DIFFRACTIVE TOP PHYSICS

• The Aim: <u>To discover semi-elastic production of tt and</u> <u>other SM processes</u>.

University of Glasgow

THE ROYAL

- ROYAL SOCIETY University of Glasgow
- Elastic collisions are where <u>at least one</u> proton remains intact.
- Different processes that can contribute to this:

- Elastic collisions are where <u>at least one</u> proton remain intact.
- Different processes that can contribute to this:

Diffractive Events

• Diffractive means that "QCD" is the dominant force involved.

University of Glasgow

THE

ROYAL

- Elastic collisions are where <u>at least one</u> proton remain intact.
- Different processes that can contribute to this:
 - Diffractive Events
 - Photo-induced Events

• Photo-induced events are the dominant process.

Jniversity

of Glasgow

THE

ROYAL

- Elastic collisions are where <u>at least one</u> proton remain intact.
- Different processes that can contribute to this:
 - Diffractive Events
 - Photo-induced Events
- Why are they interesting?

Jniversity

of Glasgow

THE

ROYAL

- Elastic collisions are where <u>at least one</u> proton remain intact.
- Different processes that can contribute to this:
 - Diffractive Events
 - Photo-induced Events

• Why are they interesting?

 Total cross-sections have ~100pb contribution from events containing Pomerons/Photons from protons (~6pb from elastic).

This is contained in the gluon PDF but relies on indirect measurements to constrain.

THE

ROYAL

SOCIETY

Jniversity

LHCTopWG

- Elastic collisions are where <u>at least one</u> proton remain intact.
- Different processes that can contribute to this:

Diffractive Events

Photo-induced Events

• Why are they interesting?

 Forward protons provide unique access to the initial state. In the most extreme case, once can probe the tt mass threshold at lepton-collider precision (without ISR uncertainties).

THE

ROYAL

SOCIETY

niversity

- Elastic collisions are where <u>at least one</u> proton remain intact.
- Different processes that can contribute to this:

Diffractive Events

Photo-induced Events

• Why are they interesting?

3. They have the potential to probe the top-gamma coupling at higher precision than tqγ and ttγ and to search for BSM contributions to FCNC(t→u/c) via photons.

THE

ROYAL

SOCIETY

Jniversity

of Glasgow

arXiv:2008.04249

Inelastic Background

- THE ROYAL SOCIETY University of Glasgow
- Cross-section for inelastic tt production is many orders of magnitude higher than for (semi)elastic tt.
- How can we suppress it?

By "tagging" the intact forward proton

Forward Proton Tags

University of Glasgow

ROYAL SOCIETY

Forward Roman Pots

• ATLAS AFP and TOTEM (CMS) positioned on Roman Pots at ~200m

- Horizontal stations are the most relevant for low β* (standard runs).
- Vertical stations (e.g. ATLAS ALFA) use high β* runs to measure total cross-section.

$$\sigma_{in}(t\bar{t}) = \frac{N_{events}}{\mathscr{L} \cdot A_{AFP} \cdot A_{central} \cdot \epsilon_{ff} \cdot S_p}$$

$$\begin{aligned} \mathscr{L} &= \text{integrated luminosity} \\ A_{AFP} &= \text{AFP acceptance} \\ A_{central} &= \text{central ATLAS acceptance} \\ \epsilon_{ff} &= \text{selection efficiency} \\ S_p &= \text{survival probability of the proton} \end{aligned}$$

AFP acceptance

beam distance limit

1.5

Elastic proton p_T [GeV]

2.0

0.40

0.35

0.30

0.25 0.20 € 0.20 0.15

0.10

0.05

0.00

0.0

0.5

1.0

0.00

0.0

0.5

1.0

THE

ROYAL

beam distance limit

1.5

Elastic proton p_T [GeV]

2.0

2.5

SOCIETY

• The AFP position and collimator position strongly effect the acceptance of the AFP detectors for ttr.

0.0

3.0

- Photon processes 30% Acceptance
- Pomeron processes 20% Acceptance

2.5

University of Glasgow

0.0

3.0

Integrated Luminosity

- High pileup saturates the forward detectors with protons (timing detectors only help for fully elastic).
- Low pileup data doesn't have this problem (but lower integrated lumi).

THE

ROYAL

SOCIETY

Mean Number of Interactions per Crossing

- LHC delivered ~350pb⁻¹ of low μ data (with standard β^*).
- 145pb⁻¹ of this recorded by ATLAS AFP.

