

LHCtopWG Open Meeting 23-24 November 2020

Higher-level comparison of multiple distributions for MC generators

Introduction

• ATLAS and CMS have published many papers on top differential cross section for different

- Processes: top pairs or single top
- Phase spaces: full and fiducial
- //>
 Final states: l+jets, dilepton, all jets
- O Topologies: resolved and boosted
- Objects: parton-level top quarks, particle level top proxies, particle level stable leptons and jets
- O This is a lot of information available for everyone!
- O Goal of this talk: give a global summary focused on what these measurements teach us on the MC generators
 - O Based on quantitative assessment (χ^2/p -value) of agreement between measurement and prediction

Few premises

All the results are presented with some caveats:

- OMC generator versions and settings are not always the same among (and within) the different experiments
- Error treatment and definition of covariance matrices are not harmonized among (and, again, within) different experiments
- Unless specifically noted, no theory uncertainty is accounted for in the extraction of the *p*-values
- Focus on $t\overline{t}$ production (single top in backup)

What you will not see:

Obtailed presentations of the measurements

ATLAS and CMS measurements

CMS: up to triple-differential (2016 data)

ATLAS: single- and double- differential (2015+2016 data)	2 Dilenton TOP-17-014
 Lepton+jets, <u>TOPQ-2018-15</u> Top and top-pair related variables Parton and particle level Resolved and boosted (no overlap, independent datasets) Standard cut-count-unfold procedure (regularized iterative 	 Dilepton, <u>TOP-17-014</u>: Single differential only Parton and particle level Top-related and (particle-level only) lepton- and (b)jet-related variables Tikhonov regularization in Tunfold Lepton+jets, <u>TOP-2016-014</u>: Particle level No top reconstruction: event/W/lepton kinematic variables only
 bayesian) All hadronic resolved, <u>TOPQ-2018-18</u> 	 Dilepton, <u>TOP-18-004</u> Double and triple differential Parton and particle level (for jet multiplicity)
 All hadronic boosted, <u>TOPQ-2016-09</u> Single-differential only Generally high uncertainties → excluded from the comparisons 	 Top related variables and jet multiplicity Lepton+jets, <u>TOP-17-002</u> Single and double differential Iterative Bayesian unfolding Top-related variables at parton and particle level and jet-related at
 Dilepton, <u>TOPQ-2018-17</u> Simultaneous extraction of cross-section and btagging probability Lepton-related observables Bin-by-bin unfolding 	 particle level Theory uncertainties accounted for in PWGPY and Sherpa predictions Lepton+jets and all-hadronic boosted <u>TOP-18-013</u> Single differential for top-related variables at parton and particle level Unfolding with simple matrix inversion Doesn't provide chi2 tables (covariances are on HepData) and general high uncertainties → excluded from the comparisons
LHCtopWG Open Meeting Higher-level comparison of	f multiple distributions for MC 4

generators

General MC settings

Generator	ATLAS	CMS
Powheg-Box (PWG)	v2 with NNPDF3.0NLO PDF set, h_{damp} =1.5 m_t . $h_{damp} = H_T/2$ for <i>ttbb</i> 4FS	v2 with NNPDF3.0NLO PDF set and the h_{damp} =1.581 m_t
MadGraph5_aMC@NLO (MC@NLO)	V2.2.1, NNPDF3.0NLO	V2.2.2 (FxFx), NNPDF3.0NLO
Sherpa	V2.2.1, NNPDF2.3LO	V2.2.2 NNPDF3.0NLO
Pythia (PY)	Pythia 8.2X using the A14 tune and the NNPDF2.3LO PDF set	Pythia 8.2X using the underlying event tune CUETP8M2T4
PWG+PY Rad. Up	$\mu_{R/F} = 0.5, h_{damp} = 3m_t$, Var3cUp from the A14 tune	
PWG+PY Rad. down	$\mu_{R/F} = 2$, Var3cUp from the A14 tune	
Herwig (HW7)	7.0.4 with the H7UE MMHT2014 LO	
HERWIG++ (HW++)		V2.7.1 using the underlying event tune EE5C

Nicely discussed in <u>Andrea's talk</u>

Top production observables

• The five basic variables for top production (p_T and rapidity of the top, $p_T/m/y$ of the $t\bar{t}$ system) already give a lot of insight on

• The modelling of the hard process (top p_T/y , $\bar{t}t m/y$)

• The modelling of the extra radiation $(p_T^{t\bar{t}})$

• The sensitivity to PDF (top $y, \bar{t}t m/y$) and top mass (top $p_T, \bar{t}t m$)

O Defined, at parton level, using the top quarks in the MC record after FSR and before decay

Experimental definition for top-observables straightforward in the l+jets channel,

exploiting $\frac{d\sigma}{dX_t} = \frac{d\sigma}{dX_{\bar{t}}} = \frac{d\sigma}{dX_{t_h}} = \frac{d\sigma}{dX_{t_l}} = \frac{1}{2} \left(\frac{d\sigma}{dX_t} + \frac{d\sigma}{dX_{\bar{t}}} \right) = \frac{d\sigma}{dX_{rndm}}$

• Alternative for all hadronic analyses: measure $\frac{d\sigma}{dX_{t_{1/2}}}$

LHCtopWG Open Meeting

Top production observables: particle level definitons

At particle level, proxies are used to access the kinematic of the top quarks

O Differences in the data/MC agreement can be expected among measurements, since the fiducial phase spaces and/or proxy definitions can enhance sensibilities to specific aspects of the modelling

Resolved topology:

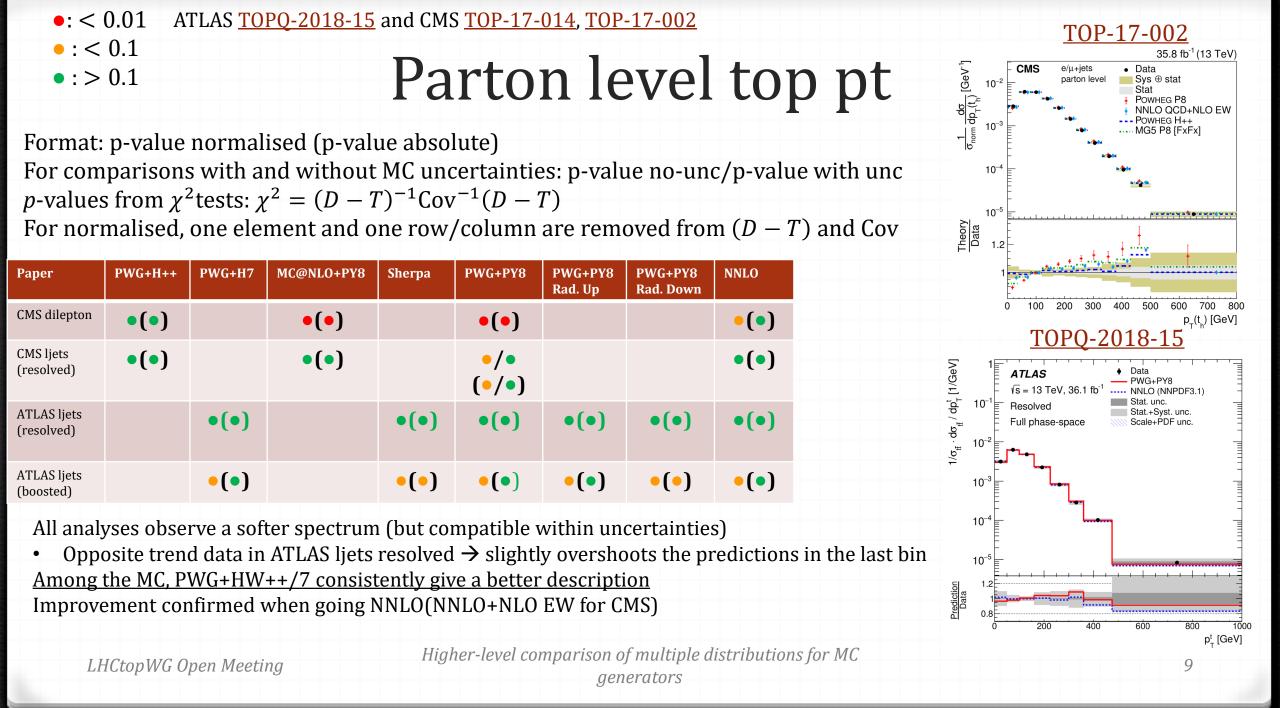
 ATLAS use proxies containing constraints on the choice of the jet permutations only on the W mass in ljets and top and W masses in fullhad

