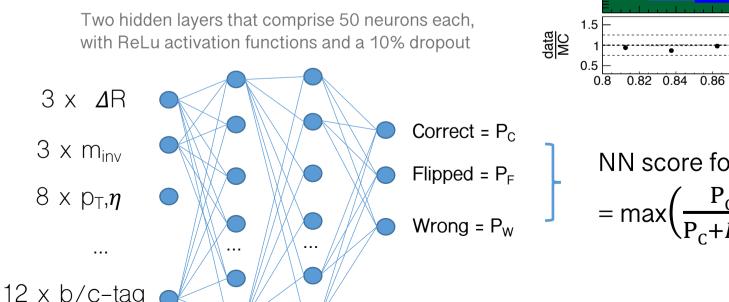

Normalized differential cross sections as a function of a large variety of kinematical quantities are unfolded to particle-level.

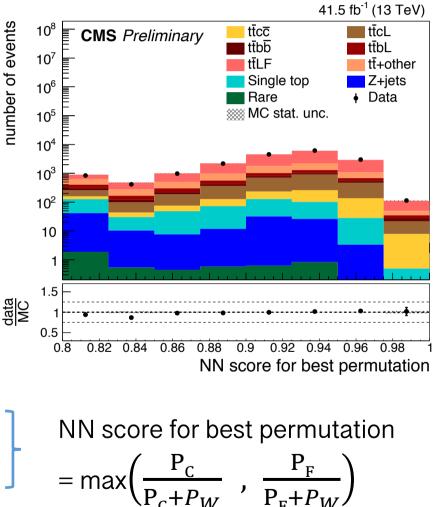
Differential measurements suffer more from statistical limitations (especially the e_{μ} channel which is only probed differentially in the $\geq 3b$ phase space)


With the presented binning, **uncertainties range between 10-30%**

With the full Run-2 dataset in our hands, we can more accurately start to probe these differential measurements!

Jet-parton matching Event kinematics + jet flavour as input to a neural network (NN)



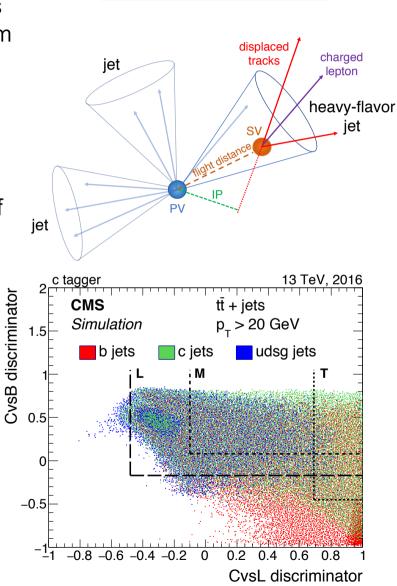

 \rightarrow Combine in a NN and pick the best jet-parton assignment

Only ~ 76% of events have two b jets matched to two gen-level b quarks from top quark within ΔR <0.3. Only these are used in the training of the NN.

The network correctly identifies the two additional c (b) jets in **50% (30%)** of the cases for $t\bar{t}c\bar{c}$ ($t\bar{t}b\bar{b}$) events.

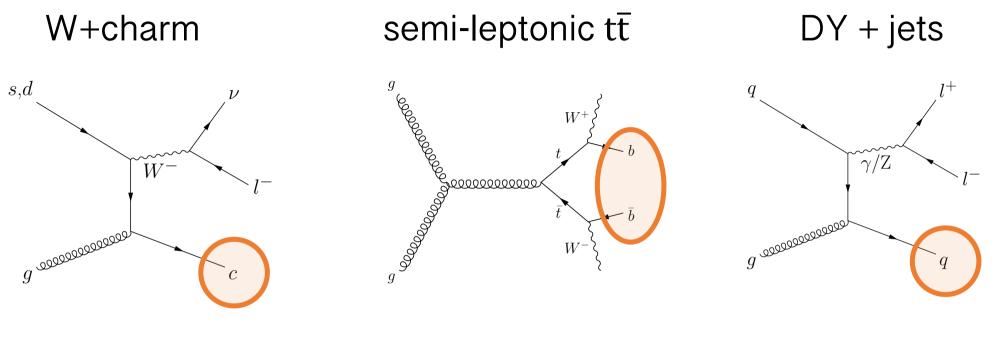
Good agreement between the data (black markers) and the simulation (filled histograms).

