
1

 Dual-readout DD4hep migration

Sanghyun Ko
Seoul National University
On behalf of the IDEA Dual-Readout Group

09 Oct 2020

9 Oct 2020Sanghyun Ko (SNU) 2

[link]

Migration to Key4HEP elements
Migration to Key4HEP elements
 Migration to centralized SW is a good opportunity to take a look into combined detector performances, e.g.

tracker+calorimeter, ECAL+HCAL, .etc.
 However, migrating in a one big leap is not an ideal choice.

 Core software is still rapidly evolving, may introduce extra efforts for integration & maintenance.
 May need to test several options internally, usage of standalone SW is still too convenient to abandon.

→ Start by migrating to necessary subset of Key4HEP elements (e.g. DD4HEP, EDM4HEP) based on the current
standalone SW is a natural choice.
 DD4HEP & GeoSvc interface will provide great convenience already for plugging-in other detector components

compared to G4 standalone.

DetectorConstruction() Mimic already
existing interface

DD4hep
GeoSvc

GEANT4
Proto-EDMGEANT4 Proto-EDM

Analysis

Standalone GEANT4 DD4hep FCCSW

https://indico.in2p3.fr/event/20792/contributions/81821/attachments/58705/78970/Software-Status-FCC-France-May2020.pdf

9 Oct 2020Sanghyun Ko (SNU) 3

Framework structure
Structure of application with DD4hep migration [github]

DRsim

DRsimActionInitialization

DRsimPrimaryGeneratorAction

DRsimEventAction
SimG4DRcaloSteppingAction

DRcaloSiPMSD DRcaloSiPMHit

HepMCG4Interface HepMCG4Reader

GeoSvc DRconstructor
DRgeo

DRcalo.xml
DRparamBarrel

DRparamEndcap

FastSimModelOpFiber

GeoConstruction
GridDRcalo

SimG4SaveDRcaloHits

SimG4FastSimOpFiberRegionDRsimRunAction

From DD4hep
From FCCSW

 Structure is aligned based on the call/usage of the classes (solid), links (dashed), and inheritance (arrows).
 DRcalo has an unique projective + grid geometry, dedicated DDSegmentation class is created.
 Interface between GEANT4-DD4hep, Fullsim/Fastsim actions followed FCCSW-way of implementation.
 Only core GEANT4 user actions are remained required to read/write files and run application without

introducing external core SW framework.

DRparamBase“readout”“sensitive”

From GEANT4

“region”
/Detector/...
/DRsim/…
/Sim/...

static dd4hep::Ref_t

dd4hep::DDSegmentation::Segmentation

https://github.com/HEP-FCC/dual-readout

9 Oct 2020Sanghyun Ko (SNU) 4

Required optical properties

l = 10 m

GEANT4 setup – required optical properties for the simulation [Github]
Detection eff of SiPM

Scintillation spectra of PS

Rear end of a towerTransmission eff of filters

Attenuation loss diverges at 400nm →
applied filter to S channel to mitigate it

Light yield = 13.9/keV
k_B = 0.126mm/MeV k = 0.434dB/m ⇔ l = 10 m

PS PMMA

Attenuation loss of Polystyrene (PS) & PMMA

https://github.com/HEP-FCC/dual-readout/blob/master/Detector/DRcalo/compact/DRcalo.xml#L30-L505

9 Oct 2020Sanghyun Ko (SNU) 5

DD4hep vs GEANT4
Is detector description of DD4hep & GEANT4 1-to-1?
 Unfortunately not.
 No G4PVParameterised-like method in DD4hep.

 Usually this does not matter, can be done by looping dd4hep::PlacedVolume.
 Apple-to-apple geometry may lead to memory problem when the volume is sensitive.

(DDSegmentation can be used instead in the case)
 There is no corresponding method for setting Birk’s constant in DD4hep.

 In G4, the birk’s constant of a material is set by
 G4Material→GetIonisation()→SetBirksConstant();

 However in DD4hep, Birk’s constant cannot be properly initialized.
 Still, Birk’s constant can be initialized during runtime by

 GetMaterial()→GetIonisation()→SetBirksConstant();
(since G4Material is a singleton object)

 Tested 20 GeV e- result of DD4hep, using calibration constants from GEANT4, with the first 5 towers of apple-to-
apple geometry (due to memory problem).