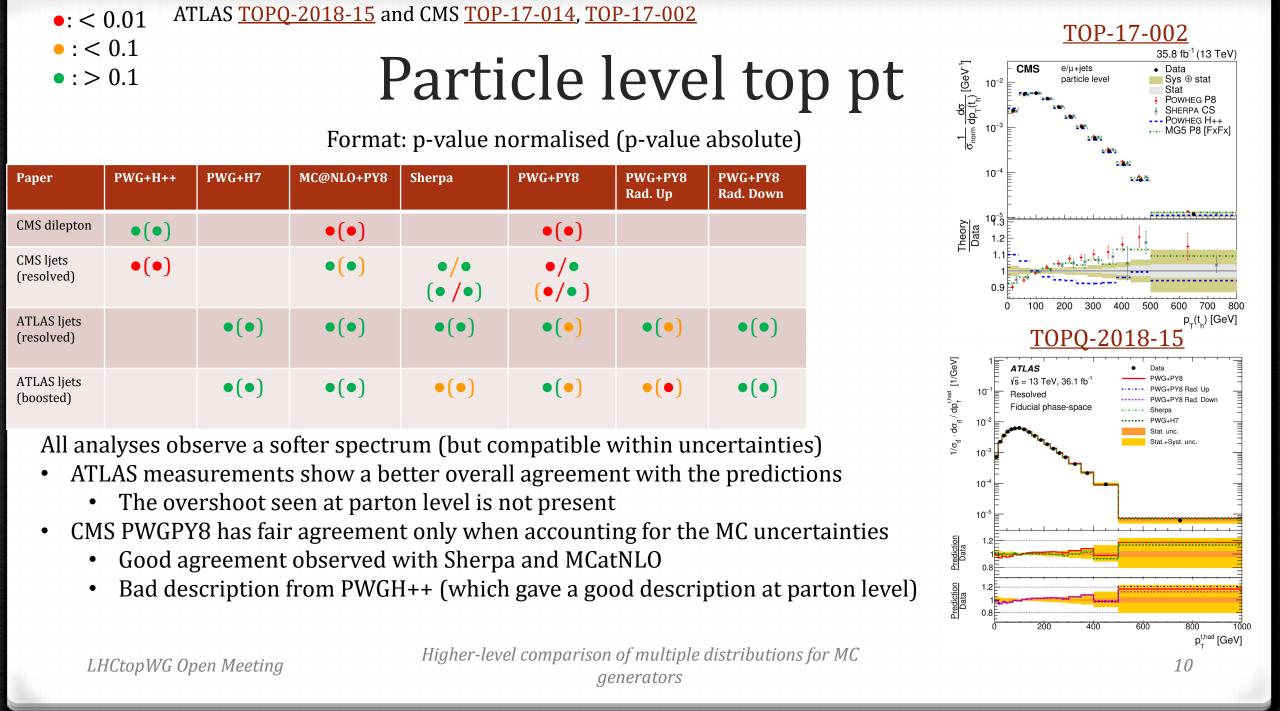
OCMS use proxies using constraints on W and top masses

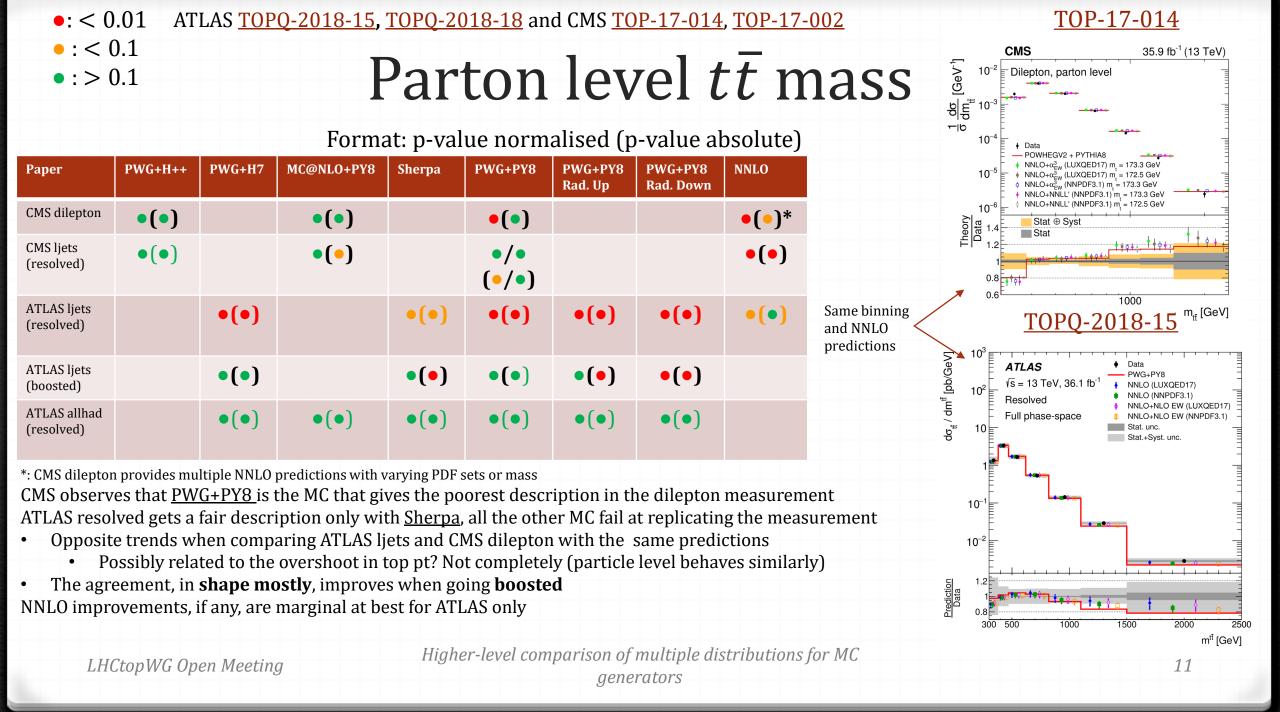
Ø Boosted topology:

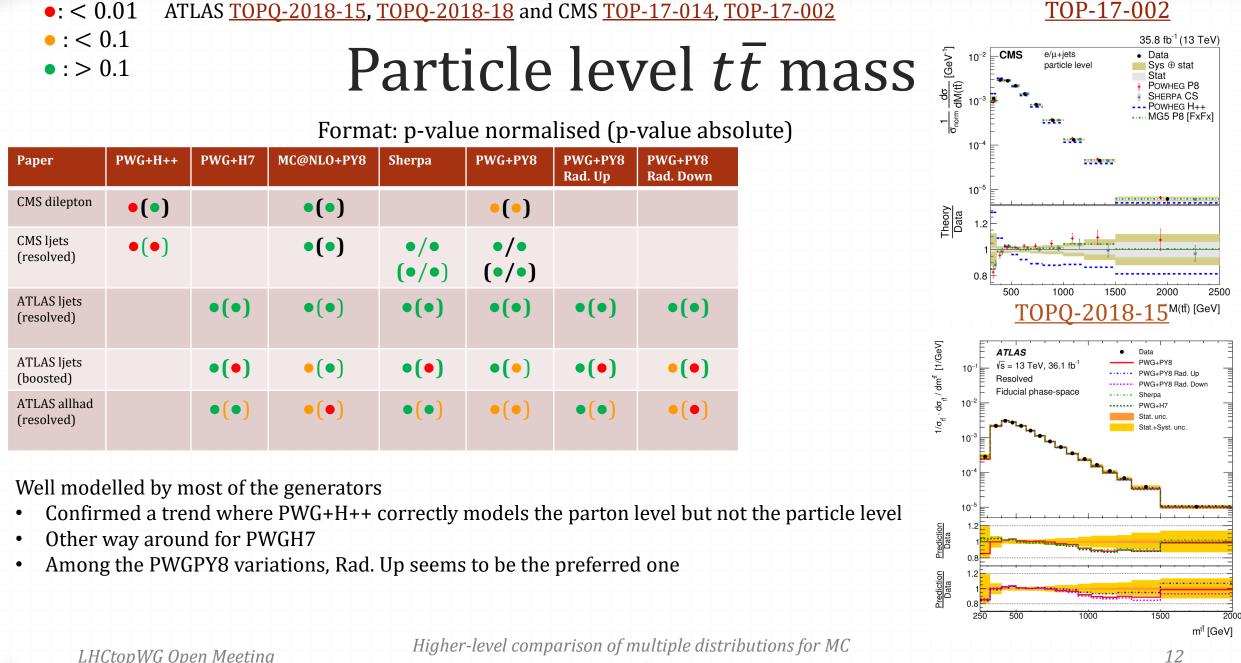
Large-R jets are 'top-tagged' with either cuts mass or other substructure variables