The DeepCSV heavy-flavour tagging algorithm is a multi-class algorithm that predicts probabilities (P) for jets to originate from a b, c or light-flavour (udsg) quark (or gluon).


This discrimination is based on properties such as track displacement, secondary vertex mass/flight distance, ...

Properties from c jets are distributed midway between those of b or light-flavour jets \rightarrow two c-tagging discriminants!

$$P(CvsL) = \frac{P(c)}{P(c) + P(udsg)}, \qquad P(CvsB) = \frac{P(c)}{P(c) + P(b) + P(bb)}.$$

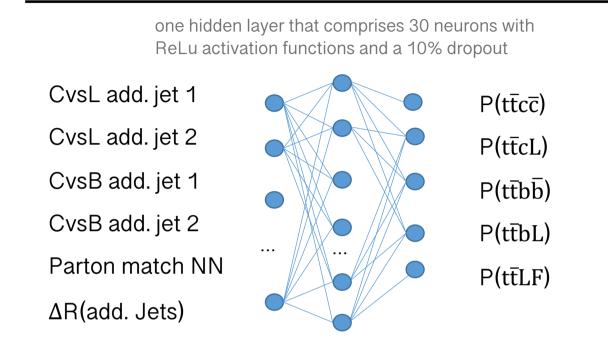

To use these discriminants in a neural network, the 2-dim shape in simulations needs to be calibrated to the data!

Novel shape calibration of the two-dimensional CvsL and CvsB DeepCSV c-tagger discriminators

JINST 13 (2018) P05011

c-tagger calibration Three control regions for flavor enrichment

c-enriched (93% pure) (after OS-SS subtraction)


b-enriched (81% pure)

light-enriched (86% pure)

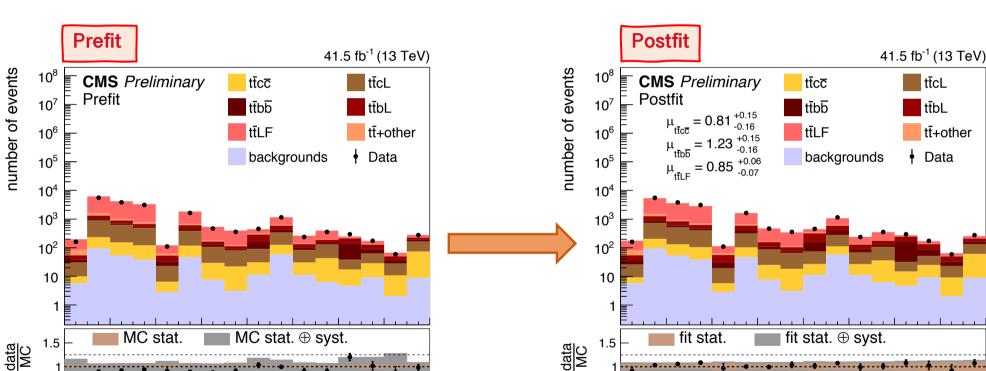
Very good purity in different control regions!

Iterative fitting procedure per (2-dim.) bin, by iterating multiple times over the three control regions \rightarrow 2-dim SF maps i.e. SF(CvsL, CvsB, flavour)

Template fit using NN discriminator Defining the neural network

$$\Delta_b^c = \frac{\mathbf{P}(t\bar{t}c\bar{c})}{\mathbf{P}(t\bar{t}c\bar{c}) + \mathbf{P}(t\bar{t}b\bar{b})}$$
$$\Delta_L^c = \frac{\mathbf{P}(t\bar{t}c\bar{c})}{\mathbf{P}(t\bar{t}c\bar{c}) + \mathbf{P}(t\bar{t}\mathbf{LF})}$$

