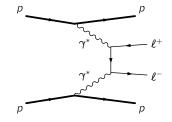
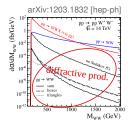


Two-photon production of lepton pairs processes at LHC


L. Forthomme (HIP)

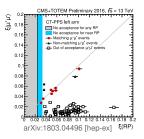
LHC EW precision sub-group meeting

Oct 7, 2020

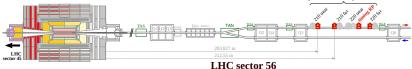

General motivations for a $\gamma\gamma \rightarrow l^+l^-$ study

Relatively large cross-section, t-channel central exclusive process (CEP)

- colour-singlet (J^{PC} = 0⁺⁺) exchange yielding large rapidity gaps between the central and scattered/remnant beam particles system
- Iow-Q² elastic emission of photons ensures "interesting" kinematic properties of the central system: good p_T balance of leptons, tend to be produced back-to-back in transverse plane, ...
- possible background source for other *I⁺I⁻* searches (e.g. exclusive/diffractive production of low-mass resonances, higher-mass *Z'* searches, *W⁺W⁻* cross section measurement, ...)



Proposed as "standard candle" for, e.g.


- Iuminosity measurement [Nucl.Instrum.Meth.A 494 (2002) 51, ...]
 - elastic emission well described theoretically, clear experimental signature, simple counting experiment to evaluate luminosity in hadron-hadron collisions
- direct CEPs experimental tagging

CMS central detector

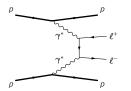
e.g. for CMS Precision Proton Spectrometer tagging leading scattered protons in high-luminosity *pp* interactions, LHC optics validation through the matching of the γγ → *I*⁺*I*⁻ system and its corresponding scattered protons system

PPS (+TOTEM) Roman Pots

Well studied in the past at SLAC, HERA, and multiple fixed targets/laser beams experiments, but also more recently at LHC energies

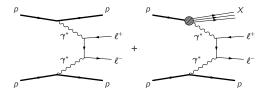
Numerous $\gamma\gamma$ precision searches already released with LHC energies.

Using "central detectors" only (pp, PbPb):

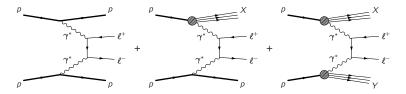

- CMS: [JHEP 01 (2012) 052, JHEP 11 (2012) 080] ($\gamma\gamma \rightarrow I^{+}I^{-}$), [JHEP 07 (2013) 116, JHEP 08 (2016) 119] ($\gamma\gamma \rightarrow W^{+}W^{-}$), [Phys.Lett.B 797 (2019) 134826] ($\gamma\gamma \rightarrow \gamma\gamma$)
- ATLAS: [Phys.Lett.B 749 (2015) 242, Phys.Lett.B 777 (2018) 303] ($\gamma\gamma \rightarrow l^{+}l^{-}$), [Phys.Rev.D 94 (2016) 3, 032011, ATLAS-CONF-2020-038] ($\gamma\gamma \rightarrow W^{+}W^{-}$), [Nature Phys. 13 (2017) 9, 852] ($\gamma\gamma \rightarrow \gamma\gamma$)
- LHCb: [LHCb-CONF-2011-022]

or adding forward proton tagging (PPS/AFP): [JHEP 07 (2018) 153, arXiv:2009.14537] ($\gamma\gamma \rightarrow l^+l^-$), [CMS-PAS-EXO-18-014/TOTEM-NOTE-2020-003] ($\gamma\gamma \rightarrow \gamma\gamma$)

Lots of "first" with $\gamma\gamma$ processes at LHC:


- **i** first **evidence**, and **observation** of $\gamma \gamma \rightarrow W^+W^-$ at 7 and 8 TeV
- first competitive limits on anomalous quartic $\gamma\gamma W^+W^-$ coupling since LEP EWK programme
- first observation of $\gamma \gamma \rightarrow l^+ l^-$ with leading protons at 13 TeV
- ...and more to come in a near future

