Analysis on LHC-Managed
Facilities: Coffea-Casa

Mat Adamec, Ken Bloom, Oksana Shadura,
University of Nebraska, Lincoln

Garhan Attebury, Carl Lundstedt, Derek Weitzel
University of Nebraska Holland Computing
Center

Matyas Selmeci
@ University of Wisconsin, Madison

Brian Bockelman
my Morgridge Institute
MORGRIDGE

CMS

Analysis facilities:
how we understand it?

We need to look into a
new services and
resource types!

People, software / services, and hardware
Services includes:
o Access to experimental data products
o Storage space for per-group or per-user data Trending towards column-wise (tidy/big data) analysis:
(often ntuples)
o Access to significant computing resources
e Physics software: ROOT and the growing Python-based

ecosystem %
e Computing hardware: available/new CPUs and disks " “~_ | e E
(maybe GPUs)

- 00

it

B.Bockelman, Analysis Facilities for the HL-LHC, Snowmass 2020

Event loop | Columnar

One of examples: https://github.com/CoffeaTeam/coffea

https://github.com/CoffeaTeam/coffea

Analysis facilities: prototypes

e Two AF facilities with the possible outcome of adding more sites as soon as
we gain experience

N CMSAF @T2 Nebraska * Elastic AF @ Fermilab

“Coffea-casa” ¥
https://cmsaf-jh.unl.edu

https://cmsaf-jh.unl.edu

Analysis Facility @ T2 Nebraska

User’s Laptop

| Python |Browser|
/ \

{ 14 i

| Dask Dask JupyterHub Instance | :

|| Worker 1 [| Scheduler |['] (shared) | HLCetday Wortker

: 1 P Dask

'|| Dask Jupyter] b Worker

i || Worker 8 kernel i

' = P <l i HTCondor

! er-user :] Scheduler

! SisvmelE SiRped | | | HTCondor Worker

E : : Dask

i ~— P\ Worker

E " XCache . I HTCondor
' Kubernetes (shared) - @000 U
Cluster 5

Per-user 8 Core “CMS Analysis pod”
created on login (Dask scheduler
container and Dask worker sidecar
container)

Can scale up to available HTCondor
slots on the T2 resource

Analysis facilities: why we use Dask?

Dask provides flexible library for parallel
computing in Python

Builds on top of the python ecosystem (e.g.
Numpy, Pandas, Scikit-Learn and etc.)

Dask exposes lower-level APIs letting to build

custom systems for in-house applications (!)

Collections
(create task graphs)

Dask Array

Dask DataFrame

Dask Bag

Dask Delayed

— Task Graph —>

Schedulers
(execute task graphs)

Single-machine
(threads, processes,
ron

synchronous)

Distributed

e Integrates with HPC clusters, running a variety of
schedulers including SLURM, LSF, SGE and
HTCondor via “dask-jobqueue”

® This allows us to create a user-level
interactive system via queueing up in the
batch system

Dask can be used inside Jupyter or you can simply
- launch it through Jupyter and connect directly from
. your laptop

p User-facing entry
PP Client point for cluster
Jupyter users
Scheduler manages state
Scheduler and sends tasks to workers
for execution
Dask
- distributed
cluster
Worker Worker Worker

Workers compute tasks / store and serve

computed results to other workers or clients

Current status of Analysis Facility @ T2 Nebraska N

CoffeaCasaCluster: HTCondorCluster

E.nab-led.m Security - TLS enabled
authenflcatlon in HTCondor T e T — mtegratmn for Dask to allow
infrastructure T e Ier auto-scaling out to the local HTCondor
pool
. . User’s Laptt .
We are using a highly ’ﬁg —]
customized “CMS Analysis” rypen [Bener All of this is being
container with all the necessary | ; S — eSS —— s incorporated into a Helm
. .. ' 14 H -
dependencies ,D—kHﬁ‘* Jupyerie ntance e 5 chart - many rough edges,
" | Workee 1}l Scheduier ! @ i but it will be portable to
: ! Worker ; A
i \W\OD:(E Jlifr{]‘:lr ‘ ‘ ’ HTCondor | Other Sltes
| on] Por-user ; Scheduler ;
‘1 CMS Analysis” pod HTCondor Worker
. . S Dask
Pod customization hook to create S Worker ;
secrets and services - pod can expose | © . e : ‘ !
the Dask scheduler to the outside world |- - Integration of XRootD - each
and can authenticate with services like | ; \ pod’s unique secret includes
HTCondor and XRootD and auto-generated
- D R P
S U e R macaroon authorizing the

pod to access files at the site
XCache server

Developed a custom XRootD client plugin enabling

whenever the prefix root.//xcache/ is used, hostname is
replaced with the correct one for the local site (using
environment variables) and token authorization is
automatically used & embedded in the URL