 Δ_b^c and Δ_L^c can be interpreted as topology-specific c-tagger discriminants

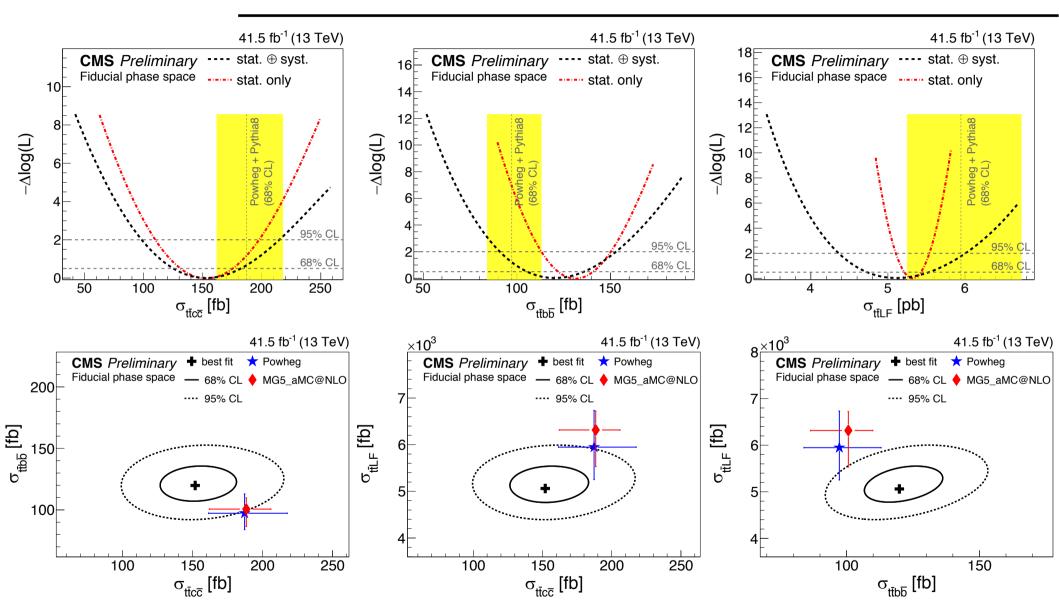

Information on the flavour of the two additional jets

Additional information on the event kinematics to most optimally distinguish different signal categories

C

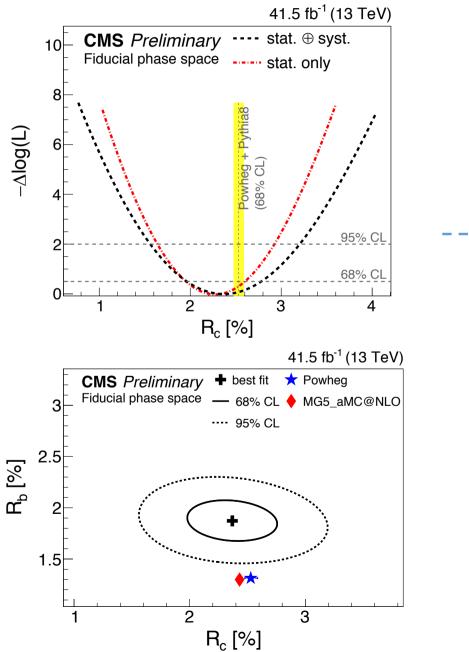
bin number

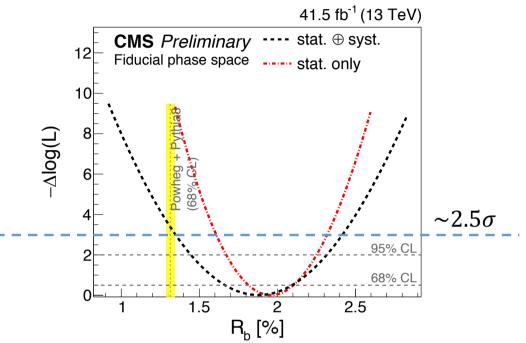
Two-dimensional distributions are unrolled onto a one-dimensional histogram 4x4 binning results in 16 bins with varying flavor composition:



 $\Delta_{
m L}^{
m c}\otimes\Delta_{
m b}^{
m c}:[0,0.45,0.6,0.9,1.0]\otimes[0,0.3,0.45,0.5,1.0]$

 μ represent the signal strength, related to the cross section: $\sigma = \frac{\mu \times N^{MC}}{\mathcal{L}^{int} \times \epsilon}$


bin number


Inclusive cross sections in the fiducial phase space

Some tension observed, but overall agreement within 1-2 standard deviations \rightarrow measured ttbb (ttcc and ttLF) cross section higher (lower) than predicted.

