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Differentiable Programming
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differentiable programming:

 enable not only evaluation of the program f(x)
* but also efficient computation of gradients / jacobians
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Auto-Diff: computes jacobian either row or column-wise
e execution of program requires double to storage for

each input and output
e pass special inputs either at beginning or end
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Auto-Diff: computes jacobian either row or column-wise
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For HEP we have these challenges

e our computations are very complex chains
(e.g. O(minutes/per event) vs O(us)
 not implement(able) in a single AD framework
 millions LOC of existing C++
e asynchronous, multi step procedure.
* needs distributed computing
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Needed infrastructure:

 workflow to chain functions (perhaps function-as-a-
service)

e track provenance of full workflow (parent child)
 ability to register "closures™ for backward functions
 individual functions must be differentiable but

infrastructure can be completely agnostic to which
frameworks are used
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Prototype: differentiating through
PyTorch + JAX + Tensorflow using functions as a service

In [185]: @register function('stepl') a b
@instrument_torch
def torch_function(x):

a,b = x
return torch.add(a,b),b

@register function('step2')
@instrument_jax

def jax function(a,b): C = a + b f

return jax.numpy.multiply(a,b)

TensorFlow
@register function('step3') )
@instrument tf \
def tensorflow function(a): *
return tf.pow(a,2)
— *
In [188]: def forward(x): d - C b
(rla, rlb) = funcx['stepl']('stepl_bwd',x) ##run through torch
r2 = funcx['step2']('step2_bwd',rla, rlb) ##run through jax y
r3 = funcx['step3']('step3_bwd',r2) ##run through TF A
return r3

def backward(adj_in np, jvp_funcs):
## backprop through TF 2
adj_in_np = funcx['step3 bwd'](adj_in_np) d
adj_in_np = funcx['step2 bwd'](adj_in_np)
adj_in_np = funcx['stepl bwd'](adj_in_np)
return adj_in np

O PyTorch

In [189]: result = forward([1l,2])
gradients = backward((1.0,), jvp_funcs)
print(result, gradients)

36.0 (array([24., 60.], dtype=float32),)




Nested structure with boundaries between semantic steps
of computation similar to what we see in our workflow
systems:
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For HEP: examples of how to draw the diagram:
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