•: < 0.01 •: < 0.1 •: > 0.1


Parton level top pt


Format: p-value normalised (p-value absolute)


For comparisons with and without MC uncertainties: p-value no-unc/p-value with unc


p-values from χ^2 tests: $\chi^2 = (D - T)^{-1} \text{Cov}^{-1} (D - T)$

For normalised, one element and one row/column are removed from (D - T) and Cov

LHCtopWG Open Meeting

generators

•: < 0.01 ATLAS <u>TOPQ-2018-15</u>, <u>TOPQ-2018-18</u> and CMS <u>TOP-17-014</u>, <u>TOP-17-002</u>,

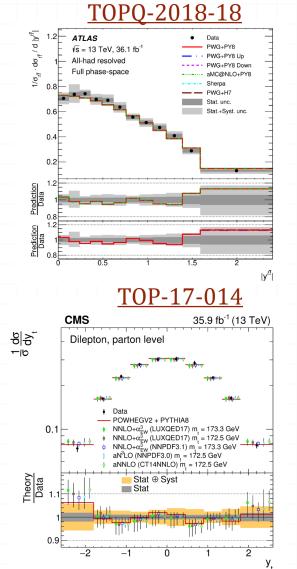
: < 0.1
: > 0.1

Parton level rapidities

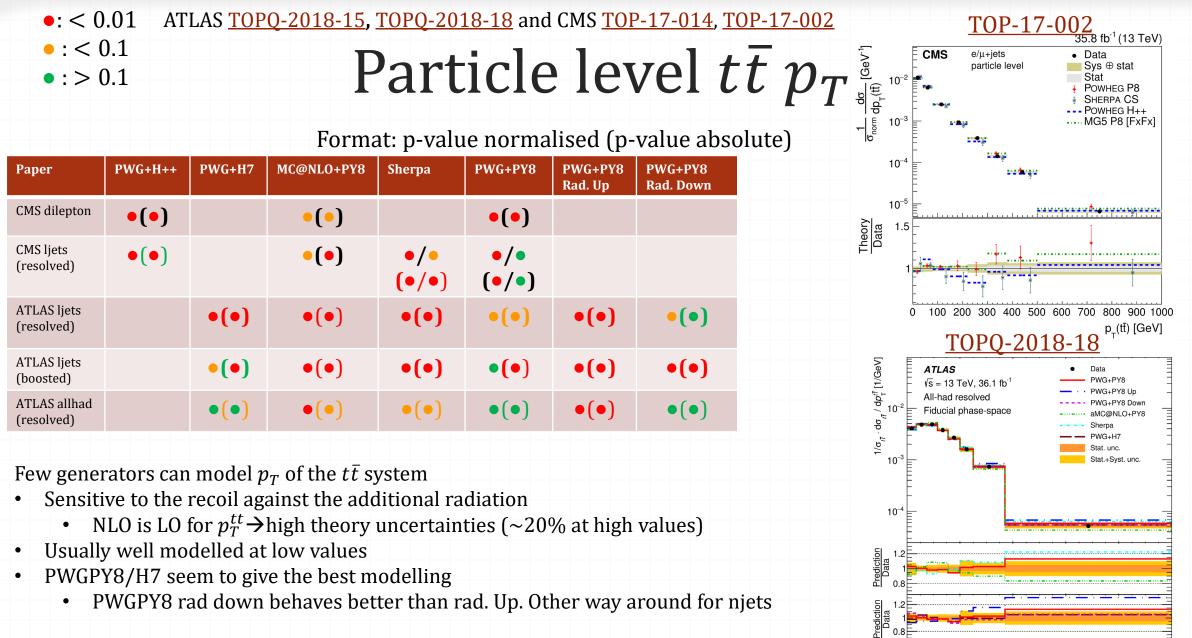
Format: p-value y_{tt} (p-value y_t) for **normalised only** Sherpa Paper PWG+H++ PWG+H7 MC@NLO+PY8 PWG+PY8 PWG+PY8 PWG+PY8 **NNLO** Rad. Up Rad. Down CMS dilepton •(•) •(•) •(•) •(•) CMS ljets •(•) •/• •(•) (resolved) (•/•) ATLAS ljets •(•) •(•) •(•) •(•) •(•) •(•) (resolved) ATLAS allhad (resolved)

The shape differences are usually smaller than the normalization disagreement.

Rapidities generally well modelled by all the predictions


 In ATLAS ljets resolved the rapidity of the system is better modeled than the rapidity of the top

Both ATLAS and CMS measure **slightly** more "central" top pairs and more "forward" tops

