

Corso di Laurea Magistrale in Fisica

a.a. 2020/21

Prof.ssa Marta Calvi (4 CFU)
Prof.ssa Maura Pavan (2 CFU)

Fisica delle Particelle III

La fisica del sapore dai quarks ai neutrini

Obiettivi del corso

ovvero le domande che devono avere risposta

Nel Modello Standard ci sono 3 famiglie di quarks e leptoni:

- ♦in cosa sono uguali e in cosa sono diversi?
- che relazioni hanno tra loro?
- •cosa determina la differenza tra le masse e il loro ordinamento?

Il ruolo delle simmetrie fondamentali: conservazione e violazione

L'Universo è dominato dalla materia e contiene pochissima antimateria:

- perché ? possiamo spiegare questa asimmetria nel MS?
- possiamo misurare in laboratorio fenomeni di asimmetria materiaantimateria?

Cosa sono i neutrini ? sono la chiave per arrivare alla "nuova fisica" ?

Modalità di svolgimento del corso

- Lezioni frontali:
 - **fenomenologia della fisica del sapore** nei due settori adronico e leptonico nel MS e nelle prospettive di fisica oltre il MS.
 - gli esperimenti di scoperta/studio di questi fenomeni più significativi
 - le sfide degli esperimenti futuri → cosa si vuole misurare e come è possibile farlo?
- Possibilità di incontri (seminari) con i protagonisti delle misure discusse.

Pre-requisiti

nozioni del corso di Particelle I e del corso di Fisica teorica I.

Modalità esame

- orale sui contenuti del corso
- possibilità di presentare un approfondimento personale su un argomento o esperimento legato ai contenuti del corso

Programma della prima parte

- Produzione di quarks pesanti agli acceleratori (e+e-, pp)
- Decadimenti e vite medie degli adroni pesanti.
- La struttura del sapore nel Modello Standard.
- Le transizioni di sapore: la matrice CKM e la misura dei suoi elementi di matrice.
- Il fenomeno delle oscillazioni dei mesoni neutri e le misure sperimentali dei parametri di oscillazione.
- La violazione della simmetria CP e le osservazioni sperimentali.
- Simmetria di invarianza temporale.
- Decadimenti rari degli adroni pesanti e la ricerca di nuova fisica.
- Conservazione del sapore leptonico nei leptoni carichi.
- Esempi di misure agli esperimenti ai collisori e⁺e⁻ alla Y(4S), allo Z⁰ e ai collisori adronici.

Programma della seconda parte

- Osservazione sperimentale del fenomeno delle oscillazioni dei neutrini.
- La matrice di mixing del neutrino e le misure dei suoi parametri.
- Modello Standard allargato con l'introduzione di un termine di massa del neutrino.
- Esperimenti presenti e futuri per la determinazione di gerarchia, massa e parametri di oscillazione.
- Connessioni tra fisica delle particelle e astrofisica/cosmologia: neutrini e materia oscura