Ratios R_c and R_b in the fiducial phase space

 $\rm R_{c}$ is in very good agreement with theory prediction.

Largest tension observed for $\rm R_b$ $-\Delta log L{\sim}3 \rightarrow {\sim}2.5\sigma$

					_
	Result	Uncertainty	POWHEG	MG5_AMC@NLO	
Fiducial p	hase spa	ice			-
$\sigma_{ ext{t\bar{t}c\bar{c}}} \left[ext{pb} ight]$	0.152	\pm 0.022 (stat.) \pm 0.019 (syst.)	0.187 ± 0.030	0.188 ± 0.026	~19 %
$\sigma_{t\bar{t}b\bar{b}}$ [pb]	0.120	\pm 0.009 (stat.) \pm 0.012 (syst.)	0.097 ± 0.016	0.101 ± 0.014	
$\sigma_{ m t\bar{t}LF}$ [pb]	5.06	\pm 0.11 (stat.) \pm 0.41 (syst.)	5.95 ± 0.79	6.32 ± 0.79	
R _c [%]	2.37	\pm 0.32 (stat.) \pm 0.25 (syst.)	2.53 ± 0.06	2.43 ± 0.06	~17 %
R _b [%]	1.87	\pm 0.14 (stat.) \pm 0.16 (syst.)	1.31 ± 0.03	1.30 ± 0.03	
Full phase	space				
$\sigma_{ m t\bar t c \bar c}$ [pb]	7.43	\pm 1.07 (stat.) \pm 0.95 (syst.)	9.15 ± 1.44	8.92 ± 1.26	
$\sigma_{ m t\bar{t}b\bar{b}}$ [pb]	4.12	\pm 0.32 (stat.) \pm 0.42 (syst.)	3.35 ± 0.54	3.39 ± 0.49	
$\sigma_{t\bar{t}LF}$ [pb]	217.0	\pm 4.6 (stat.) \pm 18.1 (syst.)	255.1 ± 32.0	260.6 ± 32.8	
R _c [%]	2.64	\pm 0.36 (stat.) \pm 0.28 (syst.)	2.82 ± 0.07	2.72 ± 0.05	
R _b [%]	1.47	\pm 0.11 (stat.) \pm 0.13 (syst.)	1.03 ± 0.03	1.03 ± 0.02	