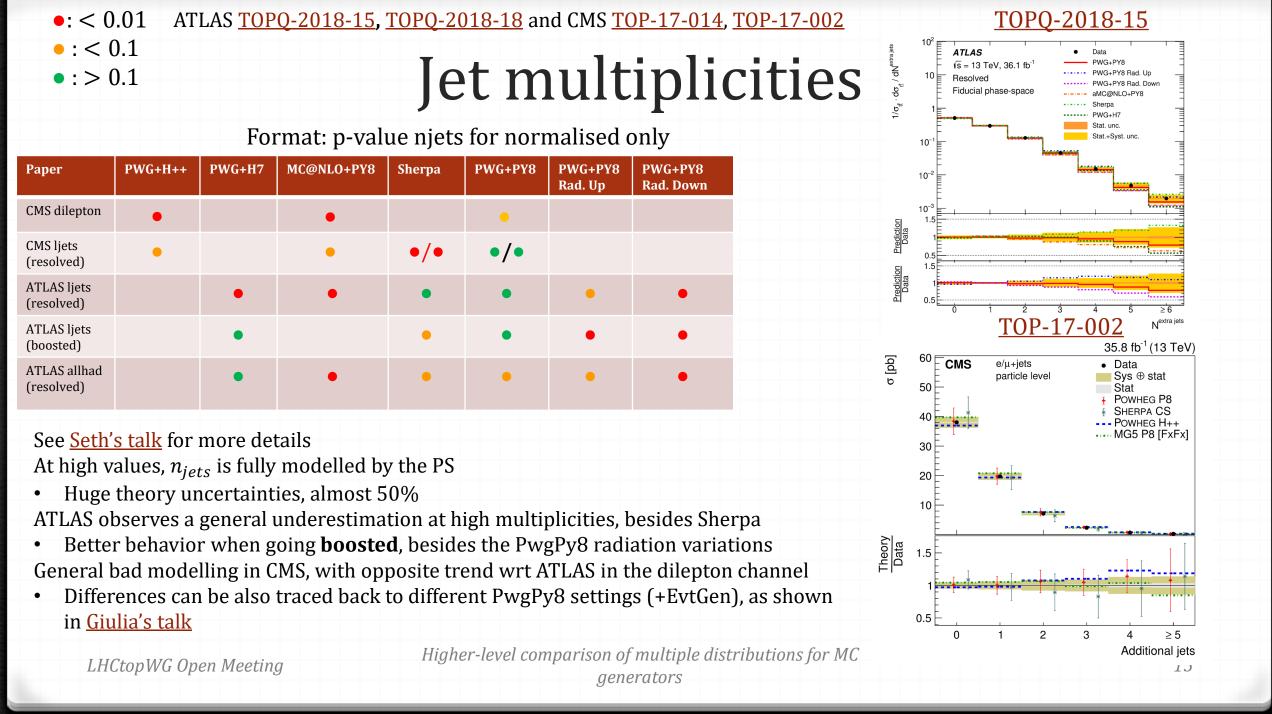

Confirmed also when looking at the rapidities of the leptons

LHCtopWG Open Meeting

Higher-level comparison of multiple distributions for MC generators

13

PWGPY8 rad down behaves better than rad. Up. Other way around for njets


LHCtopWG Open Meeting

Higher-level comparison of multiple distributions for MC generators

400

600

p^{*tī*} [GeV] <u>4</u>

•: < 0.01 ATLAS <u>TOPQ-2018-17</u> and CMS <u>TOP-17-014</u>, <u>TOP-16-014</u>

: < 0.1
: > 0.1

Lepton observables

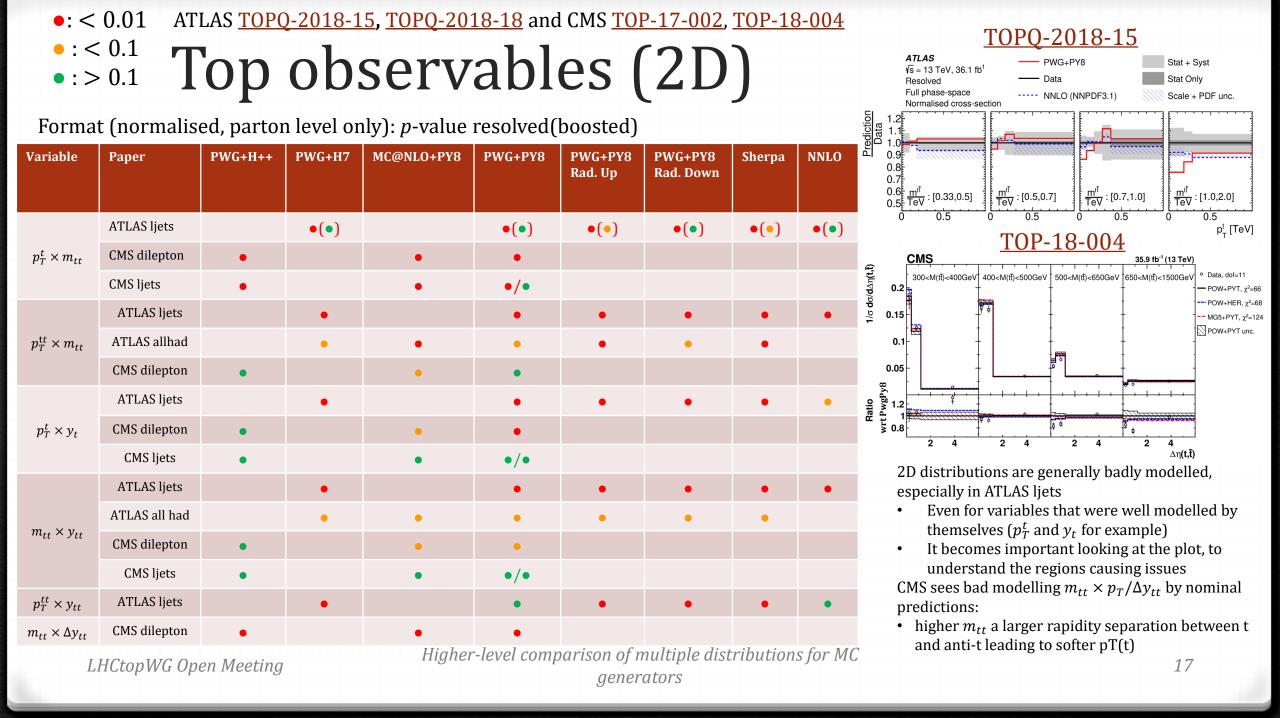
p-values for normalised only

TOPQ-2018-17

Variable	Paper	PWG+H++	PWG+H7	MC@NLO+PY8	PWG+PY8 (top pt rew)	PWG+PY8 Rad. Up	PWG+PY8 Rad. Down	TOP-17-014
	ATLAS dilepton		•	•	•(•)	•	•	CMS 35.9 fb ⁻¹ (13 TeV)
p_T^l	CMS dilepton	•		•	•			Dilepton, particle level 0.95 Powheg+PY8 0.95 Powheg+PY8 0.95 Powheg+PY8 0.95 Powheg+PY8 Powheg+Powheg+Py8 Powheg+Py8 Powheg+Py8 Powheg+Po
	CMS ljets	•		•	•/•			→ POWHEGV2 + HERWIG++ - 평 ······
	ATLAS dilepton		•	•	•(•)	•	•	$\Theta \vdash S$ $\neg \vdash b$ 10^{-3} $\neg =$ 10^{-3} $\neg =$ 10^{-3} $\neg =$ 10^{-3}
η^l	CMS dilepton	•		•	•			0.95 Powheg+PY8 RadDn 0.9 - O Powheg+PY8 RadUp
	CMS ljets	•		•	•/•			10 ⁻⁴
	ATLAS dilepton		•	•	•(•)	•	•	10^{-4} 1.15 $Stat \oplus Syst$ 1.1 $2 1.05$ 1.1 $2 1.05$ $2 1.05$ $2 1.05$ $2 1.05$ $2 1.05$ $2 1.05$ $2 1.05$
p_T^{ll}	CMS dilepton	•		•	•			1.1 Stat 9.95 Powheg+PY8 0.95 0.95 Powheg+PY8 0.95 Powheg+PY8 0.95
	ATLAS dilepton		•	•	•(•)	•	•	0.95 0.95 0.95 0.95 0.95 100 200 300 400 500 600 m_1 [GeV] 0.15 0.95
m _{ll}	CMS dilepton	•		•	•			m _₁ [GeV] ⊇ 1.1
Уш	ATLAS dilepton		•		•(•)	•	•	0.95 • aMC@NL0+PY8 0.95 • aMC@NL0+PY8 CT10
$\Delta \eta_{ll}$	CMS dilepton	•		•	•			No MC can fit 0.9 = avc@wluc.prys actio simultaneously the 8 0.9 = avc@wluc.prys actio 0.85 = avc@wluc.prys HERAPOF2.0 1 50 100 150 200 250 300 Lepton p ¹ ₁ (GeV)
Global χ^2	ATLAS dilepton		•	•	•(•)	•	•	ATLAS spectra

Individual leptons badly modelled by most of the generators

• with the exception of the rapidity measured by CMS dilepton and p_{T} measured in the l+jets channel


Lepton pair rapidity distributions are generally well modelled, while their mass is badly modelled by PWG-based predictions

• Good modelling of p_T^{ll} in contrast with bad modelling of p_T^{tt}

<u>PWG+H++</u> consistently agrees with the data

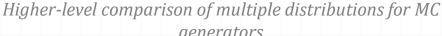
LHCtopWG Open Meeting

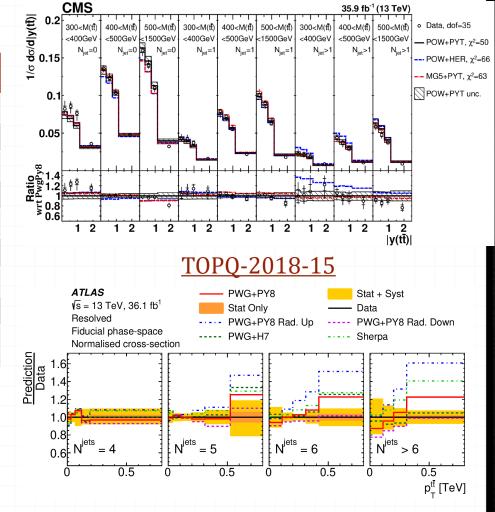
Higher-level comparison of multiple distributions for MC

•: < 0.01 ATLAS TOPO-2018-15, TOPO-2018-18 and CMS TOP-18-004

•: < 0.1 •:>0.1

Additional radiation (2D&3D) TOP-18-004


Format (normalised, particle level only):


