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Introduction: HPO service in ATLAS
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✤ (Needless to say the importance of hyperparameter optimisation for ML training.)

✤ The goal is to provide an HPO service to ATLAS users for Machine Learning
• Minimal user code adaption
• Support for advanced search algorithms in addition to the traditional grid or random 

search algorithms
• Visualisation of results
• To integrate geographically distributed GPU resources to provide a single resource 

pool to end-users

✤ Single-function-call pattern for HPO
• Computing resources are managed behind the scene
• Not suitable since ATLAS has its own resource management

✤ Ask-and-tell pattern for HPO
• Decoupled optimisation+sampling from training in space-time
• Purely point searching, no resource management
• We go in this way

“The ask-and-tell pattern”

http://www.cmap.polytechnique.fr/~nikolaus.hansen/collette2010Chap14.pdf
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The intelligent Data Delivery Service (iDDS)
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✤ iDDS is designed to intelligently transform and deliver needed data to 
workflows in a fine-grained way.
• My takeaway: jobs of successive tasks start as soon as possible, no need 

waiting for precedent tasks to finish, optionally making decisions in between
• Many applications share this paradigm (documentation for currently 

supported use cases), e.g.:
• Data Carousel: job starts when its input is ready, no waiting for the full 

dataset to be transferred
• A chain of tasks (DOMA): successive jobs start when enough inputs are 

produced by the precedent tasks
• A chain of tasks (Active Learning): successive jobs are created and 

submitted by iDDS based on results of precedent tasks => extendable to a 
generic function-as-a-service type of workflow

✤ HPO is a series of tasks with decision-making in between - another use case

https://idds.readthedocs.io/en/latest/
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Containerisation of the workflow
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✤ Two containers to fulfil the loop:

Evaluation

Steering • SteeringContainer - optimisation at iDDS server
• Generate next HP points with customised method
• A wide range of HPO methods are supported 

• EvaluationContainer - ML training at Grid (GPU) sites
• Submodule payload contains model definition, training 

scripts (user specific)
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HPCs as GPU resources
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✤ Summit as an example
• 4608 computer nodes

• 2 Processors x 22 cores / node
• 6 V100 GPUs / node

• Wonderful workstation for ML/HPO

✤ Challenges
• Short wall time
• Standard Grid services and workflows 

unavailable or suboptimal
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HPCs as GPU resources
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✤ Solutions
• Checkpointing supported in the HPO workflow
• Evaluation containers with power9 or multi-architecture support
• Harvester on edge to mediate communication between evaluation 

containers and iDDS/PanDA for network-less compute nodes
• Leveraging the data transfer service at each HPC centre not officially 

adopted in Rucio
• Evolutionally specialised workload:

1) Multiple single-GPU payloads on a single node
2) A multi-GPU payload on a single node
3) A multi-node/GPU payload on a static multi-node cluster
4) A multi-node/GPU payload on a dynamic multi-node cluster for 

elastic distributed training
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Summary
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✤ Aim was to provide users resources for ML/HPO

• Running with Grid site in production. Being extended to run with 
Google and Amazon cloud resources.

• Running on HPC/Summit is in progress

✤ A survey is sent out from Physics Coordination on how much GPU 
resources are/will be needed by ATLAS users
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Backup
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Visualisation
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✤ By default MLflow is turned on in EvaluationContainer
• Offline visualisation on any laptop with MLflow installed is possible
• More than visualisation - it is a ML lifecycle system

✤ Working with the PanDA Mon team to get a visualisation directly from 
Panda

You experiment

Each run
(clickable)

Search with conditions

Sortable by 
columns
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Documentations
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✤ Walk-through the Calo Image-based DNN example
• SteeringContainer: https://gitlab.cern.ch/zhangruihpc/

SteeringContainer 
• EvaluationContainer: https://gitlab.cern.ch/zhangruihpc/

EvaluationContainer

✤ How to submit HPO task
• https://twiki.cern.ch/twiki/bin/view/PanDA/PandaHPO

✤ iDDS Readme about the interfaces of ask-and-tell pattern
• https://idds.readthedocs.io/en/latest/usecases/

hyperparemeter_optimization.html

https://gitlab.cern.ch/zhangruihpc/SteeringContainer
https://gitlab.cern.ch/zhangruihpc/SteeringContainer
https://gitlab.cern.ch/zhangruihpc/EvaluationContainer
https://gitlab.cern.ch/zhangruihpc/EvaluationContainer
https://twiki.cern.ch/twiki/bin/view/PanDA/PandaHPO
https://idds.readthedocs.io/en/latest/usecases/hyperparemeter_optimization.html
https://idds.readthedocs.io/en/latest/usecases/hyperparemeter_optimization.html

