Ditterential Programming

Miles Cranmer (Graduate Student, Princeton Astro)

Acknowledgements

* Baydin et al. (2018), Domke (2009), Olah (2015) were helpful guides in
putting this together, as was the JAX documentation.

Differentiation

* Four categories of computing dertvatives on computers:
1. Hard-coding the analytical form (by hand)
2. Numerical differentiation (approximate)

3. Symbolic differentiation via computer algebra system (e.g., SymPy,
Mathematica)

4. Automatic differentiation (AD)

Misconceptions

Symbolic differentiation !|= Automatic differentiation

Symbolic differentiation can ditferentiate expressions, but
Automatic differentiation can differentiate entire algorithms!

Key Idea

* If you symbolically differentiated an algorithm, it would lead to an
intractably large expression!

* So, what’s the trick?

* You trace the original algorithm, carry along the numerical values for the
derivatives, and repeatedly apply chain rule.

Forward /Reverse mode

* Forward:
* Walk through the algorithm, and carry derivatives through, at the same time.

* Reverse:
* First, evaluate the output, while recording the computational tree.

* Then, walk back through the tree and compute derivatives.

f:R*" > R™w.n>>m

Forward -~ Reverse

)/

’\:_

f:Rn_)me.n<<m

Forward

—

—_—

’\b"

Primal

Backward

Derivative

Trace ® — - é

—
—
-\j’j

|

X2)
+W2

X1

e~ (Wotwy

T 14

d]
aWZ

*
<

Key Idea

So, we do not have the closed-form analytic formula for the derivative.

But:

* We can compute the derivative exactly at any point.

* We don’t have to write extra code to do this.

* We can compute derivatives through massively complicated algorithms

and pipelines!

f'(z) = 128z(1 — z)(—8 + 16z)(1 — 2z)%(1 —

ll =X
Lnit = 4L, (1 — 1)

! 8z +82%) +64(1 —z)(1 —2z)?(1 — 8z +822)% —
, . Manual 64z(1 — 22)?(1 — 8z + 82%)% — 256z (1 — z)(1 —
f(z) =ls = 64z(1—=)(1—2z)*(1 - 8z +8z?) Differentiation 2z)(1 — 8z + 8z2)?

Coding
f(x): £2(x):
v=x return 128*x* (1 - x) *(-8 + 16%*x)
fori=1to03 *((1 - 2%x) "2)*(1 - 8*x + 8*x*x)
v =44fvx(1 - v) +64*%(1 - x)*((1 - 2*x) "2)*((1
return v — 8*%x + 8*x*x) "2) — (64*x*(1 -
- » 2xx) "2)* (1 - 8%x + 8*x*x) "2 -
or, in closed-form, Symbolic 256*x* (1 — x)* (1 — 2%x)*(1 - 8*x
Differentiation + Bxkx) ~2
£(x): of the Closed-form
return 64*x* (1-x)*((1-2%x) ~2) £ (x0) = f (o)
*(1-8*x+8*x*x) "2 Exact
Automatic Numerical
Differentiation Differentiation
£ (x):
(v,dv) = (x,1) £ (x):
fori=1to3 h = 0.000001
(v,dv) = (4xvx(1-v), 4xdv-8*v*dv) return (f(x+h) - £f(x)) / h
Baydin et al. (2018) return (v,dv)
£ (%) = f'(z0)
£ (%0) = f'(z0) Approximate
Exact

Applications

* Optimization in high-dimensional spaces
* Hamiltonian MCMC

* Likelihood-free inference

* Machine learning

e ML with inductive biases

* (learning internal components of a handwritten pipeline)

Ditterential programming

Writing code in a framework that supports autoditf.
All the code you write now has derivatives for free!

The revelation:

if you don’t know what to put for some part of the algorithm, just learn it.

This is differential programming.

Packages available

* Python

* JAX, PyTorch, TensorFlow
* Julia:

* (built-in)
e C++:

e “autodiff”

* https://github.com/autodiff/autodiff

https://github.com/autodiff/autodiff

PyTorch (DL focused, dynamic)

* Pure Python 1s allowed!

* Very good for differential programming, due to great Deep Learning
functionality.

* Very easy to plug in a neural network into your algorithm when you don’t know
what it should be!

* Drawbacks: not compiled.

X = torch.randn(
X.requires_grad

X = X.cuda()
torch.autograd.grad(f(x), x)

JAX

* Compiled!

* Very generic: no emphasis on ML

* Numpy syntax: can do “from jax import numpy as np”
* Can vectorize any operation with “vmap”

* GPUs utilized automatically

key = random.PRNGKey(0)
X = random.normal(key, (, 5))

df = grad(f)
df (x)

Julia

* Compiled.
* Autodiff works on base language! No need for new library.

* Weaknesses:
* GPU support seems a bit more work than Torch/JAX.

* Deep Learning (Flux.jl) not nearly as large a community as Python

Applications

Stellerator (plasma fusion) — here, they optimize the coil topology with
autodift! (McGreivy et al. 2020)

Applications

Bridge optimization in raw density space°

&
o

N L

Method

Compliance (loss)
L
o
o

2801 — cnn-lbfgs
—— pixels-mma
260 1 —— pixels-Ibfgs

T T T
0 100 200 300 400
Optimization step

Applications

* (Future talk on this) — autodiff + symbolic regression to discover force
laws, Hamiltonians, new dark matter equation:

Dataset Model with Extract to
Graph Neural Network Symbolic Equation
9
—— A
— Predict Dynamics ‘
o] yz-) - R = = 31— i)
[o\ T — Tij)Tij
IR > | M; i
~ Known spring law

Simple Particles

Encourage Low-Dimensionality
Representation

C ® 0/
Predict Properties @ \ | 1 LIPS B i Z Ca+ M,
» P C% () » ¥ == R Cy + C3M; i Cs + Cﬁ('rij)c7
('.' = Unknown Dark Matter
had s overdensity equation
ol e ° 7
Detailed 9

Dark Matter Simulation

(Questions?

Additional References

* https://towardsdatascience.com/forward-mode-automatic-

differentiation-dual-numbers-8t47351064bft

https://towardsdatascience.com/forward-mode-automatic-differentiation-dual-numbers-8f47351064bf

