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A parton-shower Monte Carlo is not a fixed-order prediction
e It is much more powerfull
e And at the same time much more ambiguous!




G Inivewsivir The art (or ambiguities) of constructing a PS MC

DRESDEN

» A parton-shower Monte Carlo is not a fixed-order prediction
e It is much more powerfull
e And at the same time much more ambiguous!

> Typical sources of trettbte ambiguities:

e Hard scattering
»  Limited perturbative accuracy @
= ambiguity in scale and PDF choices
»  Narrow-width approximation instead of full offshell WbWb
- Diagram overlap between tt and tWb
= ambiguity in overlap removal
- Spin correlations between production and decay MEs in the chain
= ambiguity in polarisation treatment
©  particularly tricky for tau decays, as they can be hadronic!
»  NLO EW Combination of NLO QCD and NLO EW corrections
= ambiguity in combination between NLO QCD and NLO EW
»  Multi-leg merging of ME & PS
= ambiguity in transition
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https://arxiv.org/pdf/1606.08753
https://arxiv.org/pdf/2005.12128
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DRESDEN

» A parton-shower Monte Carlo is not a fixed-order prediction
e It is much more powerfull
e And at the same time much more ambiguous!

> Typical sources of trettbte ambiguities:

e Parton shower: QCD corrections with three major ambiguities
»  Functional form of splitting kernels
(approximation of real-emission MEs)
= ambiguity which (finite) pieces to keep
»  Kinematics recoil
(how to construct 1—2 splittings with m=0 away from collinear limit)
= ambiguity where to distribute recoil for momentum conservation
»  Evolution variable
(direction in which logs are resummed)
= ambiguity what “from hard to soft” means exactly
»  Additionally many ambiguities for treatment of quark masses in the above!
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https://arxiv.org/pdf/0912.3501.pdf
https://arxiv.org/pdf/1606.08753
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» A parton-shower Monte Carlo is not a fixed-order prediction
e It is much more powerfull
e And at the same time much more ambiguous!

> Typical sources of trettbte ambiguities:

* Hadronisation: Soft QCD modelling without “first principles”
»  B-hadron production from partons
= ambiguity of flavours formed (e.g. meson or baryon, B* or B, ...)

* Hadron decays: Effective field theories for heavy-flavour decays
»  B-hadron decays
= ambiguity of decay matrix elements (form factor models)
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A parton-shower Monte Carlo is not a fixed-order prediction
e It is much more powerfull
e And at the same time much more ambiguous!
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G Inivewsivir Top pair production
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https://arxiv.org/pdf/1402.6293
https://indico.cern.ch/event/960331/contributions/4096415/attachments/2149498/3623844/Romano%20-%20Higher-level%20comparison%20of%20multiple%20distributions%20for%20MC%20generators.pdf
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2020-023/
https://arxiv.org/abs/1803.00950
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Single- and 4-top production

Single-top production [1711.02568]
¢ NLO+PS setup with OpenLoops virtual MEs
* For t-channel, s-channel, tW using diagram removal approach
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4-top production

¢ NLO+PS samples with OpenLoops virtual MEs
* Recent ATLAS comparisons with aMC@NLO

SdOOINAd QO+ VdHdaHS

s-ch. (t+1)

tW-ch. (t+1)

pp i tj /pp — tW @ 8 TeV

f
ATLAS z
i T
H =
_i SHERPA é
i =
| — s ¢
. 1<}
ATLAS |Z
SHERPA .
oMs N
Hyrr BPDF W ag
0 10 20 30
Tior [PD]

/

*  WIP: include NLO EW (and subleading trees) through
EWyvirt mechanism

[ATL-PHYS-PUB-2020-024]
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https://arxiv.org/pdf/1711.02568.pdf
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2020-024/
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- B contributions
: il »  detailed studies ongoing to compare to fixed-order literature
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2020-024/
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»  4FS NLO+PS setup for ttbb with massive b-quarks in 2—4 matrix element

s S N

t <O

Final state g—bb dominant No initial state b in MEs
» massive b’s — no (jet) cuts! » 4FS PDFs
»  collinear g—bb produced in ME » IS g—bbin ME