- ATLAS: *p*-value resolved(boosted);
- CMS dilepton: *p*-value $N_{i}^{0,1+}(N_{i}^{0,1,2+})$

GI	no unepton	. p value	i jet ("je	et J				
Variable	Paper	PWG+H++	PWG+H7	MC@NLO+PY8	PWG+PY8	PWG+PY8 Rad. Up	PWG+PY8 Rad. Down	Sherpa
n ^t × N	ATLAS ljets		•(•)	•	•(•)	•(•)	•(•)	•(•)
$p_T^t \times N_{jets}$	CMS ljets	•		•	•/•			•/•
	ATLAS ljets		•(•)	•	•(•)	•(•)	•(•)	•(•)
$p_T^{\mathrm{t}t} \times N_{\mathrm{jets}}$	ATLAS allhad		•	•	•	•	•	•
	CMS ljets	•		•	•/•			•/•
	ATLAS ljets		•(•)	•	•(•)	•(•)	•(•)	•(•)
$m_{tt} imes N_{jets}$	ATLAS allhad		•	•	•	•	•	•
	CMS ljets	•		•	•/•			•/•
$m_{tt} imes y_{tt} onumber imes M_{jets}$	CMS dilepton	•(•)		•(•)	•(•)			

No MC can describe $p_T^{tt} \times N_{iets}$, one of the most radiation-sensitive observables

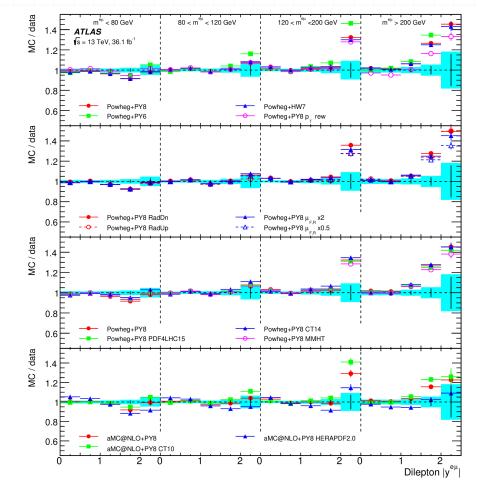
- Strong trends observed in ATLAS in almost all MC in the last bins CMS finds good agreement when only considering to two bins of extra-radiation
- The modelling get worse when splitting the last bin
- In particular <u>PWGHW</u> can't model at all the \geq 2 extrajet region in the dilepton channel, especially at high mass

18

LHCtopWG Open Meeting

generators

•: < 0.01 ATLAS <u>TOPO-2018-17</u>

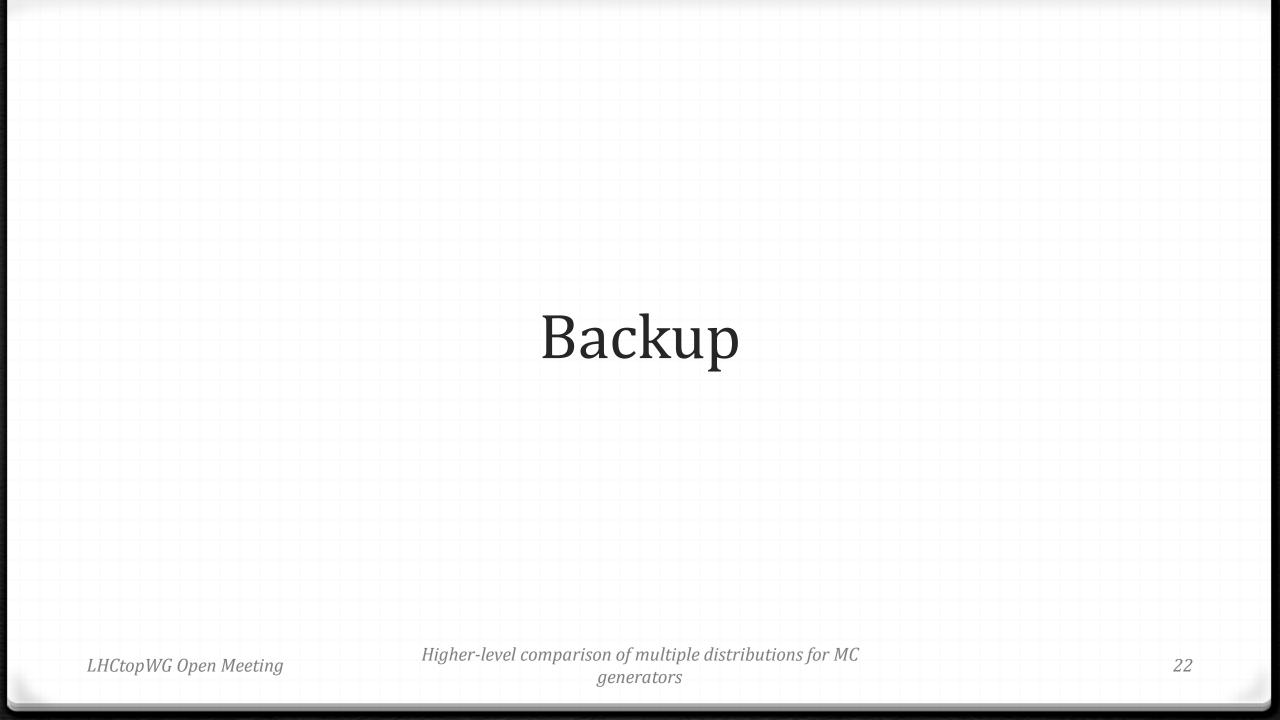

: < 0.1
: > 0.1

Lepton observables (2D)

Variable	PWG+H7	MC@NLO+PY8	PWG+PY8 (top pt rew)	PWG+PY8 Rad. Up	PWG+PY8 Rad. Down
$ \eta^l \times m_{ll}$	•	•	•(•)	•	•
$ y_{ll} \times m_{ll}$	•	•	•(•)	•	•
$ \Delta \phi_l \times m_{ll}$	•	•	•(•)	•	•

The rapidity of the lepton as a function of the dilepton mass is fairly modelled by all the predictions

- In 1D, both were among the worse modelled observables PwgPy8, with different radiation settings, badly models the y_{ll} and $|\Delta \phi_l|$ Most of the predictions predict "more forward" dilepton pairs at high mass
- Other way around for the individual leptons


Summary (1)

- An analysis of quantitative comparisons between several measured differential cross sections and corresponding predictions was presented
 - Particle and parton level spectra, for observables sensitive to different physics effects
- Top production variables $(p_T/m/y \text{ of the top and } t\bar{t} \text{ system})$ at particle and parton-level CMS and ATLAS are in general good agreement with the predictions
 - PWGH++ can describe all the parton level distributions but not the particle-level ones involving radiation
 - Lepton observables are well modelled
 - Confirmed a clear trend of a softer p_T spectrum, but still compatible with the predictions within the uncertainties
 PWG and MC@NLO+PY8 systematically excluded at parton level by CMS dilepton
 - Rapidities generally well modelled, with the data preferring more "central" top pairs and more "forward" tops
 - For ATLAS, 2D distributions of well modelled 1D spectra are not well modelled
- Radiation-sensitive variables show more tensions
 - Best description given by PWG+PY8/H7 and Sherpa (N_{jets} only)
 - Different Pythia radiation variations favoured by different spectra
 - *b*-jets observables well modelled in ATLAS, while CMS finds good agreement only for the pseudorapidities
 - Not presented here (available in backup), <u>nicely presented in Seth's talk</u>

Summary (2)

- O The kinematics of the individual leptons are badly modelled by most of the generators
 - PWG+H++ is the one that gives consistently good agreements
 - Good modelling of p_T^{ll} in contrast with bad modelling of p_T^{tt}
 - No prediction can fit simultaneously all the lepton spectra measured by ATLAS
- Single top (t-channel and Wt, not presented) differential cross section are also measured
 - Measurements are less precise than *tt*, making all MC predictions always somewhat compatible
 - The MC with full treatment of the *tW/tt* interference is preferred by ATLAS data
 - ho Limiting factor for searches and measurements ightarrow important to push on this avenue
- Some tensions noted between ATLAS and CMS, in regions where the measurement uncertainties are larger
 - Interesting for parton level m_{tt} , where ATLAS ljets and CMS dilepton show opposite trends wrt the same NNLO predictions
- Ø Most comparisons are performed without accounting for theory uncertainties
 - Once done, most "not-compatible" comparisons become "compatible"
- Impossible to draw unique conclusions:
 - Different generators disagree/agree on different observables
 - Varying MC setups and analysis strategies make it impossible to make 1-1 comparisons
 - Ve can't even say that NNLO is better than NLO+PS (mass is generally worse modelled by NNLO)