9 Oct 2020Sanghyun Ko (SNU) 6

DD4hep vs GEANT4
DD4hep with setting Birk’s constant

9 Oct 2020Sanghyun Ko (SNU) 7

DD4hep vs GEANT4
DD4hep with setting Birk’s constant

DD4hep GEANT4

9 Oct 2020Sanghyun Ko (SNU) 8

Issue 1 – Birk’s constant
Apple-to-apple comparison of DD4hep vs G4
 After synchronizing the geometry, Birk’s constant, the DD4hep completely reproduces the result of GEANT4.
 However, this does not mean that the CPU & memory optimization point of G4 is equal to that of DD4hep.
 Also there are several methods that absent in DD4hep while persist in GEANT4.
Setting Birk’s constant in DD4hep
 Birk’s constant can be set during runtime using the fact that G4Material is a singleton object.
 However, it would make more sense to set Birk’s constant of materials at one of the DD4hep’s compact files.

 Currently, it is set at UserRunAction::BeginOfRunAction() [link]
 Having xml parsers to wrap G4Material→GetIonisation()→SetBirksConstant() should be sufficient.

w/o k_B w/ k_B

https://github.com/SanghyunKo/dual-readout/blob/master/DRsim/src/DRsimRunAction.cc#L64-L68

9 Oct 2020Sanghyun Ko (SNU) 9

Issue 2 – G4PVParameterised
Memory optimization in DD4hep w/o G4PVParameterised
 For replicating many volumes, G4 provides an optimized method of G4VPhysicalVolume, G4PVParameterised,

while DD4hep (essentially TGeo of ROOT) simply executes TGeoVolume→AddNode() multiple times.
 This does not make big difference UNLESS the volume is sensitive or has optical boundary surface.
 Replicating O(10M) of SiPMs explodes memory consumption.

 Constructing the first 5 towers costs 8 GB ↔ 150 GB for full geometry! (4 GB for full geometry in GEANT4)
 Instead of replicating many sensitive detectors, need to segment a fewer number of sensitive detectors by

utilizing DDSegmentation.
 Able to reduce memory consumption to 4.8 GB in this way.
 Requires shifts ~ 0.01mm when placing SiPMs – small enough to be mechanically tolerated.

 Have only single photosensitive
surface per tower

 Segment the surface by utilizing
DDSegmentation (GridDRcalo)

Picture by JW Park

9 Oct 2020Sanghyun Ko (SNU) 10

Issue 2 – G4PVParameterised
CPU optimization in DD4hep w/o G4PVParameterised
 Using border surface (optical surface) for Kodak filters in DD4hep consumes 20.37 % + 16.19 % + 4.83 % ~ 40 % of

total CPU time.
(profiled using callgrind with a 100 MeV e- event)

 In G4, utilizing G4PVParameterised makes it able to reduce the # of activated border surfaces.
 However, in DD4hep the # of activated border surfaces is same with the # of Kodak filters (½ of # of fibres).
 Replaced border surface to skin surface (constructor of border surface needs physical volume, while skin surface

needs only logical volume).
 Caveat: Need to apply √[transmittance] instead of the transmittance from experimental data.

 Although there is makeshift/go-around for G4PVParmeterised, it is too useful not to have it in DD4hep in terms of
memory & CPU optimization.

 Wrapper for TGeoVolumeMulti may be the potential alternative for G4PVParameterised for long-term solution.

9 Oct 2020Sanghyun Ko (SNU) 11

Issue 3 – setVisAttributes
Avoid setVisAttributes()
 Not related to physics, purely technical.
 setVisAttributes() method in DD4hep (essentially SetFillColorAlpha() in ROOT) takes almost 50 % of total CPU

time after replacing Border surface – even when visualization is not used.
(Corresponding method in GEANT4 does not show this kind of behavior.)

 It seems that DD4hep/ROOT is creating new instance of TColor every time when setVisAttributes is called,
regardless of which the same color already exists or not.

 Makeshift: Avoid calling setVisAttributes() method during simulation.

