

Analysis Facility - US ATLAS Perspective

<u>Kaushik De</u> (UTA), Jahred Adelman (NIU), Paolo Calafiura (LBNL), Mike Hance (UCSC), Verena Martinez Outschoorn (UMass)

Future Analysis Systems and Facilities Workshop
October 27, 2020

What is an Analysis Facility

- Much has been said already however, Analysis Facility (AF) probably means something different for every participant
- From US ATLAS Ops (Operations Program) perspective:

- The boundary is fuzzy often the focus of many discussions
 - Who pays for what at the most basic level?
 - What is the functionality in each box constantly evolving?
 - What infrastructure is needed for each box this talk

Data and MC Facility

- US ATLAS Tier 1 and Tier 2 sites
 - We add HPC's and commercial clouds as allocated
 - Also some opportunistic (non-tiered, non-pledged) resources
- ♦ About 10% of usage comes from user analysis jobs on the grid
 - Simulations, derivations, streaming, slimming, merging, HPO...

Analysis Facility

- Terminology in US ATLAS Tier 3 or AF is interchangeable
 - They are very different from distributed T1/T2 grid facilities
- For many users, AF is their laptop/desktop
 - In addition to being the portal to ATLAS apps and services, many users actually do their computation on laptops/desktops
- For most users, AF is a small batch system
 - This is still the most popular user analysis facility a local Tier 3 site
 - However, it is getting harder and harder for small groups to find funding for, maintain, and operate local Analysis Facilities
- For many users, AF is a big shared batch system
 - All US ATLAS users have access to two Shared T3s, a 3rd is being built
 - These AFs have been battle hardened during Run 2 (~4 years)
 - They provide usability apps, grid tools, ATLAS software and apps, derived data access, batch slots, local storage, Jupyter etc
 - These shared AFs are funded by US ATLAS not research groups

Lessons Learned so far

We have >10 years experience with AFs in US ATLAS

- Every user needs something different to be productive
- We provide the facility, training and support users do analysis
- Users vote with their feet top down seldom works
- We need robust, flexible, and easy to use systems that can evolve
- All of the above are obvious but worth repeating

What is your biggest limitation when you are trying to do analysis? 81 responses

user survey

Ideal US ATLAS AF

- ❖ 24x7 uptime, accessible worldwide, support ~300 active physicists, storage for all derived data, easy collaborative access, provide access to a wild world of apps and tools
 - Current level of derived storage ~100 PB grow ~20% per year
 - Current analysis CPU+GPU needs ~50k cores grow ~20% per year
 - Current users ~300 physicists not expected to change a lot
 - Allow sharing of workspace with ~2000 international collaborators
 - Scalable, sustainable, interactive, (new) user friendly...
- Build at BNL T1 roughly x2-x4 current facility cost
- At a dedicated large facility see Paolo's talk next
- On a cloud see Johannes' & Harinder's talks this afternoon
- Hybrid facility rest of this talk
- Choice is often driven by the source(s) of funding

Hybrid AF

- Current US ATLAS AF model
 - If gold plated AF not affordable, assemble many nuggets
- US ATLAS is supporting the following on best effort basis
 - Enable the use of small local systems limited support
 - Support most common workflows at T1/T2 facilities
 - Scalable and affordable for all users not limited to US sites
 - Fund and support shared T3 facilities for end-stage analysis
 - At BNL, SLAC and UChicago (new operational 2021)
 - Provide some support for new users (documentation, tutorials)
 - Support widely used tools that are scalable and sustainable
 - US ATLAS Ops funding is limited x5 smaller than external sources of funding for analysis tools, services and facilities

BNL Shared Tier 3

- See talks by William Strecker-Kellogg (BNL) at OSG All Hands
- Easy-to-use interactive nodes, batch systems, local storage...
 - ~2200 CPUs, access to GPUs, scratch space, local storage...
 - Traditional batch systems and Jupyter

SLAC Shared Tier 3

- See talks by Wei Yang (SLAC) at OSG All Hands/WLCG
 - ~3400 CPUs, some GPUs, few PB storage
 - Interactive logins, batch jobs, Jupyter, xcache, containers...

Xcache - you don't need to know where are the data!

Towards a Gold Plated AF

- Can we do better than Hybrid/Tier 3 model
 - Yes user surveys show some shortcomings of current model
 - A large well staffed high performance data center would be better
 - But need additional funding current budgets will pay <10% of cost
- Build AF at BNL (colocated with US ATLAS Tier 1)
 - Gold plated == full featured, full scale
 - Interactive, easy to use, well connected, all derived data local...
 - Need to be x3-x4 current T1 capacity, large support staff
- Build AF at large ASCR or CISE funded facility
 - Similar concept to BNL AF
- Provision AF on commercial cloud
 - AWS, Google, MS, Oracle many capable vendors
 - Limited only by funding
 - Simple list price based cost model shows x5-x10 cost of BNL T1

Summary and Speculations

- Many things will change during Run 3
- And again at the HL-LHC
- Analysis Systems being developed now will drive this change
 - Looking forward to many of the tools described in talks yesterday moving to production quality services
 - US ATLAS is/will partner in most of these tools
 - We also continue to support some limited ATLAS specific tools
 - Important metric benefit and scalability on our infrastructure
 - Ease of installation and use in our Shared T3s
 - Additional metric support cost
 - Sustainability is critical to long term success
- US ATLAS will continue to support the development and deployment of software and computing systems that our users need to accelerate their physics products