Distributed Gradients

Lukas Heinrich

Differentiable Programming

constants
T T
f:R" - R"

differentiable programming:

 enable not only evaluation of the program f(x)
* but also efficient computation of gradients / jacobians

J. =

Y ou, Ou, Ou,

Auto-Diff: computes jacobian either row or column-wise
e execution of program requires double to storage for

each input and output
e pass special inputs either at beginning or end

constants

Program

"forward"

i ou,
axl

auz

ox 1

ou,
dx:),
auz

ox 3

oy,
ox 2

Auto-Diff: computes jacobian either row or column-wise

e execution of program requires double to storage for
each input and output

e pass special inputs either at beginning or end

constants

Program

"forward"

oy,
ox 3

Auto-Diff: computes jacobian either row or column-wise

e execution of program requires double to storage for
each input and output

e pass special inputs either at beginning or end

constants

Program

"forward"

oy,
0,\‘1

Auto-Diff: computes jacobian either row or column-wise

e execution of program requires double to storage for
each input and output

e pass special inputs either at beginning or end

constants

Program

"backward"

T@ul ou, aul]_
L@xl 0x, 0x3J

ox; 0x, O0x3

Auto-Diff: computes jacobian either row or column-wise

e execution of program requires double to storage for
each input and output

e pass special inputs either at beginning or end

constants

Program

"backward"

ou; Ou; Ouy

J . kax 1 ox 2 0X3J
Y (Ou, Ou, Ou,)

L@xl 0x, 0x3

Auto-Diff: computes jacobian either row or column-wise

e execution of program requires double to storage for
each input and output

e pass special inputs either at beginning or end

constants

Program

"backward"

Which path du; Ouy du
Is better depends 7. = 0X1__0x; 0xy

on dimensions of | ¥ |[(ows 0w, ou,
inputs / outputs

0x; 0x, O0x3

9)

NS

For HEP we have these challenges

e our computations are very complex chains
(e.g. O(minutes/per event) vs O(us)
 not implement(able) in a single AD framework
 millions LOC of existing C++
e asynchronous, multi step procedure.
* needs distributed computing

Jix) — /LW — £

N

Needed infrastructure:

 workflow to chain functions (perhaps function-as-a-
service)

e track provenance of full workflow (parent child)
 ability to register "closures™ for backward functions
 individual functions must be differentiable but

infrastructure can be completely agnostic to which
frameworks are used

Jix) — /LW — £

N

Prototype: differentiating through
PyTorch + JAX + Tensorflow using functions as a service

In [185]: @register function('stepl') a b
@instrument_torch
def torch_function(x):

a,b = x
return torch.add(a,b),b

@register function('step2')
@instrument_jax

def jax function(a,b): C = a + b f

return jax.numpy.multiply(a,b)

TensorFlow
@register function('step3'))
@instrument tf \
def tensorflow function(a): *
return tf.pow(a,2)
— *
In [188]: def forward(x): d - C b
(rla, rlb) = funcx['stepl']('stepl_bwd',x) ##run through torch
r2 = funcx['step2']('step2_bwd',rla, rlb) ##run through jax y
r3 = funcx['step3']('step3_bwd',r2) ##run through TF A
return r3

def backward(adj_in np, jvp_funcs):
backprop through TF 2
adj_in_np = funcx['step3 bwd'](adj_in_np) d
adj_in_np = funcx['step2 bwd'](adj_in_np)
adj_in_np = funcx['stepl bwd'](adj_in_np)
return adj_in np

O PyTorch

In [189]: result = forward([1l,2])
gradients = backward((1.0,), jvp_funcs)
print(result, gradients)

36.0 (array([24., 60.], dtype=float32),)

Nested structure with boundaries between semantic steps
of computation similar to what we see in our workflow
systems:

NS

c=a+b +$

TensorFlow

\
v
d=c*b

| oA

lo

O PyTorch

For HEP: examples of how to draw the diagram:

sim/reco params

higgs mass Program summary stat

Q(x’ physics® 51m reco) 6q/ 00, physics

higgs pass

sim/reco params Program summary stat

) 0g/do

(x’ thSICS’ Slm reco 51m reco

