
Differential Programming
Miles Cranmer (Graduate Student, Princeton Astro)

Acknowledgements

• Baydin et al. (2018), Domke (2009), Olah (2015) were helpful guides in
putting this together, as was the JAX documentation.

Differentiation

• Four categories of computing derivatives on computers:
1. Hard-coding the analytical form (by hand)

2. Numerical differentiation (approximate)

3. Symbolic differentiation via computer algebra system (e.g., SymPy,
Mathematica)

4. Automatic differentiation (AD)

Misconceptions

Symbolic differentiation != Automatic differentiation

Symbolic differentiation can differentiate expressions, but
Automatic differentiation can differentiate entire algorithms!

Key Idea

• If you symbolically differentiated an algorithm, it would lead to an
intractably large expression!

• So, what’s the trick?
• You trace the original algorithm, carry along the numerical values for the

derivatives, and repeatedly apply chain rule.

Forward/Reverse mode

• Forward:
• Walk through the algorithm, and carry derivatives through, at the same time.

• Reverse:
• First, evaluate the output, while recording the computational tree.

• Then, walk back through the tree and compute derivatives.

Key Idea

So, we do not have the closed-form analytic formula for the derivative.

But:

• We can compute the derivative exactly at any point.

• We don’t have to write extra code to do this.

• We can compute derivatives through massively complicated algorithms

and pipelines!

Baydin et al. (2018)

Applications

• Optimization in high-dimensional spaces

• Hamiltonian MCMC

• Likelihood-free inference

• Machine learning

• ML with inductive biases
• (learning internal components of a handwritten pipeline)

Differential programming

Writing code in a framework that supports autodiff.

All the code you write now has derivatives for free!

The revelation:

if you don’t know what to put for some part of the algorithm, just learn it.

This is differential programming.

Packages available

• Python
• JAX, PyTorch, TensorFlow

• Julia:
• (built-in)

• C++:
• “autodiff ”

• https://github.com/autodiff/autodiff

https://github.com/autodiff/autodiff

PyTorch (DL focused, dynamic)

• Pure Python is allowed!

• Very good for differential programming, due to great Deep Learning
functionality.
• Very easy to plug in a neural network into your algorithm when you don’t know

what it should be!

• Drawbacks: not compiled.

JAX

• Compiled!

• Very generic: no emphasis on ML

• Numpy syntax: can do “from jax import numpy as np”

• Can vectorize any operation with “vmap”

• GPUs utilized automatically

Julia

• Compiled.

• Autodiff works on base language! No need for new library.

• Weaknesses:
• GPU support seems a bit more work than Torch/JAX.

• Deep Learning (Flux.jl) not nearly as large a community as Python

Applications

Stellerator (plasma fusion) – here, they optimize the coil topology with

autodiff! (McGreivy et al. 2020)

Applications

Bridge optimization in raw density space:

Applications

• (Future talk on this) – autodiff + symbolic regression to discover force
laws, Hamiltonians, new dark matter equation:

Questions?

Additional References

• https://towardsdatascience.com/forward-mode-automatic-
differentiation-dual-numbers-8f47351064bf

https://towardsdatascience.com/forward-mode-automatic-differentiation-dual-numbers-8f47351064bf

