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Differentiation

• Four categories of  computing derivatives on computers:
1. Hard-coding the analytical form (by hand)

2. Numerical differentiation (approximate)

3. Symbolic differentiation via computer algebra system (e.g., SymPy, 
Mathematica)

4. Automatic differentiation (AD)



Misconceptions

Symbolic differentiation != Automatic differentiation

Symbolic differentiation can differentiate expressions, but
Automatic differentiation can differentiate entire algorithms!



Key Idea

• If  you symbolically differentiated an algorithm, it would lead to an 
intractably large expression!

• So, what’s the trick?
• You trace the original algorithm, carry along the numerical values for the 

derivatives, and repeatedly apply chain rule.



Forward/Reverse mode

• Forward:
• Walk through the algorithm, and carry derivatives through, at the same time.

• Reverse:
• First, evaluate the output, while recording the computational tree.

• Then, walk back through the tree and compute derivatives.







Key Idea

So, we do not have the closed-form analytic formula for the derivative.

But:

• We can compute the derivative exactly at any point.

• We don’t have to write extra code to do this.

• We can compute derivatives through massively complicated algorithms 

and pipelines!



Baydin et al. (2018)



Applications

• Optimization in high-dimensional spaces

• Hamiltonian MCMC

• Likelihood-free inference

• Machine learning

• ML with inductive biases
• (learning internal components of  a handwritten pipeline)



Differential programming

Writing code in a framework that supports autodiff.

All the code you write now has derivatives for free!

The revelation:

if  you don’t know what to put for some part of  the algorithm, just learn it.

This is differential programming.



Packages available

• Python
• JAX, PyTorch, TensorFlow

• Julia:
• (built-in)

• C++:
• “autodiff ”

• https://github.com/autodiff/autodiff

https://github.com/autodiff/autodiff


PyTorch (DL focused, dynamic)

• Pure Python is allowed!

• Very good for differential programming, due to great Deep Learning 
functionality.
• Very easy to plug in a neural network into your algorithm when you don’t know 

what it should be!

• Drawbacks: not compiled.



JAX

• Compiled!

• Very generic: no emphasis on ML

• Numpy syntax: can do “from jax import numpy as np” 

• Can vectorize any operation with “vmap”

• GPUs utilized automatically



Julia

• Compiled.

• Autodiff works on base language! No need for new library.

• Weaknesses:
• GPU support seems a bit more work than Torch/JAX.

• Deep Learning (Flux.jl) not nearly as large a community as Python



Applications

Stellerator (plasma fusion) – here, they optimize the coil topology with 

autodiff! (McGreivy et al. 2020)



Applications

Bridge optimization in raw density space:



Applications

• (Future talk on this) – autodiff + symbolic regression to discover force 
laws, Hamiltonians, new dark matter equation:



Questions?



Additional References

• https://towardsdatascience.com/forward-mode-automatic-
differentiation-dual-numbers-8f47351064bf

https://towardsdatascience.com/forward-mode-automatic-differentiation-dual-numbers-8f47351064bf

