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Differentiation

* Four categories of computing dertvatives on computers:
1. Hard-coding the analytical form (by hand)
2. Numerical differentiation (approximate)

3. Symbolic differentiation via computer algebra system (e.g., SymPy,
Mathematica)

4. Automatic differentiation (AD)



Misconceptions

Symbolic differentiation !|= Automatic differentiation

Symbolic differentiation can ditferentiate expressions, but
Automatic differentiation can differentiate entire algorithms!



Key Idea

* If you symbolically differentiated an algorithm, it would lead to an
intractably large expression!

* So, what’s the trick?

* You trace the original algorithm, carry along the numerical values for the
derivatives, and repeatedly apply chain rule.



Forward /Reverse mode

* Forward:
* Walk through the algorithm, and carry derivatives through, at the same time.

* Reverse:
* First, evaluate the output, while recording the computational tree.

* Then, walk back through the tree and compute derivatives.
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Key Idea

So, we do not have the closed-form analytic formula for the derivative.

But:

* We can compute the derivative exactly at any point.

* We don’t have to write extra code to do this.

* We can compute derivatives through massively complicated algorithms

and pipelines!
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Coding
f(x): £2(x):
v=x return 128*x* (1 - x) *(-8 + 16%*x)
fori=1to03 *((1 - 2%x) "2)*(1 - 8*x + 8*x*x)
v =44fvx(1 - v) +64*%(1 - x)*((1 - 2*x) "2)*((1
return v — 8*%x + 8*x*x) "2) — (64*x*(1 -
- » 2xx) "2)* (1 - 8%x + 8*x*x) "2 -
or, in closed-form, Symbolic 256*x* (1 — x)* (1 — 2%x)*(1 - 8*x
Differentiation + Bxkx) ~2
£(x): of the Closed-form
return 64*x* (1-x)*((1-2%x) ~2) £ (x0) = f (o)
*(1-8*x+8*x*x) "2 Exact
Automatic Numerical
Differentiation Differentiation
£ (x):
(v,dv) = (x,1) £ (x):
fori=1to3 h = 0.000001
(v,dv) = (4xvx(1-v), 4xdv-8*v*dv) return (f(x+h) - £f(x)) / h
Baydin et al. (2018) return (v,dv)
£ (%) = f'(z0)
£ (%0) = f'(z0) Approximate
Exact




Applications

* Optimization in high-dimensional spaces
* Hamiltonian MCMC

* Likelihood-free inference

* Machine learning

e ML with inductive biases

* (learning internal components of a handwritten pipeline)



Ditterential programming

Writing code in a framework that supports autoditf.
All the code you write now has derivatives for free!

The revelation:

if you don’t know what to put for some part of the algorithm, just learn it.

This is differential programming.



Packages available

* Python

* JAX, PyTorch, TensorFlow
* Julia:

* (built-in)
e C++:

e “autodiff”

* https://github.com/autodiff/autodiff



https://github.com/autodiff/autodiff

PyTorch (DL focused, dynamic)

* Pure Python 1s allowed!

* Very good for differential programming, due to great Deep Learning
functionality.

* Very easy to plug in a neural network into your algorithm when you don’t know
what it should be!

* Drawbacks: not compiled.

X = torch.randn(
X.requires_grad

X = X.cuda()
torch.autograd.grad(f(x), x)




JAX

* Compiled!

* Very generic: no emphasis on ML

* Numpy syntax: can do “from jax import numpy as np”
* Can vectorize any operation with “vmap”

* GPUs utilized automatically

key = random.PRNGKey(0)
X = random.normal(key, ( , 5))

df = grad(f)
df (x)




Julia

* Compiled.
* Autodiff works on base language! No need for new library.

* Weaknesses:
* GPU support seems a bit more work than Torch/JAX.

* Deep Learning (Flux.jl) not nearly as large a community as Python




Applications

Stellerator (plasma fusion) — here, they optimize the coil topology with
autodift! (McGreivy et al. 2020)




Applications

Bridge optimization in raw density space°
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Applications

* (Future talk on this) — autodiff + symbolic regression to discover force
laws, Hamiltonians, new dark matter equation:
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(Questions?



Additional References

* https://towardsdatascience.com/forward-mode-automatic-

differentiation-dual-numbers-8t47351064bft



https://towardsdatascience.com/forward-mode-automatic-differentiation-dual-numbers-8f47351064bf