9 Oct 2020Sanghyun Ko (SNU) 12

Performance
Current computing performance of dual-readout fullsim

 Computing performance is tested after optimization with electron gun of energy from 10 GeV to 70 GeV.
 At local institution server with Intel Xeon CPU E5-2680 v2 2.8GHz
 Fast simulation for optical photon is applied
 Time taken for geometry construction ~ 7 min
 Time taken for 10 GeV simulation w/o geometry construction ~ 3 min

 Although calorimeter is the most heavy consumer of fullsim routine, there is still more room to be improved.
 Exploring multi-threading
 Improving fast simulation for optical photon tracking

2

By KY Hwang

9 Oct 2020Sanghyun Ko (SNU) 13

Issue 4 – std::strcmp & placeVolume
Slow down of dd4hep::Volume::placeVolume w/ many daughter volumes
 Although most of the issues had go-around, there is also an issue which could not be resolved.
 dd4hep::Volume::placeVolume is slowed down when the number of daughter volume in the volume is large.

 There is an open topic regarding geometry, about the number of rotation in φ direction at the moment.

 Total # of fibres are similar each other.
 The larger single tower is, the larger number of daughter volumes (fibres) in the tower.

 With a small number of daughters, initializing DD4hep geometry (practically) takes similar time to GEANT4.
 However, when the # of daughters per tower exceeds around 10k, it slows down and practically unusable [link].

nphi=283 nphi=36

https://github.com/HEP-FCC/dual-readout/issues/8

9 Oct 2020Sanghyun Ko (SNU) 14

Issue 4 – std::strcmp & placeVolume
Slow down of dd4hep::Volume::placeVolume w/ many daughter volumes
 Profiled CPU for DD4hep & standalone GEANT4 with only single tower with nphi=36, by shooting Geantino.

 It turns out that for DD4hep (TGeo of ROOT), std::strcmp is taking most of the time while constructing geometry.
 Meanwhile GEANT4 uses __gnu_cxx::__normal_iterator for navigating G4LogicalVolume* (for G4Region).

DD4hep GEANT4

9 Oct 2020Sanghyun Ko (SNU) 15

Issue 4 – std::strcmp & placeVolume
Slow down of dd4hep::Volume::placeVolume w/ many daughter volumes

DD4hep GEANT4

User function

9 Oct 2020Sanghyun Ko (SNU) 16

Issue 4 – std::strcmp & placeVolume
Slow down of dd4hep::Volume::placeVolume w/ many daughter volumes
 To profile the effect of the # of daughter volumes within the dd4hep::Volume, measured the CPU cost as a

function of the # of fibres inside the tower (~ # of daughter volumes).

 A unit CPU cost is defined as the cost corresponds to 64bit operation.
 G4hPairProductionModel is a method of initializing GEANT4’s physics model, constant everywhere (reference).

 When # of fibres is O(1000), DD4hep geometry construction takes similar order to physics initialization.
 However, if # of fibres exceeds ~ 10000, it becomes more than significantly slower than standalone GEANT4!

nfibers nfibers

cost costDD4hep GEANT4

9 Oct 2020Sanghyun Ko (SNU) 17

Summary
DD4hep migration of dual-readout calorimeter
 DD4hep reproduces the result of GEANT4 well with apple-to-apple geometry.
 Application is optimized with minor changes of several makeshifts.

Issues encountered while migrating to DD4hep
 No method to set Birk’s constant
 No analogous method to G4PVParameterised
 setVisAttributes creates a new instance of TColor every time called
 std::strcmp of TGeo slows down DD4hep’s geometry construction phase

Next action items for migration & integration
 Adopting the language of Gaudi framework for each method
 Migrate to centralized description of event data model (EDM4HEP)

 Left for a room for another discussion in the near future :)

18

 Backups

9 Oct 2020Sanghyun Ko (SNU) 19

1.8m2.556m

θ = 0.95717start = 52

Δθ

Converging frameworks
Endcap geometry
 Endcap is now migrated to the ‘rectangular’ shape.
 Barrel & Endcap parameterization is inherited from the base class.

 Allows room for alternative parameterization.
 Protected member variables with virtual initialization function for trapezoids.

 Compact description contains input parameters to base parameterization class.