Comparison to other ttbb analyses

	Result	Uncertainty	POWHEG	MG5_AMC@NLO	TOP-18-002	$R_{t\bar{t}b\bar{b}/t\bar{t}jj}$	$\sigma_{ m tar{t}jj}[m pb]$	$\sigma_{ m t\bar{t}bar{b}}$ [pb]
Fiducial p	hase spa	ce				Dilepton chanr	nel (VPS)	
$\sigma_{t\bar{t}c\bar{c}}$ [pb]	0.152	\pm 0.022 (stat.) \pm 0.019 (syst.)	0.187 ± 0.030	0.188 ± 0.026	POWHEG + PYTHIA8	0.013 ± 0.002	2.41 ± 0.21	0.032 ± 0.004
$\sigma_{t\bar{t}b\bar{b}}$ [pb]	0.120	\pm 0.009 (stat.) \pm 0.012 (syst.)	0.097 ± 0.016	0.101 ± 0.014	Measurement	$0.017 \pm 0.001 \pm 0.001$	$2.36 \pm 0.02 \pm 0.20$	$0.040 \pm 0.002 \pm 0.005$
$\sigma_{t\bar{t}LF}$ [pb]	5.06	\pm 0.11 (stat.) \pm 0.41 (syst.)	5.95 ± 0.79	6.32 ± 0.79		Dilepton chan	nel (FPS)	
R_{c} [%]	2.37	\pm 0.32 (stat.) \pm 0.25 (syst.)	2.53 ± 0.06	2.43 ± 0.06	POWHEG + PYTHIA8	0.014 ± 0.003	163 ± 21	2.3 ± 0.4
R _b [%]	1.87	\pm 0.14 (stat.) \pm 0.16 (syst.)	1.31 ± 0.03	1.30 ± 0.03	MG_aMC@NLO + PYTHIA8		103 ± 21	2.3 ± 0.4
					5FS [FxFx]	0.015 ± 0.003	159 ± 25	2.4 ± 0.4
Full phase	e space			1	POWHEG + HERWIG++	0.011 ± 0.002	170 ± 25	1.9 ± 0.3
$\sigma_{t\bar{t}c\bar{c}}$ [pb]	7.43	\pm 1.07 (stat.) \pm 0.95 (syst.)	9.15 ± 1.44	8.92 ± 1.26	Measurement	$0.018 \pm 0.001 \pm 0.002$	$159 \pm 1 \pm 15$	$2.9\pm0.1\pm0.5$
$\sigma_{t\bar{t}b\bar{b}}$ [pb]	4.12	\pm 0.32 (stat.) \pm 0.42 (syst.)	3.35 ± 0.54	3.39 ± 0.49	+1	$.8\sigma$ Lepton+jets char	nnel (VPS)	30 GeV
$\sigma_{t\bar{t}LF}$ [pb]	217.0	\pm 4.6 (stat.) \pm 18.1 (syst.)	255.1 ± 32.0	260.6 ± 32.8	POWHEG + PYTHIA8	0.017 ± 0.002	30.5 ± 3.0	0.52 ± 0.06
R _c [%]	2.64	\pm 0.36 (stat.) \pm 0.28 (syst.)	2.82 ± 0.07	2.72 ± 0.05	Measurement	$0.020 \pm 0.001 \pm 0.001$	$31.0 \pm 0.2 \pm 2.9$	$0.62 \pm 0.03 \pm 0.07$
R _b [%]	1.47	\pm 0.11 (stat.) \pm 0.13 (syst.)	1.03 ± 0.03	1.03 ± 0.02		Lepton+jets cha	nnel (FPS)	
		+2.5 σ			powheg + pythia8	0.013 ± 0.002	290 ± 29	3.9 ± 0.4
PAS-TOP	P-20-0	03			MG_aMC@NLO + PYTHIA8 5FS [FxFx]	0.014 ± 0.003	280 ± 40	4.1 ± 0.4
					POWHEG + HERWIG++	0.011 ± 0.002	321 ± 36	3.4 ± 0.5
					Measurement	$0.016 \pm 0.001 \pm 0.001$	$292\pm1\pm29$	$4.7\pm0.2\pm0.6$
TOP-1	L8-011	parte	Fiducial, on-independent (Fiducial pb) parton-basec		+2.1σ		

<u>TOP-18-011</u>	Fiducial, parton-independent (pb)	Fiducial, parton-based (pb)	Total (pb)
Measurement	$1.6\pm0.1^{+0.5}_{-0.4}$	$1.6\pm0.1^{+0.5}_{-0.4}$	$5.5\pm0.3^{+1.6}_{-1.3}$
POWHEG $(t\bar{t})$	1.1 ± 0.2	1.0 ± 0.2	3.5 ± 0.6
POWHEG $(t\bar{t})$ + HERWIG++	0.8 ± 0.2	0.8 ± 0.2	3.0 ± 0.5
MadGraph5_amc@nlo (4FS $t\bar{t}b\bar{b}$)	0.8 ± 0.2	0.8 ± 0.2	2.3 ± 0.7
MadGraph5_amc@nlo (5FS t \bar{t} +jets, FxFx)	1.0 ± 0.1	1.0 ± 0.1	<mark>3.6</mark> ± 0.3

TOP-16-010

Phase space		$\sigma_{ m tar tbar b}$ [pb]	$\sigma_{ m tar tjj}$ [pb]	$\sigma_{ m t\bar{t}b\bar{b}}/\sigma_{ m t\bar{t}jj}$	
Measurement		$0.088 \pm 0.012 \pm 0.029$	$3.7\pm0.1\pm0.7$	$0.024 \pm 0.003 \pm 0.007$	
Visible	SM (POWHEG)	0.070 ± 0.009	5.1 ± 0.5	0.014 ± 0.001	
Full	Measurement	$4.0\pm0.6\pm1.3$	$184\pm 6\pm 33$	$0.022 \pm 0.003 \pm 0.006$	
	SM (POWHEG)	3.2 ± 0.4	257 ± 26	0.012 ± 0.001	L

+1.5*σ*