The AF should help to assist
with 90% of analyses using
NanoAOD by merging parts or
derived from MiniAOD into
Nano (automatically, without
the intervention of the
end-user)

Analysis facilities: “ideal” workflow

R_equ:s: da;al_ over nlg!\t Request addition to existing
~via data delivery service | NanoAOD 5

- (filter, add specific columns, @ =
- optimise data layout for: :
- columnar analysis in AF)

(request info from MiniAOD
/correct existing branches)

Get results on your lapto GRS LRI LR 000
from A)\/F ptop e in AF (as well in a batch from

E AF)

Analysis facilities: Datalake’s distribution model

Datalake draft model: components

H
#
G £ @ e # %t * #
: [% % $r % % &
-~ ~ [\ [\
u s s s s
% ¥ #
A %) &
e ¥ v % ¥ ¥ # % P
5@5 {a} {a} {a} {aF {a}
e #

Analysis facilities: data lake data transfer
¥
Dag sz G

. ?. Data Store/Lake HTTP-TP '
e For AF access to data from processing | =y
elements inside the lake is mediated either AID Dcivery Sorvion (00S) IDDS E“-«—»?
via caches (implemented via XCache) or .
@ Data Cache

streaming directly from one of the data

/ake Ol’igins Ilul Compute Nodes/

Data Sinks

B.Bockelman, IRIS-HEP WLCG DOMA F2F

- Areas where DOMA

team is working \ Analysis

N\ Facility Site /
N e

N —_— —

CMSAF @T2 Nebraska “Coffea-casa”
https://cmsaf-jh.unl.edu

https://cmsaf-jh.unl.edu

Data dellvery SerVICGS SerVice X ServiceX@coffea-casa

ServiceX provides user level ntuple

production

Converts experiment-specific

datasets to columns

Extracts data from flat ROOT files

Enable simple cuts or simple derived

columns, as well as specified fields

o Heavy-weight analysis will still

happen via some separate
processing toolchain (like
CRAB)

ServiceX already supports

NanoAODs, and will also support

MiniAOD extension to end-user

“ntuples” derived from NanoAOD

Testing deployment of

Data Lake '- executable Computing
all tiers, all QOS access token
I
o v
@ (7]
@ Storage = 5
Elements = =
S5 3 a4
ServiceX — SSL
@ Volatile -
Storage access Ioken]
XAOD Batch
Cache Data fetching Data Frames ﬁﬁﬁcmslers
- Data assembly
nanoAOD Uncompression |J2gged arrays
ALl Streamin: -
@Transformation g | >
XCache Accounting data object). Hecs
flat NTUP = i‘,
Arrow buffers
Tape storage
future formats ROOT events Specialized
Possibly hardware -%- [3990‘:(’C“99 :99
= accelerated processing park cluster
status

IRIS-HEP Scalable System Laboratory https://iris-hep.org/ssl

https://iris-hep.org/ssl

Data delivery services: ~ Nextio be deployed

@coffea-casa

Servicex + Skyhook .