	Higher-level comparison of multiple distributions for MC	
LHCtopWG Open Meeting		
	generators	
	generator 5	

General MC settings

Generator	ATLAS	СМЅ				
Powheg-Box (PWG)	v2 with NNPDF3.0NLO PDF set, h_{damp} =1.5 m_t . $h_{damp} = H_T/2$ for <i>ttbb</i> 4FS	v2 with NNPDF3.0NLO PDF set and the h_{damp} =1.581 m_t				
POWHEL (PWL)	<i>ttbb</i> 4 and 5FS NPDF3.0NLO, $h_{damp} = H_T/2$					
MadGraph5_aMC@NLO (MC@NLO)	V2.2.1, NNPDF3.0NLO	V2.2.2 (FxFx), NNPDF3.0NLO				
Sherpa	V2.2.1, NNPDF2.3LO	V2.2.2 NNPDF3.0NLO				
Sherpa <i>ttbb</i>	V2.2.1 <i>ttbb</i> 4FS NNLO NNPDF3.0 PDF					
Pythia (PY)	Pythia 8.2X using the A14 tune and the NNPDF2.3LO PDF set	Pythia 8.2X using the underlying event tune CUETP8M2T4				
PWG+PY Rad. Up	$\mu_{R/F} = 0.5, h_{damp} = 3m_t$, Var3cUp from the A14 tune					
PWG+PY Rad. down	$\mu_{R/F} = 2$, Var3cUp from the A14 tune					
Herwig (H7.0.4)	7.0.4 with the H7UE MMHT2014 LO					
HERWIG++ (H++)		V2.7.1 using the underlying event tune EE5C				

ATLAS and CMS measurements

 ATLAS: single- and double- differential (2015+2016 data) <i>O</i> Lepton+jets, <u>TOPQ-2018-15</u> <i>O</i> Top and top-pair related variables <i>O</i> Parton and particle level <i>O</i> Resolved and boosted (no overlap, independent datasets) <i>O</i> Standard cut-count-unfold procedure (regularized iterative bayeisian) 	 CMS: up to triple-differential (2016 data) Dilepton, <u>TOP-17-014</u>: Single differential only Parton and particle level Top-related and (particle-level only) lepton- and (b)jet-related variables Tikhonov regularization in Tunfold Lepton+jets, <u>TOP-2016-014</u>: Particle level
 All hadronic resolved, <u>TOPQ-2018-18</u> All hadronic boosted, <u>TOPQ-2016-09</u> Single-differential only Generally high uncertainties → excluded from the comparisons Dilepton, <u>TOPQ-2018-17</u> Simulatenous extraction of cross-section and btagging probability Lepton-related observables Bin-by-bin unfolding tt+HF dilepton&lepton+jets, <u>TOPQ-2017-12</u> Particle level single differential as function of b-jet multiplicity, global event properties and properties of b-jet pairs 	 No top reconstruction: event/W/lepton kinematic variables only Dilepton, <u>TOP-18-004</u> Double and triple differential Parton and particle level (for jet multiplicity) Top related variables and jet multiplicity Lepton+jets, <u>TOP-17-002</u> Single and double differential Iterative Bayesian unfolding Top-related variables at parton and particle level and jet-related at particle level Theory uncertainties accounted for in PWGPY and Sherpa predictions Lepton+jets and all-hadronic boosted <u>TOP-18-013</u> Single differential for top-related variables at parton and particle level Unfolding with simple matrix inversion Doesn't provide chi2 tables (covariances are on HepData) and general
Iterative Bayesian unfolding	 Doesn't provide chi2 tables (covariances are on HepData) and general high uncertainties →excluded from the comparisons

Higher-level comparison of multiple distributions for MC

•: < 0.01 ATLAS TOPO-2017-12 and CMS TOP-17-014

• : < 0.1

•:>0.1

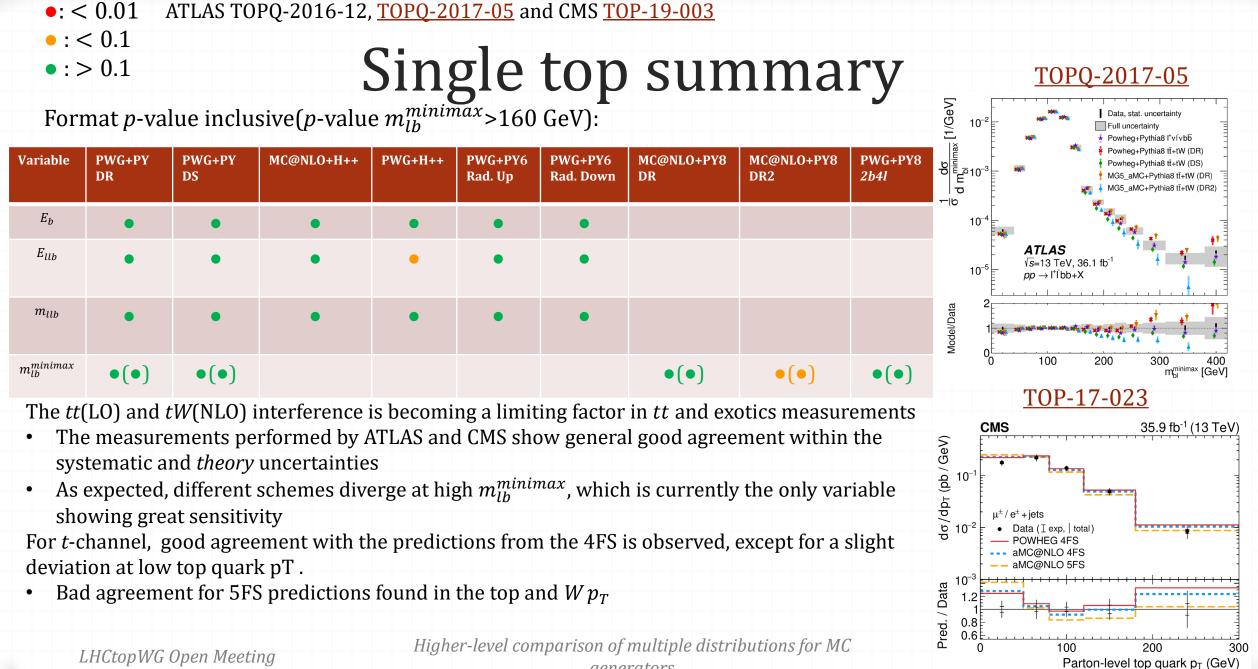
b-jets observables

Format (normalised only):

- ATLAS: for N_{bjets} (dilepton only) *p*-value *tt* (*p*-value *tt* + \geq 1bjet), otherwise *p*-value *tt* + \geq 1bjet dilepton (*p*-value *tt* + \geq 2bjet ljets)
- CMS: *p*-value *tt*