»  Matched to parton shower for

additional emissions /

*  “double-splitting” contribution
becomes relevant!
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https://arxiv.org/abs/1309.5912
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https://arxiv.org/abs/1309.5912
https://indico.cern.ch/event/960331/contributions/4093633/attachments/2148564/3622043/ttbb_Studies_ATLAS_CMS_AndreaKnue.pdf
https://indico.cern.ch/event/964993/contributions/4075701/attachments/2129120/3585126/ttbb-status-23oct20.pdf

G Inivewsivir Recent updates: HF shower evolution schemes
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»  New schemes for evolution variable in HF splittings a8
e CSS_EVOLUTION_SCHEME=3 improves g—bb splitting :
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2020-050/
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Recent updates: decay showering in Sherpa 2.2.x

Example of impact from shower splitting functions
e Sherpa 2.2.5 contained bugfix for showering in coloured decays
based on developments in [1709.08615]
* bugfix contained wrong definition of mass term

in shower splitting function

-

* Large impact on fragmentation function .
* Details in -
https://gitlab.com/sherpa-team/sherpa/-/issues/176
First found in Sherpa 2.2.6 ATLAS validation, fixed in Sherpa 2.2.7:
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https://arxiv.org/pdf/1709.08615v3.pdf
https://gitlab.com/sherpa-team/sherpa/-/issues/176
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Recent updates: decay showering in Sherpa 2.2.x

Example of impact from shower splitting functions
e Sherpa 2.2.5 contained bugfix for showering in coloured decays
based on developments in [1709.08615]
* bugfix contained wrong definition of ma
in shower splitting function
* Large impact on fragmentation function

* Details in

SS term

-

https://gitlab.com/sherpa-team/sherpa/-/issues/176
First found in Sherpa 2.2.6 ATLAS validation, fixed in Sherpa 2.2.7:
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https://arxiv.org/pdf/1709.08615v3.pdf
https://gitlab.com/sherpa-team/sherpa/-/issues/176
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: : tt+0,]j@NLO+2,3j@LO ative Weight Fracti
»  Recent efforts to find physics compromises © © ReahOE Mk
hich red . ioht f : ______Defaut | 2_4;8_(7(i _______
wihich reduce negatlve Welg t fraction s Leading Colour Mode 18.7%
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. . 5 sl K factoi fr . 6%
to ensure thSlCS is unchanged local K-factor from 5010 12.6%
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but careful with sensitive observables,/! [1306.2703] - . 9 I oo rrera e vy e
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»  Subleading effect: shower veto on H-events !
* basic idea similar to part of MC@NLO A-matching 2 % :
* natural within merged sample — no counter terms/folding necessary e e oy
pr (GeV
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https://cds.cern.ch/record/2715727?ln=en
https://arxiv.org/abs/2002.12716
https://arxiv.org/pdf/1306.2703.pdf

G Inivewsivir Recent updates: Phase space biasing
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Rel. stat. unc.

»  Experiments often slice samples (e.g. in p.) to populate non-bulk regions

»  Alternative: phase-space biasing of (otherwise) unweighted evts
*  (Re-)Implemented in Sherpa 2.2.8 in two variants (demonstrated here in Z+jets):
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https://gitlab.com/sherpa-team/sherpa/-/issues/269
https://gitlab.com/sherpa-team/sherpa/-/issues/3

UNVERSITAT Recent updates: Spin correlations for taus from tops
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What are spin correlations? Soosh e =F
§ 0.45 Correlated decays fug)
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Spin correlations for top and W decays were always 0'2;_{;,“;H.mmpm;m.i

fully taken into account in Sherpa ﬂw L alln ;
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For taus produced in W decays it was more difficult . o a2 B 2 Wi

—— Ref E
—+— 2.2.9 w/ special 7 SC |
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* separate decay chains, because taus decay hadronically
»  spin correlation algorithm only works recursively
* dedicated algorithm in Sherpa >=2.2.9 recovers

1/N dN/dx,

polarisation of taus produced in hard decays
» T — zvenergy fraction correctly reproduced

»  important for analyses:
7 — lepton angular correlations correct
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https://gitlab.com/sherpa-team/sherpa/-/merge_requests/296
https://arxiv.org/abs/1412.6478

TR RN e Conclusions
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»  MC event generators are powerful but ambiguous
* Even more so with complex features like NLO multi-leg merging or EW corrections

— Requires careful assessment of systematic uncertainties

»  Sherpa is available for wide variety of top physics with state-of-the-art precision

¢ Many recent features particularly for LHC top production processes.

& '
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Sherpas and tops go together quite naturally :)
Thanks for your attention!
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