B SkyhookDM

e The Skyhook DM project has shown the ability
to ingest ROOT files (particularlyy, CMS

NanoAOD) and convert event data to the Data Access Layer
internal object-store format
] . . . Ceph connector
e Ceph-side C++ plugins transition from on-disk utilizing Skyhook CLS plugins

CEPH CLUSTER

format to desired memory format
e Uses Dask workers to distribute data to

clients T RockeDs |
e Data delivered as Arrow tables and TR J R — Storage Server

(optionally) presented as dataframes

B.Bockelman, IRIS-HEP WLCG DOMA F2F

CROSS, UCSC https://github.com/uccross

https://github.com/uccross

Data delivery services:
columnservice

e Coffea Team has an idea to design a
scale-up mechanism for coffea
users that removes the need to curate
skims and re-run expensive algorithms
over and over

o Shared input cache at column
granularity

o Derived columns declared, only
constructed and cached on
access

o Unified metadata and dataset
schema database

We are looking forward 2
to test it@coffea-casa L @

Components (as it stands)

» Columnservice REST API
* Fully async python backend
* Using starlette & fastapi
* Uses dask for ROOT file indexing work
» Dataset/columnset index
» MongoDB
* Object store
» Minio or other S3
« Shared filesystem (yuck)
* ColumnClient
» Python singleton client to:
* RESTAPI
« xrootd federation (“FileCatalog”)
* Object store
« Liberal caching of responses

2& Fermilab

Nick Smith, “Coffea farm prototype”, Coffea Team meeting

Coffea Team https://qithub.com/CoffeaTeam/columnservice

https://github.com/CoffeaTeam/columnservice

Analysis Facility @ T2 Nebraska: next steps

Columnservice

Kubernetes

Cluster

User’s Laptop

| Python |Browser|
/

1 I

H b |
g JupyterHub Instance |1 ! l
1 Dask Dask || o i
i1 || Worker 1 || Scheduler [[] (shared) P HTGigidon Werer |
" TR b Dask !
1!|| Dask Jupyter i Worker |
11 || Worker 8 kernel vl SF :
n [: |
. Per-user | | Scheduler |
¥ G ssAnclysisriped i | |HTCondor Worker |
| - :
¥ L Dask !
g Pl Worker i
¥ XCache - l HTCondor |
[N} T !
' Kubernetes (shared) | o POl
! i Cluster !

Future items for UNL AF “coffea-casa”

e Q4 2020 - Invite first users to test “alpha” version of UNL AF (“coffea-casa”)
e Q4 2020 - Make “coffea-casa” products (Helm charts, modules) deployable in

any other AF facility
o Expected first test deployment of FNAL AF during 2021

e Q4 2020 - Finalize testing of ServiceX@UNL AF
e Q1 2021 - Deploy and test data delivery with Skyhook at UNL AF

Thank you for your attention!

Many thanks to the other teams (IRIS-HEP SSL, IRIS-HEP DOMA and Skyhook, Coffea Team) for
materials

Backup slides

Analysis facilities: data analysis challenges

éExpect 50% of analyses to useé

e Typical CMS analyses of MiniAOD in - NanoAOD, most of the rest will use
Run 2 reach rates O(10)Hz - MiniAOD (from resource planning for :

e Columnar analysis of NanoAOD ~ - HL-LHC)
O(1kHz) (both per hyperthread) .___._._._. M _________ - 4 S

_ _ - ' The AF should help to assist with
Analysis bottleneck in Run2 MiniAOD . 90% of analyses using NanoAOD by
analyses is the creation of fast user . merging parts or derived from MiniAOD
ntuples _into Nano (automatically, without the

- intervention of the end-user)

Analysis facilities: expected scaling
CRAB @ O(10Hz) per thread on 10kHz to (Y Bo'”'on events
Today 1000 threads >> analyze >> vy
HL-LHC | AF @ O(1kHz) per thread on 1MHz to fosi'ﬂ'f; :ﬁ::
1000 threads analyze T

~1 day

N N

~2 weeks >

With the same resources, a much larger sample size can be supported for interactive
:> : analysis due to the inherent speed-ups in the technologies chosen

Analysis facilities: expected scaling

Today MINIAOD ~ 35kB NANOAOD ~ 1 kB

(event

size)

HL-LHC . If we can transition to use of
t MINIAOD ~ 250kB NANOAOD ~ 2 kB NANO as primary driver then

(‘?Ven . data volumes should be

size) . manageable

If we use a sample that is small enough to allow for interactive analysis in NANO (~ 50 Million

::> . events), it should be useable as driver for data delivery service to add objects from MINI
. overnight!