University of Glasgow

- Two ways to model Pomerons:
 As resolved objects (with their own PDFs, based on HERA data)
 As a "peturbative" ladder of gluons (Durham model, only for high scales)
- Photons are modelled with a simple photon flux (pretty common across all MC generators).
- Matrix Elements only available at LO QCD and QED for these processes.
 - Not likely to improve in the short term, need to use these measurements to increase interest!
- All generators using resolved PDF approach for pomerons for hard diffraction.

Jniversity

ROYAL

Numbers from <u>arxiv (proposal paper)</u>

Generator Setting	$\sigma_{(p\mathbb{P}\to t\bar{t})} \ [\mathrm{pb}]$	$\sigma_{(\gamma p \to t \bar{t})} \ [\text{pb}]$	$\sigma_{(\gamma \mathbb{P} o t \bar{t})}$ [pb]	$\sigma_{(\mathbb{PP} o t\bar{t})}$ [pb]	$\sigma_{(\gamma\gamma o t \bar{t})} \ [\mathrm{pb}]$
SuperChic					
(sfaci = false)	_	_	_	$1.73(1)\cdot 10^{-3}$	$2.77(2) \cdot 10^{-4}$
MadGraph	_	1.23	_	—	$3.33 \cdot 10^{-4}$
PYTHIA (MPI: unchecked)	90.5(1)	1.45	$1.26(6) \cdot 10^{-1}$	-	$4.56(2) \cdot 10^{-4}$
FPMC[7]	_	_	$5.2 \cdot 10^{-2}$	$2.84 \cdot 10^{-2}$	$3.4 \cdot 10^{-4}$

- **Pythia:** Can model all processes except fully diffractive.
- MadGraph: Anything with photons, nothing with Pomerons.
- **SuperChic:** Central exclusive only (photons or Pomerons).
- **FPMC**: Anything fully elastic (not just central exclusive).
 - No one generator can do everything!
 - \implies All tt ME are at LO precision only.

Proton Survival Probability

Proton Survival Probability

University of Glasgow

THE ROYAL

SOCIETY

Jay Howarth

Proton Survival Probability

р

р

THE

ROYAL SOCIETY University of Glasgow

Numbers from <u>arxiv (proposal paper)</u>

Generator Setting	$\sigma_{(p\mathbb{P} \to t\bar{t})} \ [\mathrm{pb}]$	$\sigma_{(\gamma p \to t \bar{t})} \ [\text{pb}]$	$\sigma_{(\gamma \mathbb{P} o t \bar{t})}$ [pb]	$\sigma_{(\mathbb{PP} \to t\bar{t})} \ [\mathrm{pb}]$	$\sigma_{(\gamma\gamma \to t\bar{t})} \ [\mathrm{pb}]$
SuperChic (isurv $= 1$)	_	_	_	$1.22(1)\cdot 10^{-5}$	$2.05(2)\cdot 10^{-4}$
(isurv = 2)	_	_	_	$3.21(2) \cdot 10^{-5}$	$2.06(1) \cdot 10^{-4}$
(isurv = 3)	_	—	—	$2.05(1)\cdot 10^{-5}$	$2.05(1)\cdot 10^{-4}$
(isurv = 4)	—	—	—	$1.59(1)\cdot 10^{-5}$	$2.06(1)\cdot 10^{-4}$
(sfaci = false)	_	_	_	$1.73(1)\cdot 10^{-3}$	$2.77(2) \cdot 10^{-4}$
MadGraph	_	1.23	_	_	$3.33 \cdot 10^{-4}$
PYTHIA (MPI: unchecked)	90.5(1)	1.45	$1.26(6) \cdot 10^{-1}$	_	$4.56(2) \cdot 10^{-4}$
(MPI: checked)	5.14(5)	1.46	$1.27(6) \cdot 10^{-1}$	—	$4.57(2) \cdot 10^{-4}$
FPMC[7]	_	_	$5.2 \cdot 10^{-2}$	$2.84 \cdot 10^{-2}$	$3.4 \cdot 10^{-4}$

- Pythia: Can approximate effect by checking for MPI
- **SuperChic:** Can do a more sophisticated eikonal model, but only for central exclusive events.

Cross-sections

 Survival probability higher for photon interactions than pomerons because the EW interactions are longer range than QCD (lower probability of subsequent interactions).