 Most of the inputs can be controlled by the xml file w/o recompile (e.g. Δθ, # of rotations in φ, etc.).

DRparamBarrel DRparamEndcap

DRparamBase

9 Oct 2020Sanghyun Ko (SNU) 20

Converging frameworks
Replacing intersection solid to tube
 Putting fiber as intersection solid is inefficient & mechanically makes no sense.
 Replaced fibers to regular-shaped tubes (as already done in INFN).
Counting optical photons
 There is an open choice of the way how the light yield of each channel is estimated.

 Fully transport optical photons through the fibres
 Smear the energy deposits within the fibres based on Birk’s law

 At the moment, the framework will transport optical photons through the fibres by default (w/ Fastsim).

 Still, there is a way that both methods can be used (or switched on/off) simultaneously.
 Already made energy deposits in each Č/S fibre stored in outputs.
 A smearing sequence can be implemented in SimG4DRcaloSteppingAction [link] with minimal efforts.

(purely GEANT4, nothing to do with DD4hep)
 Proto-EDM can be extended so that either information is available w/o extra action.

https://github.com/SanghyunKo/dual-readout/blob/master/Sim/SimG4Full/src/SimG4DRcaloSteppingAction.cpp

9 Oct 2020Sanghyun Ko (SNU) 21

Physics impacts
Physics impacts of optimization

Difference in the tail of timing
caused by shifts of SiPM (0.01mm)

9 Oct 2020Sanghyun Ko (SNU) 22

Physics impacts
Physics impacts of optimization

Original Optimized

Turn-on is affected by applying
√ → interpolation → ^2

9 Oct 2020Sanghyun Ko (SNU) 23

Issues w/ DD4hep & EDM4hep
Summary of the list of issues experienced with DD4hep & EDM4hep
 No G4PVParameterised-like method in DD4hep.
 G4Material→GetIonisation()→SetBirksConstant() not available in DD4hep.
 Unusual # of calls TObjArrayIter::Next() when setVisAttributes() method is frequently used in DD4hep.

 Problem with incorporating MC truth energy deposit (SimHit) & # of photon counts (RawHit) simultaneously.
 Typical DD4hep examples retrieve MC truth energy deposit of sensitive materials only (e.g. scintillator).
 However, energy deposit of absorber materials (e.g. Cu) & # of photons counted in the readout system are

needed as well (before digitization).
 This is not possible since there can be only one SD &

readout per DD4hep detector description.
 As a makeshift, MC truth energy deposits are retrieved

at UserSteppingAction of GEANT4 at the moment.

edm4hep.yaml

9 Oct 2020Sanghyun Ko (SNU) 24

EDM with DD4HEP
Effect of DD4HEP to proto-EDM
 Dual-readout calorimeter has very complicated geometry with ~ O(100M) of channels.

i.e. geometry information (e.g. position of fibres/SiPMs) ideally should not be repeated in every event.
 Instead of saving geometry information in EDM, geometry information will be loaded by DD4HEP using a unique

readout ID with a encoded 64bit integer that contains all necessary informations to identify it.
 In this way DD4HEP can be interfaced to both of GEANT4 & reconstruction codes to utilize geometry information.

DRsimInterface

DRsimEventData
DRsimTowerData

DRsimSiPMData
DRsimEdepData

DRsimGenData
DRsimLeakageData

Evt-lv Tower-lv SiPM/fiber-lv Detector descriptions

Tower geo
SiPM/fiber geo

DD4HEP

DRsimFiberData

9 Oct 2020Sanghyun Ko (SNU) 25

Speeding up optical photons tracking
Details needed to simulate dual-readout calorimeter
 Cerenkov & scintillation processes.
 Light attenuation of Polystyrene & PMMA.
 Transmission of optical surfaces, e.g. yellow filter, SiPM.
 Total internal reflection inside optical fibers.

 Numerical aperture is important for the yield of Cerenkov channel.

CPU consumption for tracking optical photons
 A drawback for detailed simulation is CPU consumption caused by tracking optical photons.
 Single photon generates ~ O(10k) tracks for tracking, while there are ~ O(10k) optical photons per

GeV of incident particle, results ~ O(100M) tracks per GeV.
 It takes 304 ± 88 min in average to produce an event! (20 GeV e-).