Analysis facilities: requirements

e Interactivity: AF needs to supports both interactive and batch mode
e Low latency data access: AF are expected to require low latency
random access media to achieve best performance (via data access

patterns)
o Required as a part of uncertainties for WAN 10 needs at Tier-2 centers hosting AF

O A trade off investments in disk space in caching infrastructure against network
bandwidth use
e Reusability: AF should support extraction of user defined data formats
to migrate onto laptops, desktops, workstations at home institutions or at
home
e Easy Deployment: AF services expected to be deployed with industry
standard platforms like Kubernetes and etc. to facilitate easy
deployment within a Tier-3s

Analysis facilities: object storages

e Column-based data delivery services such as ServiceX, Coffea columnservice, or
SkyHook will require object stores such as Ceph or Minio to be provided by the facility

Client Client Client
Data Lake ServiceX Cached Distribution Analysis Facility
A Skyhook-Dri
‘RUCIo - Jupyter yhook-Driver
& E MINIO N’
Tier 2 o . | Dataset Code
[Finder J [Generator]
._I_. I-"COHM Worker Worker Worker
XCache F % kqfka High Throughput Computing
—x
T 5o
Sp Qr K Ceph/RADOS with Skyhook-Extensions

M. Weinberg, ServiceX: A columnar data delivery service for CMS Arxiv 2007.01789

CMSAF @ UNL Setup

e JH setup: https://github.com/CoffeaTeam/jhub (except specific secrets)
e Docker images for Dask Scheduler and Worker: https://github.com/CoffeaTeam/coffea-casa
o https://hub.docker.com/r/coffeateam/coffea-casa
o https://hub.docker.com/r/coffeateam/coffea-casa-analysis
e Docker image for JupyterHub (to get macaroons in the launch env)
https://github.com/clundst/jhubDocker
e Tutorials: https://github.com/CoffeaTeam/coffea-casa-tutorials

https://github.com/CoffeaTeam/jhub
https://github.com/CoffeaTeam/coffea-casa
https://hub.docker.com/r/coffeateam/coffea-casa
https://hub.docker.com/r/coffeateam/coffea-casa-analysis
https://github.com/clundst/jhubDocker
https://github.com/CoffeaTeam/coffea-casa-tutorials

JupyterHub + JupyterLab + Dask setup @ UNL

e JH is launched using Helm charts (together with users secrets)

Z Jupyterhub

CMS Analysis Facility @ T2 _US_Nebraska

Authorized CMS Users Only! %\ T
g]

Welcome to cms

To login into Jupyter, use your CiLogon credentials.. If you would like an account or need assistance, please email HCC Support.

Useful Links

« HCC Support Pages Sign in with
CERN SSO
News
« New CMS Analysis Facility @ T2_US_Nebraska Not a member?

Authorized CMS Users Only:

Sign in with CMS SSO

You have been successfully authenticated as
CN=Oksana
Shadura,CN=728983,CN=oshadura,0U=Users,0U=0rganic
Units,DC=cern,DC=ch
This certificate is not linked to any account in this organization

CMSAF @ UNL Setup: Internals

Docker image starting JupyterLab is integrated with HTCondor Dask Scheduler
communicating with T3
Powered by Dask Labextention, which is integrated in the Docker image

o

Server Options

® Coffea Base Image

Coffea-casa build with coffea/dask/condor and cheese

Minimal environment
To avoid too much bells and whistles: Python.

Datascience environment

A

Image with integrated Dask scheduler and full coffea environment

If you want the additional bells and whistles: Python, R, and Julia.

Spark environment
The Jupyter Stacks spark image!

Carl's test image..here be dragons
test environment

CMSAF @ UNL Analysis: Demo

import os

os.environ("OMP_NUM_THREADS"] =
import numpy as np

%matplotlib inline

from coffea import hist

from coffea.analysis_objects import JaggedCandidateArray
import coffea.processor as processor

This program plots an event-level variable (in this case, MET, but switching it is as easy as a dict-key change). It also demonstrates an easy use of the book-keeping cutflow tool, to keep track of the number of events processed.

