# Differential Programming

Miles Cranmer (Graduate Student, Princeton Astro)

#### Acknowledgements

• Baydin et al. (2018), Domke (2009), Olah (2015) were helpful guides in putting this together, as was the JAX documentation.

#### Differentiation

- Four categories of computing derivatives on computers:
  - 1. Hard-coding the analytical form (by hand)
  - 2. Numerical differentiation (approximate)
  - 3. Symbolic differentiation via computer algebra system (e.g., SymPy, Mathematica)
  - 4. Automatic differentiation (AD)

#### Misconceptions

Symbolic differentiation != Automatic differentiation

Symbolic differentiation can differentiate expressions, but Automatic differentiation can differentiate entire algorithms!

#### Key Idea

• If you symbolically differentiated an algorithm, it would lead to an intractably large expression!

- So, what's the trick?
  - You trace the original algorithm, carry along the numerical values for the derivatives, and repeatedly apply chain rule.

#### Forward/Reverse mode

- Forward:
  - Walk through the algorithm, and carry derivatives through, at the same time.
- Reverse:
  - First, evaluate the output, while recording the computational tree.
  - Then, walk back through the tree and compute derivatives.



Forward **Reverse** 





**Forward** Pass



**Backward** Pass



 $f: \mathbb{R}^n \to \mathbb{R}^m$  w. n << m

Forward & Reverse





Primal Trace





Derivative Trace







#### Key Idea

So, we do not have the closed-form analytic formula for the derivative.

#### But:

- We can compute the derivative **exactly** at any point.
- We don't have to write extra code to do this.
- We can compute derivatives through massively complicated algorithms and pipelines!



- Optimization in high-dimensional spaces
- Hamiltonian MCMC
- Likelihood-free inference
- Machine learning
- ML with inductive biases
  - (learning internal components of a handwritten pipeline)

## Differential programming

Writing code in a framework that supports autodiff.

All the code you write now has derivatives for free!

The revelation:

if you don't know what to put for some part of the algorithm, just **learn it.**This is differential programming.

#### Packages available

- Python
  - JAX, PyTorch, TensorFlow
- Julia:
  - (built-in)
- C++:
  - "autodiff"
  - <a href="https://github.com/autodiff/autodiff">https://github.com/autodiff/autodiff</a>

#### PyTorch (DL focused, dynamic)

- Pure Python is allowed!
- Very good for differential programming, due to great Deep Learning functionality.
  - Very easy to plug in a neural network into your algorithm when you don't know what it should be!
- Drawbacks: not compiled.

```
x = torch.randn(100, 10)
x.requires_grad = True
x = x.cuda()
torch.autograd.grad(f(x), x)
```

#### JAX

- Compiled!
- Very generic: no emphasis on ML
- Numpy syntax: can do "from jax import numpy as np"
- Can vectorize any operation with "vmap"
- GPUs utilized automatically

```
key = random.PRNGKey(0)
x = random.normal(key, (100, 5))
df = grad(f)
df(x)
```

#### Julia

- Compiled.
- Autodiff works on base language! No need for new library.
- Weaknesses:
  - GPU support seems a bit more work than Torch/JAX.
  - Deep Learning (Flux.jl) not nearly as large a community as Python

```
x = randn(Float32, (100, 5))
ReverseDiff.gradient(f, x)
```

Stellerator (plasma fusion) – here, they optimize the coil topology with autodiff! (McGreivy et al. 2020)



Bridge optimization in raw density space:



• (Future talk on this) – autodiff + symbolic regression to discover force laws, Hamiltonians, new dark matter equation:



# Questions?

#### Additional References

• <a href="https://towardsdatascience.com/forward-mode-automatic-differentiation-dual-numbers-8f47351064bf">https://towardsdatascience.com/forward-mode-automatic-differentiation-dual-numbers-8f47351064bf</a>