														-
Variable	Paper	PWG+H++	PWG+H7	MC@NLO+PY8	PWG+PY8	PWG+PY8 Rad. Up	PWG+PY8 Rad. Down	Sherpa	Sherpa ttbb	PWL+PY8 4FS	PWL+PY8 5FS	PWG+PY8 ttbb	$ \begin{array}{c} \overset{(\overline{w})}{\sim} & 10 \\ \overset{(\overline{w})}{\sim} & 10 \\ \overset{(\overline{v})}{\sim} & 1 \end{array} \begin{array}{c} \textbf{ATLAS} & e\mu \text{ channel} \\ \overbrace{Vs=13 \text{ TeV}}, 36.1 \text{ fb}^{-1} & \ge 2 \text{ b-jets} \\ \overset{(\overline{v})}{\sim} & 0 \text{ Data } - t\overline{t}X (X = H, V) \\ & & \text{Powheg}+Pythia8 \end{array} $	1
N _{bjets}	ATLAS		•(•)	•(•)	•(•)	(•)	(•)	•(•)	•(•)	(•)	(•)	(•)	10 ⁻¹ → MG5_aMC@NLO+Pythia8 -···· Powheg+Herwig7 ····· Sherpa 2.2 tī Syst.	
h	ATLAS		•(•)	•(•)	•(•)	•(•)	•(•)	•(•)	•(•)	•(•)	•(•)	•(•)	Stat.	-
$p_T^{b_1}$	CMS	•		•	•								10 ⁻²	
b ₂	ATLAS		•(•)	•(•)	•(•)	•(•)	•(•)	•(•)	•(•)	•(•)	•(•)	•(•)	10 ⁻³]
$p_T^{b_2}$	CMS	•		•	•									
η^{b_1}	CMS	•		•	•								U.5 1.5 1.5 Powheg+Pythia8 (RadHi) Powheg+Pythia8 (RadLo)	1
$p_T^{b_3}$	ATLAS		•(•)	•(•)	•(•)	•(•)	•(•)	•(•)	•(•)	•(•)	•(•)	•(•)	$ \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{1}{0.5!} - Powheg+Pythia8 $	
See <u>Set</u> l	<mark>ı's talk</mark>	for mor	e details	5									0.0	-
,		-		nt importai d in the <i>tt</i> +		•		U					$ \begin{array}{c} $	1

- Multiplicity well modelled in the $tt + \ge 1$ bjet subspace, well modelled only by **Sherpa** in the total fiducial space
- $p_{T}^{b_{1/2/3/4}}$ well modelled by all the ATLAS generators, while no generator considered by CMS well describe the data
 - Different phase spaces (CMS is inclusive in nbjets while ATLAS results are for $\geq 1/2$ additional bjets)
 - Agreement for CMS data improves for the pseudorapidity


Higher-level comparison of multiple distributions for MC

N_{b-je*}

Single top results

Fewer results published on differential cross sections for single top production

	ATLAS	CMS
	Measurements	
tW	TOPQ-2016-12, particle level	TOP-19-003 (no χ^2 available), particle level
<i>t</i> -channel		TOP-17-023 (no χ^2 available), parton/particle level
tW+tt	TOPQ-2017-05, particle level	
	SIMULATIONS	
Powheg-Box (PWG) <i>tW</i>	v1, CT10 PDF, DR and DS	v1, NNPDF3.0, DR and DS
Powheg-Box (PWG) <i>t</i> -channel		v2 with NNPDF3.0NLO PDF set, 4FS
Pythia6 (PY6)	v6.428, CTEQ6L1 PDF, Perugia 2012 (P2012) tune and higher/lower rad.	
Pythia8 (PY8)	v8.186 A14 tune, NNPDF2.3LO PDF	V8.205
MadGraph5_aMC@NLO (MC@NLO)	V2.2.2, NNPDF3.0NLO, DR/DR2	V2.2.2, NNPDF3.0NLO, DR, FxFx. 4FS and 5FS
Herwig++	UE-EE-5 tune	
bb4l	Powheg-Box-Res with Pythia 8.226	
LHCtopWG Open Meeting	Higher-level comparison of multiple distributions for M generators	C 26

LHCtopWG Open Meeting

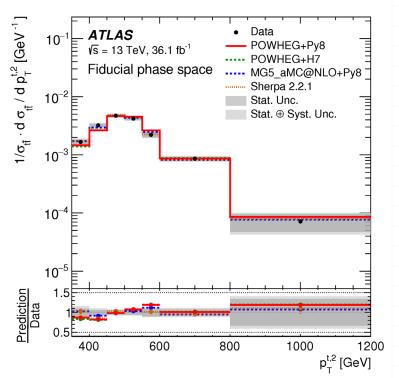
generators

Top production observables: particle level definitons

At particle level, proxies are used to access the kinematic of the top quarks

- O Differences in the data/MC agreement can be expected among measurements, since the the fiducial phase spaces and/or proxy definitions can enhance sensibilities to specific aspects of the modelling
- ATLAS ljets: PseudoTop and leading top-tagged large-R jet (mass cuts and angular seperations)
- OCMS ljets: permutation that minimize the square sum of the reconstructed nominal mass differences (hadronic and leptonic top, hadronic W)
- OCMS all had boosted: the two leading large-R jets (with a mass window cut) are the two top proxies
- CMS l+jets boosted: leading top-tagged large-R jet (mass cuts)
- OCMS dilepton: *lv* pairs with mass closer to the *W* mass and *Wb* pairs with mass closer to the top mass

LHCtopWG Open Meeting


Higher-level comparison of multiple distributions for MC

•: < 0.05 ATLAS <u>TOPQ-2018-15</u>, <u>TOPQ-2016-09</u>, <u>TOPQ-2018-18</u> and CMS <u>TOP-17-014</u>, <u>TOP-18-013</u>

Particle-level $p_T^{t_{1/2}}$

Forr	nat: p-val	ue leadin	ig (p-value su	ubleading	g) for nor	malised	cross secti	on
Paper	PWG+H++	PWG+H7	MC@NLO+PY8	Sherpa	PWG+PY8	PWG+PY8 Rad. Up	PWG+PY8 Rad. Down	
CMS dilepton	•(•)		•(•)		•(•)			
ATLAS ljets (resolved)		•(•)		•(•)	•(•)	•(•)	•(•)	
ATLAS ljets (boosted)		•(•)		•(•)	•(•)	•(•)	•(•)	
ATLAS allhad (boosted)			•(•)	•(•)	•(•)	•(•)	•(•)	
ATLAS allhad (resolved)		•(•)	•(•)	•(•)	•(•)	•(•)	•(•)	

TOPQ-2016-09

CMS dilepton show bad agreement with the predictions, with the subleading somewhat better described than the leading

All the considered MC have good agreement with ATLAS ljets and full had boosted

- In ljets, the subleading is better modelled than the leading
- Other way around in the all had boosted
- In all had resolved, Sherpa shows an excellent agreement with the subleading and terrible with the leading

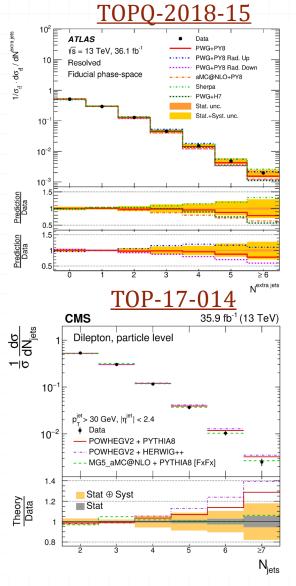
Higher-level comparison of multiple distributions for MC

• : < 0.5

•:>0.5

generators

•: < 0.01 ATLAS <u>TOPQ-2018-15</u>, <u>TOPQ-2018-18</u> and CMS <u>TOP-17-014</u>, <u>TOP-17-002</u>

