
Centralized Machine Learning Service with Kubeflow

Dejan Golubovic, Ricardo Rocha

1

Outline

• Introduction

• Project motivation and roadmap

• Kubeflow - features, current status of development

• Demo

• Upcoming plans

2

Project Motivation

• Set-up a centralized machine learning service

• Offer variety of hardware resources to users

• Provide an easy-to-use web interface for ML tasks

• User advantages

• No need to buy expensive hardware

• Less time spent setting up infrastructure

• More time for research

Machine Learning Service

Pool of Resources
GPU GPU GPU

CPU CPU CPU

MEM MEM MEM

Users

3

Idea

• Offer GPUs for efficient training

• User interface - notebooks, terminal, pipelines

• Scalability - possible migration to public clouds
CERN

Public
Cloud

4

Implementation

• Layered architecture

• Expose GPUs from physical servers

• Use Openstack provided VMs

• Setup a Kubernetes cluster with
Kubeflow

Kubernetes

Virtual Compute Nodes

Openstack (Nova)

Physical Compute Nodes

Kubeflow

5

Container Evolution

Why Kubernetes?

• Manage containers in runtime environment

• Restart containers automatically

• Schedule jobs

• Load balancing

• Storage orchestration

• Automated rollouts and rollbacks

Kubernetes Architecture

• Node - physical or virtual machine where application code can be deployed

• Master node - a node which controls and manages a set of worker nodes

• Kubelet - primary "node agent" that runs on each node

• Pod - container wrapper that runs on a Node

• Cluster - bundle of Kubernetes resources

Kubeflow - Machine Learning Toolkit for Kubernetes

• ML deployments on Kubernetes made simple, portable and scalable

• Utilise power of Kubernetes to run ML jobs

• Manage ML infrastructure, platform and resource considerations

• Support for the entire lifecycle of ML applications

• Training, inference, deployment

• Development and production

• Open source, wide community support
9

Kubeflow

10

Project Roadmap

Kubeflow Instance

SSO
Login

EOS
Integration

Deploy on
k8s Cluster

Evaluate
Feature Set

GPU Nodes

ml.cern.ch
11

http://ml.cern.ch

Kubeflow Components and Features

• Various Frameworks

• Tensorflow, PyTorch, MPI

• Jupyter Notebooks

• Machine Learning Pipelines

• Katib - Hyper-parameter Optimization

• KALE - Notebooks to Pipelines or Katib

• Fairing - High level API

12

Jupyter Notebooks

• Easiest way to start experimenting with Kubeflow

• Integration with other Kubeflow components

• Access Kubeflow services in a cluster

• Create a Notebook server using existing images

• Select resources (CPU, MEM, GPU)

• Create multiple Notebooks within one server

13

Machine Learning Pipelines

• A pipeline is a description of an ML workflow, including all components of a
workflow and how they combine in a form of a graph

• A pipeline component is a self-contained set of user code, packaged as
a Docker image, that performs one step in the pipeline

14

Machine Learning Pipelines

• A user interface (UI) for managing and tracking experiments, jobs, and runs

• An engine for scheduling multi-step ML workflows

• An SDK for defining and manipulating pipelines and components

• Automatic scheduling of components, run in the specified order

15

Benefits of Machine Learning Pipelines

• Each step of the workflow clearly defined

• Components can be examined separately

• Parallelisation

• Versioning

• Non-blocking GPU access

16

Notebooks to Pipelines

• Kubeflow SDK, using kfp Python library

• KALE - Kubeflow Automated pipeLines Engine

17

KALE - Kubeflow Automated pipeLines Engine

• Automated conversion notebooks to pipelines

• Running the converted pipelines, in-place

• No need to use Kubeflow SDK for conversion to pipelines

• Provided as a UI Jupyter Lab official extension, part of a Docker image

18

KALE - Kubeflow Automated pipeLines Engine

19

Katib

• Hyper-parameter Optimisation

• Neural Architecture Search

20

Katib - Hyper-parameter Optimisation

• Finding the best set of non-trainable
parameters of the models

• Usually takes a lot of effort when
implemented by hand

• Made easier with pipelines, in terms
of parallelisation

• Automated with Katib

21

TFJob - Tensorflow Distributed Training

• Split training jobs across multiple GPUs

• TensorFlow supports distributed training

• Jobs are split across multiple local GPUs

• https://www.tensorflow.org/guide/distributed_training

• TFJob - Kubernetes custom resource for distributed training

• Jobs are split across multiple cluster GPUs

• Combine TFJob with TensorFlow to parallelise model training

• https://www.kubeflow.org/docs/components/training/tftraining/

https://www.tensorflow.org/guide/distributed_training
https://www.kubeflow.org/docs/components/training/tftraining/

TFJob Example

Kubeflow Fairing

• Python package for easier training and deployment of ML models

• Easily package ML training jobs

• Using Kaniko, images can be built without Docker daemon

• Easily train ML models in a hybrid cloud environment, high level API

• Run TFJobs from notebooks

• Inspect the status of jobs, check logs

• Streamline the process of deploying a trained model

• Run jobs in public cloud

Model Serving

• Provided via various tools

• KFServing, TensorFlow Serving, Seldon…

• Simplified with Kubeflow Fairing

• Idea - create a server as a Kubernetes pod

• Access server endpoint via API

• curl -v -H “Host: hostname” “http://host_ip/v1/models/mnist:predict" -d @./input.json

• Current status - not working due to networking issues

• Expected to be fixed by the end of October

http://host_ip/v1/models/mnist:predict

Demo

26

Use Cases

• Fast simulation with 3dGAN (ongoing)

• DUNE experiment, CNNs

• CMS 40MHz Scouting, MLPs

27

Upcoming

• Fix Kubeflow issues

• KALE Notebook to Katib conversion

• Model serving

• EOS integration without kinit

• Integrate 64 T4 GPUs

• Obtain initial feedback from users

• Stable version of ml.cern.ch cluster - end of October

28

http://ml.cern.ch

Thank you for the attention!

Questions?

29