Jniversity fGlasgow

THE

ROYAL

Central Selection

- We need to consider all tt decay modes and standard (though low μ allows us to use slightly looser selections)
- All channels: $p_T(\ell, j) > 25 \ GeV, |\eta(\ell, j)| < 2.5$

(p⊤ could go as low as 20 GeV with a decent trigger menu in Run3)

University

of Glasgow

- Using public performance estimates from ATLAS. All selections require at least 1 forward proton tag.
- Dilepton:
 - 2 OS leptons (e or μ)
 - At least 1 b-tagged jet (85% WP)
- L+jets:
 - \rightarrow 1 lepton (e or μ)
 - ➡ 2 b-tagged jets (no req on light jets)
- All Hadronic:
 - 4 non-tagged jets
 - 2 b-tagged jets

$$A_{central}^{dilep} = 2\%$$

THE

ROYAL

$$A_{central}^{ljets} = 20\%$$

$$A_{central}^{ljets} = 5\%$$

$$\sigma_{in}(t\bar{t}) = \frac{N_{events}}{\mathscr{L} \cdot A_{AFP} \cdot A_{central} \cdot \epsilon_{ff} \cdot S_p}$$

 $\begin{aligned} \mathscr{L} &= 145 \text{ pb}^{-1} \\ A_{AFP} &= 0.3 \text{ (0.4) depending on process} \\ A_{central} &= 5\% - 20\% \text{ depending on channel} \\ \epsilon_{ff} &= (\text{folded into above}) \\ S_p &= 0.03 \text{ (0.8) depending on process} \end{aligned}$

- Rough estimate of selectable events for a single experiment (ATLAS, thought CMS would be similar)
- Based on loose channel selections and low pileup data:

Process	$100 \ \mathrm{pb^{-1}}$	$300 \ \mathrm{pb^{-1}}$	$1~{\rm fb}^{-1}$
$\gamma\gamma \to t\bar{t}$	$9\cdot 10^{-4}$	$2.7\cdot 10^{-3}$	$9\cdot 10^{-3}$
$\mathbb{P}\mathbb{P} \to t\bar{t}$	$6\cdot 10^{-5}$	$1.7\cdot 10^{-4}$	$6 \cdot 10^{-4}$
$\gamma \mathbb{P} \to t \bar{t}$	$1.6\cdot 10^{-1}$	$4.9\cdot10^{-1}$	1.6
$\gamma p \rightarrow t \bar{t}$	9.4 ± 0.3	30 ± 1	94 ± 3
$p\mathbb{P} \to t\bar{t}$	15 ± 2	40 ± 7	150 ± 20
Total	24 ± 2	70 ± 7	240 ± 20

 We have 145 pb⁻¹ of low-µ data in 2017, should be enough to get evidence of semi-elastic production.

Jniversity

of Glasgow

THE

ROYAL

New Physics

 Semi-elastic process can also be used to set limits on new physics:

Operator	$0.1~{\rm fb}^{-1}$	$0.3~{\rm fb^{-1}}$	$1.0~{\rm fb}^{-1}$	ATLAS $[28]$
$ C_{uW}^{(13)*} + C_{uB}^{(13)*} $	< 0.23	< 0.13	< 0.07	< 0.19
$ C_{uW}^{(23)*} + C_{uB}^{(23)*} $	< 0.35	< 0.20	< 0.11	< 0.52
$BR(t \rightarrow u\gamma)[10^{-5}]$	< 4.05	< 1.35	< 0.39	< 2.8
$BR(t \to c\gamma)[10^{-5}]$	< 9.80	< 3.20	< 0.97	< 22

 $\ell^{\pm}\nu_{l}b + p_{tag} \leftarrow \text{doesn't exists in the SM, sizeable with FCNC.}$ $\ell^{\pm}\nu_{l}j + p_{tag} \leftarrow \text{does exists in the SM, suppressed by b-tagging.}$

 Limits with 2017 data could be (much) better than existing ATLAS and CMS limits.

ROYAL SOCIETY University of Glasgow

This is a new, niche area of top physics, probing the proton at the highest scales:
 If you're looking for high-visibility and novelty, this is for you!

- Should be possible to observe process in existing Run2 data and maybe set competitive FCNC limits.
- Very possible to set world-leading FCNC limits given optimisation of Run3 running and sufficient person power.

Backup