The processor class bundles our data analysis together while giving us some helpful tools. It also leaves looping and chunks to the framework instead of us.
class Processor(processor.ProcessorABC):
def _init_ (self):
Bins and categories for the histogram are defined here. For format, see https://coffeatea
dataset_axis = hist.Cat("dataset”, "")
MET_axis = hist.Bin("MET", "MET [GeV]", 50, 0, 100)

github.io/coffea/stubs/coffea.hist.hist_tools.Hist.html & https://coffeateam.github.io/coffea/stubs/coffea.hist.hist_tools.Bin.html

The accumulator keeps our data chunks together for histogra
self._accumulator = processor.dict_accumulator ({
‘MET': hist.Hist("Counts", dataset_axis, MET_axis),
‘cutflow': processor.defaultdict_accumulator(int)

It also gives us cutflow, which can be used to keep track of data.

13}

@property
def accunulator(self):
return self._accumulator

def process(self, events):
output = self.accumulator.identity()

This is where we do our actual anal The dataset has columns similar to the TTree's; events.columns can tell you them, or events.[object].columns for deeper depth.

dataset = events.metadata["dataset"]
MET = events.MET.pt

We can define a new key for cutflow (in this case 'all events'). Then we can put values into it. We need += because it's per-chunk (demonstrated belof Custom methOd CoffeaCasaCluster h’dden in DaSk LabeXtenﬁon (on tOp Of
sl il el D] dask_jobqueue.HTCondorCluster) to deploy Dask on common HTCondor job queue with
possibility to specify Dask worker image and other parameters)

This fills our histogram once our data is collected. The hist key ('MET=') will be defined in the bin in __init.
output['MET'].fill(dataset=dataset, MET=MET.flatten())

return output

def postprocess(self, accumulator):
return accumulator

fileset = {'SingleMu’ : ["root://eospublic.cern.ch//eos/root-eos/benchmark/Run20128_SingleMu.root"]}

from dask.distributed import Client https://cmsaf-jh.unl.edu/user/oksana.shadura@cern.ch/proxy/8787/status Q

from coffea_casa import CoffeaCasaCluster
TASK STREAM PROGRESS ~ WORKERS ~ MEMORY (WORKER) CPU(WORKERS) CLUSTERMAP GRAPH

from dask.distributed import Client

PROCESSING TASKS ~ COMPUTE TIME (OPERATION) MEMORY (OPERATION) ~ PROFILE PROFILE SERVER
client = Client("tls://oksana-2eshadura-40cern-2ech.dask.coffea.casa:8786")

(TYPE) C GPU MEMORY GPU UTILIZATION
output = processor.run_uproot_job(fileset=fileset,
processor_instance=Processor(), CLUSTERS C + NEW
executo rocessor.dask_executor, . .
executor_args={'client's client, 'nano’s True}, Starting client and scheduler
chunksize=250000) UNL HTCondor Cluster
ksana-2eshadura-40cern-2ech.dask.coffea.casa:8786

[# # #] | 100% Completed | 1min 20.9s +//cmsaf-jh.unl.edu/user/oksana.shadura@cern.ch/proxy/8787/status

Maximum Workers: 10

<> SHUTDOV

CMSAF @ UNL Analysis: Demo

4 # Generates a 1D histogram from the data output to the 'MET' key. fill_opts are optional, to fill the graph (default is a line)
hist.plotid(output['MET'], overlay='dataset', fill opts={'edgecolor': (0,0,0,0.3), 'alpha': 0.8})

<matplotlib.axes._subplots.AxesSubplot at 0x7fd945413b50>
le6

25 B SingleMu

00
40 60 100
MET [GeV]

Easy way to print all cutflow dict values. Can just do print(output[‘cutflow']["KEY_NAME"]) for one.
for key, value in output['cutflow'].items():
print(key, value)

all events 53446198
number of chunks 214

CMSAF @ UNL Analysis: Demo

— 2000 000000 |
===
| - —
N N N N

e e e e e e e
| [e |] o B
| e] | I M
R RN R R T RN N O R P
s [g ot e s | L e e |
© N T N Y M s e ————.
[e e e e e R e)
T O O NI I
I i o e i e e
e e s o o e e P Do b
I e e e e W W
| O Y B F
e e | | e e
W R EEEsEEE T EE—
— e —— — — — e e e S | [w—]
1 e e e B | e ot e i Il s |
e | B B) | it et e Syt I o
1 = [B N S A] [——
I A D
[T T

..