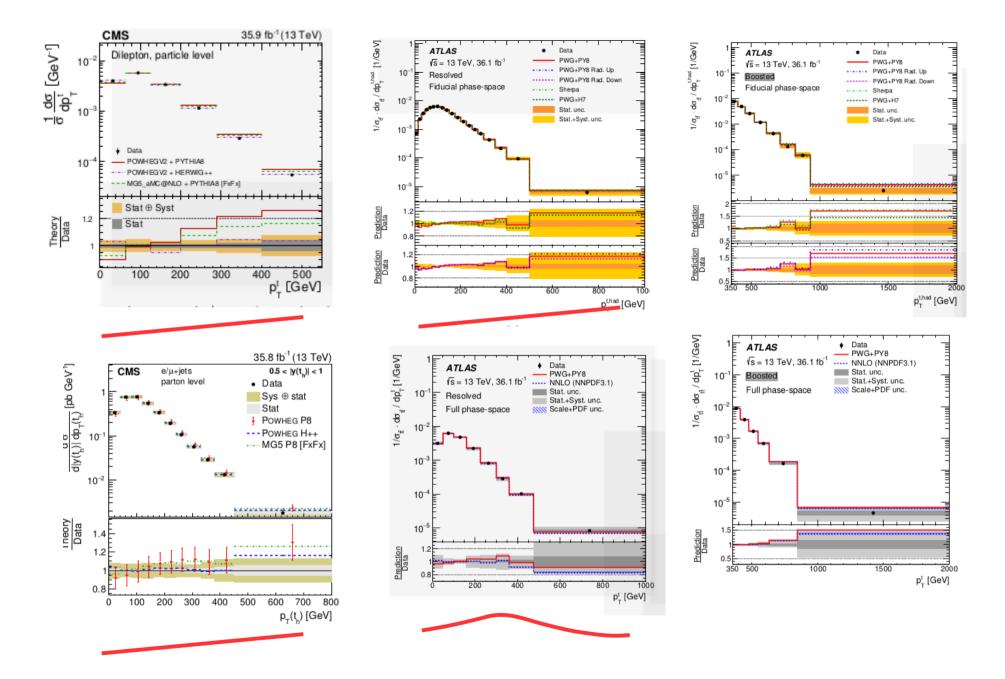

Jet and subjets multiplicities

		Foi	rmat: p-val	ue njets	(p-value	e subjets	s) for norm	nalised or
Paper	PWG+H++	PWG+H7	MC@NLO+PY8	Sherpa	PWG+PY8	PWG+PY8 Rad. Up	PWG+PY8 Rad. Down	
CMS dilepton	•		•		•			
CMS ljets (resolved)	•		•	•/•	•/•			
ATLAS ljets (resolved)		•	•(•)	•	•	•	•	
ATLAS ljets (boosted)		•(•)		•(•)	•(•)	•(•)	•(•)	
ATLAS allhad (resolved)		•	•	•	•	•	•	

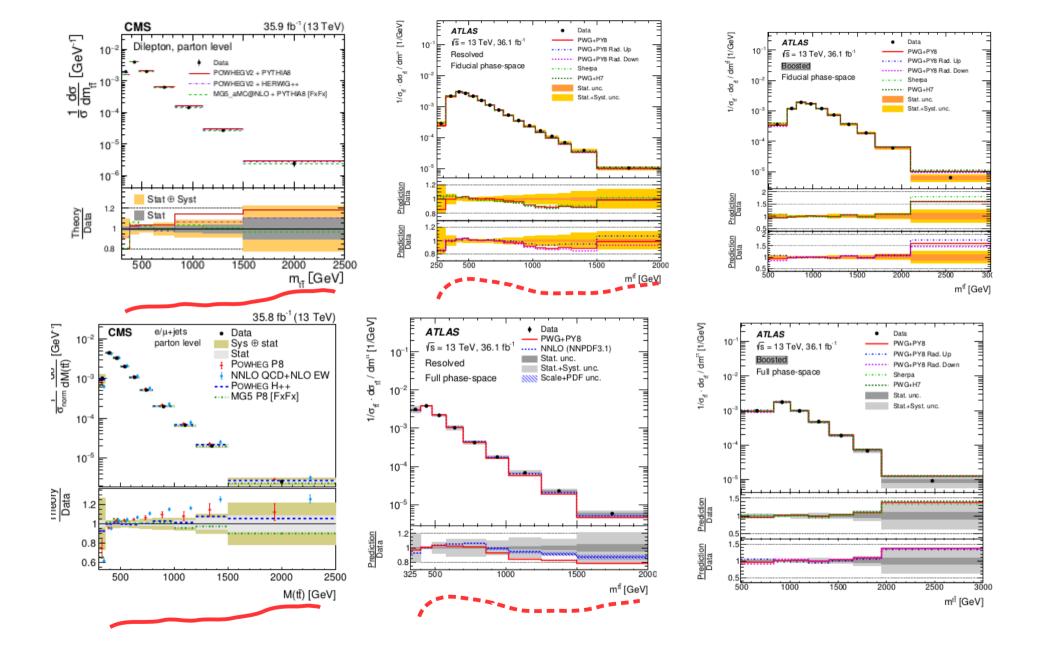
In ATLAS, observed a general underestimation at high multiplicities, besides Sherpa

• PWGPY rad. variations do a bad job at modelling the multiplicity in the boosted topology but give good modelling for the subjets

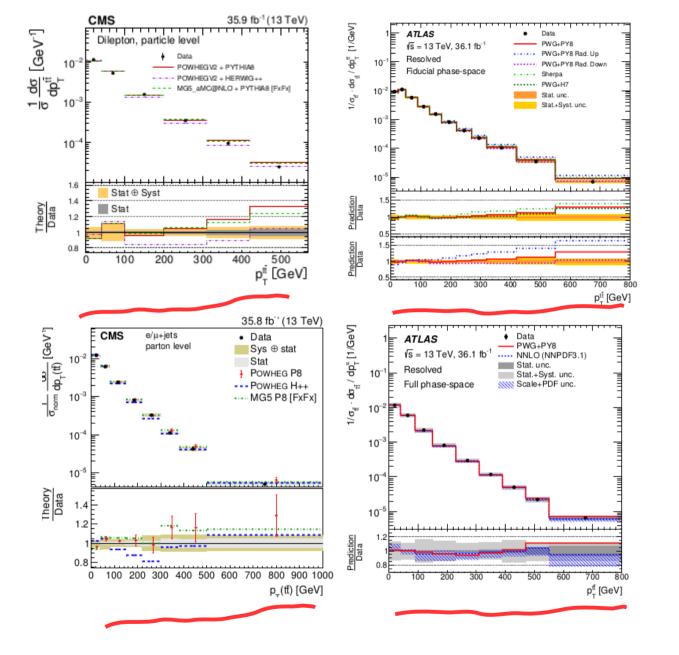
General bad modelling in CMS, with opposite trend wrt ATLAS in the dilepton channel


30

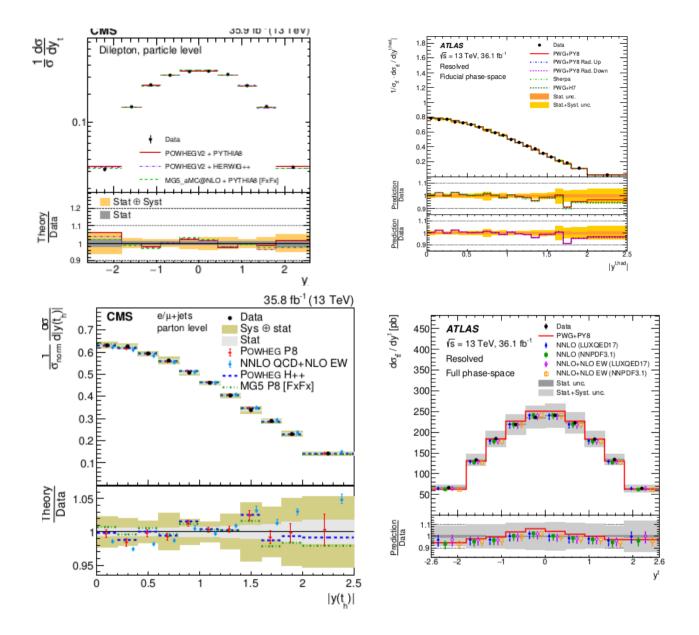
LHCtopWG Open Meeting


•: < 0.1

•:>0.1


Higher-level comparison of multiple distributions for MC generators

Overall positive slope Theory/Data vs pT(t), a bit more flat around 500 GeV



Both ATLAS and CMS see too small prediction near threshold, then positive slope in CMS throughout and ATLAS turning over around 600 GeV to negative slope.

 $d\sigma_{eff} / dp_{T}^{\pi} [1/GeV]$ ATLAS Data PWG+PY8 √s = 13 TeV, 36.1 fb PWG+PY8 Rad, Up 10-1 Boosted PWG+PY8 Rad. Dowr Fiducial phase-space Sherpa ----- PWG+H7 10 1/o_t . Stat. unc. Stat.+Syst. unc. 10 10 10 Prediction Data Prediction Data -----0.5 600 400 800 1000 p[#]_T [GeV]

PWG+PYT trend is to slighly overshoot at high pT(tt) above ~400 GeV.

Atlas see data slightly more forward/backward distributed than PWG+PYT, in CMS no clear shape discrepancies visible.