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Project Motivation

• Set-up a centralized machine learning service 

• Offer variety of hardware resources to users 

• Provide an easy-to-use web interface for ML tasks 

• User advantages 

• No need to buy expensive hardware 

• Less time spent setting up infrastructure 

• More time for research 

Machine Learning Service

Pool of Resources
GPU GPU GPU

CPU CPU CPU

MEM MEM MEM

Users
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Idea

• Offer GPUs for efficient training 

• User interface - notebooks, terminal, pipelines 

• Scalability - possible migration to public clouds
CERN

Public 
Cloud
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Implementation

• Layered architecture 

• Expose GPUs from physical servers 

• Use Openstack provided VMs 

• Setup a Kubernetes cluster with 
Kubeflow

Kubernetes

Virtual Compute Nodes

Openstack (Nova)

Physical Compute Nodes

Kubeflow
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Container Evolution



Why Kubernetes?

• Manage containers in runtime environment 

• Restart containers automatically 

• Schedule jobs 

• Load balancing 

• Storage orchestration 

• Automated rollouts and rollbacks



Kubernetes Architecture

• Node - physical or virtual machine where application code can be deployed 

• Master node - a node which controls and manages a set of worker nodes 

• Kubelet - primary "node agent" that runs on each node 

• Pod - container wrapper that runs on a Node 

• Cluster - bundle of Kubernetes resources



Kubeflow - Machine Learning Toolkit for Kubernetes

• ML deployments on Kubernetes made simple, portable and scalable 

• Utilise power of Kubernetes to run ML jobs 

• Manage ML infrastructure, platform and resource considerations 

• Support for the entire lifecycle of ML applications 

• Training, inference, deployment 

• Development and production 

• Open source, wide community support
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Kubeflow
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Project Roadmap

Kubeflow Instance

SSO  
Login

EOS  
Integration

Deploy on  
k8s Cluster

Evaluate 
Feature Set

GPU Nodes

ml.cern.ch
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Kubeflow Components and Features

• Various Frameworks 

• Tensorflow, PyTorch, MPI 

• Jupyter Notebooks 

• Machine Learning Pipelines 

• Katib - Hyper-parameter Optimization 

• KALE - Notebooks to Pipelines or Katib 

• Fairing - High level API
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Jupyter Notebooks

• Easiest way to start experimenting with Kubeflow 

• Integration with other Kubeflow components 

• Access Kubeflow services in a cluster  

• Create a Notebook server using existing images 

• Select resources (CPU, MEM, GPU) 

• Create multiple Notebooks within one server
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Machine Learning Pipelines

• A pipeline is a description of an ML workflow, including all components of a 
workflow and how they combine in a form of a graph 

• A pipeline component is a self-contained set of user code, packaged as 
a Docker image, that performs one step in the pipeline
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Machine Learning Pipelines

• A user interface (UI) for managing and tracking experiments, jobs, and runs 

• An engine for scheduling multi-step ML workflows 

• An SDK for defining and manipulating pipelines and components 

• Automatic scheduling of components, run in the specified order
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Benefits of Machine Learning Pipelines

• Each step of the workflow clearly defined 

• Components can be examined separately 

• Parallelisation 

• Versioning 

• Non-blocking GPU access
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Notebooks to Pipelines

• Kubeflow SDK, using kfp Python library 

• KALE - Kubeflow Automated pipeLines Engine
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KALE - Kubeflow Automated pipeLines Engine

• Automated conversion notebooks to pipelines 

• Running the converted pipelines, in-place 

• No need to use Kubeflow SDK for conversion to pipelines 

• Provided as a UI Jupyter Lab official extension, part of a Docker image
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KALE - Kubeflow Automated pipeLines Engine
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Katib

• Hyper-parameter Optimisation 

• Neural Architecture Search
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Katib - Hyper-parameter Optimisation

• Finding the best set of non-trainable 
parameters of the models 

• Usually takes a lot of effort when 
implemented by hand 

• Made easier with pipelines, in terms 
of parallelisation 

• Automated with Katib
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TFJob - Tensorflow Distributed Training

• Split training jobs across multiple GPUs 

• TensorFlow supports distributed training 

• Jobs are split across multiple local GPUs 

• https://www.tensorflow.org/guide/distributed_training 

• TFJob - Kubernetes custom resource for distributed training 

• Jobs are split across multiple cluster GPUs 

• Combine TFJob with TensorFlow to parallelise model training 

• https://www.kubeflow.org/docs/components/training/tftraining/

https://www.tensorflow.org/guide/distributed_training
https://www.kubeflow.org/docs/components/training/tftraining/


TFJob Example



Kubeflow Fairing

• Python package for easier training and deployment of ML models 

• Easily package ML training jobs 

• Using Kaniko, images can be built without Docker daemon 

• Easily train ML models in a hybrid cloud environment, high level API 

• Run TFJobs from notebooks 

• Inspect the status of jobs, check logs 

• Streamline the process of deploying a trained model 

• Run jobs in public cloud 



Model Serving

• Provided via various tools 

• KFServing, TensorFlow Serving, Seldon… 

• Simplified with Kubeflow Fairing 

• Idea - create a server as a Kubernetes pod 

• Access server endpoint via API 

• curl -v -H “Host: hostname” “http://host_ip/v1/models/mnist:predict" -d @./input.json 

• Current status - not working due to networking issues 

• Expected to be fixed by the end of October

http://host_ip/v1/models/mnist:predict


Demo
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Use Cases

• Fast simulation with 3dGAN (ongoing) 

• DUNE experiment, CNNs 

• CMS 40MHz Scouting, MLPs

27



Upcoming

• Fix Kubeflow issues 

• KALE Notebook to Katib conversion 

• Model serving 

• EOS integration without kinit 

• Integrate 64 T4 GPUs 

• Obtain initial feedback from users 

• Stable version of ml.cern.ch cluster - end of October
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Thank you for the attention! 

Questions?
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