→ Developed a fast simulation module [Github] to compute efficiently while keeping the details.
 The module skips the intermediate tracking of optical photons and predicts the final position,

time and momentum – by utilizing the fact that fibers are cylinder shape (i.e. facet normal always
heads the center of the fiber).
→ Reduces CPU time to 4.62 ± 1.17 min per event (20 GeV e-) with identical results to full tracking.

Cerenkov Scint

https://github.com/SanghyunKo/dual-readout/blob/transportOp_fastsim/DRsim/src/FastOpTransportModel.cc

9 Oct 2020Sanghyun Ko (SNU) 26

Speeding up optical photons tracking
Comparison to full tracking & conventional fast simulation (GFlash)

GEANT4 fullsim Fast Op transport GFlash
Shower physics Full tracking Parameterization
Relative differences to
GEANT4 fullsim N/A Optical photons

inside optical fibers
EM/hadronic particles
in the region of interest

 Role of the developed fastsim module is limited to managing optical photon transportation inside optical fibers.
 EM/hadronic physics is same to that of full simulation of G4, i.e. does NOT utilize any shower parameterization.

 Comparison of Fast Op transport to full tracking shows good agreement.

9 Oct 2020Sanghyun Ko (SNU) 27

Fast simulation
Estimating the target point of translation for fast optical photon transportation
 Based on the postulate that the step length of individual track remains same throughout whole transportation,

the point of translation can be estimated easily.

 & can be obtained by G4TouchableHandle (touchable→GetHistory()→GetTopTransform().Inverse().TransformPoint/Axis(x, y, z))
 # of expected reflections = std::floor()
 # of expected reflections
 + step/velocity # of expected reflections
 User can require n times more total internal reflections by using (# of expected reflections – n).

 n = 2 is sufficient to make sure everything works.
 If # of expected reflections < n, do nothing.

f⃗ = f⃗ 0 + L /2 î

Center of fiber ()step·axis stepaxis ()

(0, 0, 0) x⃗
x⃗ '

f⃗ 0

End of fiber ()f⃗

L/2

î

f⃗ 0 î

(f⃗ − x⃗)⋅̂i
s⃗tep⋅̂i

x⃗ ' = x⃗ + (s⃗tep⋅̂i) î ×

×t ' = t

9 Oct 2020Sanghyun Ko (SNU) 28

Fast simulation
Checking absorption probability of an optical photon
 Skipping intermediate tracking of optical photon forces to check absorption probability by the model.
 In GEANT4, interaction probability with a matter of a particle is given as a ‘lifetime’ as a unit of interaction length.

i.e., # of interaction length left = -std::log(G4UniformRand())
 The particle is killed when the travel length exceeds # of interaction length left.

 For a fast transported optical photon, absorption can be checked via
 # of expected reflections steplength / attenuation length > # of interaction length left

 Attenuation length of a material can be accessed using G4MaterialPropertyTable.
 matPropTable→GetProperty(kABSLENGTH)→Value(momentum)

×

Center of fiber ()step·axis stepaxis ()

(0, 0, 0) x⃗
x⃗ '

f⃗ 0

End of fiber ()f⃗

L/2

î

9 Oct 2020Sanghyun Ko (SNU) 29

Fast simulation
Validation of fast optical photon transportation

9 Oct 2020Sanghyun Ko (SNU) 30

Fast simulation
Validation of fast optical photon transportation

Improvement in CPU consumption using fast optical photon transportation
 It takes 4.62 ± 1.17 min in average to produce an event (tested with 1000 of 20 GeV electron events).
 While it was 304 ± 88 min when using full tracking with the same server.
 Almost ~ 70 times faster than full tracking!

 Initial proposal of the idea was presented at GEANT4 R&D meeting [link][Github].
 Planning to promote the development as a generic plug-in or module of GEANT4 for optical fiber simulation

under the supervision of GEANT4 experts.

https://indico.cern.ch/event/915715/#2-fast-optical-photon-transpor
https://github.com/SanghyunKo/dual-readout/blob/transportOp_fastsim/DRsim/src/FastOpTransportModel.cc

9 Oct 2020Sanghyun Ko (SNU) 31

Title
Text

formula

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