Elastic photon emission, pure QED process. Theoretical uncertainties dominated by definition of proton electromagnetic form factors ($p + X \rightarrow p + \gamma^{(*)} + X'$)



Elastic photon emission, pure QED process. Theoretical uncertainties dominated by definition of proton electromagnetic form factors ($p + X \rightarrow p + \gamma^{(*)} + X'$)

Single proton breakup after photon emission, either fully DIS emission (probing partonic content of proton) or rescattering effects inducing nuclear break-up of nucleon

Elastic photon emission, pure QED process. Theoretical uncertainties dominated by definition of proton electromagnetic form factors $(p + X \rightarrow p + \gamma^{(*)} + X')$

Single proton breakup after photon emission, either fully DIS emission (probing partonic content of proton) or rescattering effects inducing nuclear break-up of nucleon

Fully inelastic photon emission, inducing broader photon virtuality spectra, and much closer experimentally to inclusive production processes, although central kinematics tends to retain properties of a photon-induced process

Various computation techniques for two-photon processes (in general), and $\gamma\gamma \rightarrow l^+l^-$ (in particular):

- exact calculation of the QED matrix element (using high-order techniques for numerical estimation), used in e.g. LPAIR simulation (Vermaseren, Baranov *et al.*, 1982)
 developed in the scope of HERA physics programme (*ep*, asymmetric photon emission)
 - later ported to pp/pp collisions (CDF)
- factorisation of central matrix element from photon emission: equivalent photon approximation (EPA), or other techniques ("partonic" photon PDF, k_T-factorisation, ...)
 - EPA: assuming *quasi-real*, *Q*²-integrated photon fluxes (Weizsäcker-Williams method, *J.D. Jackson-like* electrodynamics)

$$\sigma_{pp} = \int_{w_0}^{\sqrt{s}} \mathrm{d}w_{\gamma\gamma} \left(\frac{\mathrm{d}L_{\gamma\gamma}}{\mathrm{d}w_{\gamma\gamma}} \cdot \sigma_{\gamma\gamma} \right), \text{ with } \frac{\mathrm{d}L_{\gamma\gamma}}{\mathrm{d}w_{\gamma\gamma}} = \int_{w_{\gamma\gamma}^2/s}^1 \mathrm{d}x \, \frac{2w_{\gamma\gamma}}{xs} f_{\gamma}(x) f(w_{\gamma\gamma}^2/xs), x = E_{\gamma}/E_p$$

valid for low- Q^2 (photon virtualities), e.g. elastic $\gamma\gamma \rightarrow l^*l^-$ production, does not include dynamics for proton dissociation

• other techniques: photon fluxes as any collinear $\gamma(x_{Bj}, Q^2)$ PDF, or as k_T -dependent:

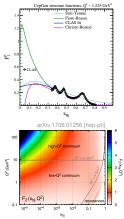
$$\begin{split} F_{\text{el}}^{\gamma}(x &= E_{\gamma}/E_{\rho}, \mathbf{k}_{\perp}^{2}) = \frac{\alpha}{\pi} \left[(1-x) \left(\frac{\mathbf{k}_{\perp}^{2}}{\mathbf{k}_{\perp}^{2} + x^{2} m_{\rho}^{2}} \right)^{2} F_{E}(Q^{2}) + \frac{x^{2}}{4} \left(\frac{\mathbf{k}_{\perp}}{\mathbf{k}_{\perp}^{2} + x^{2} m_{\rho}^{2}} \right) F_{M}(Q^{2}) \right] \\ F_{\text{ine}}^{\gamma}(x, \mathbf{k}_{\perp}^{2}) = \\ \frac{\alpha}{\pi} \left[(1-x) \left(\frac{\mathbf{k}_{\perp}^{2}}{\mathbf{k}_{\perp}^{2} + x(M_{\chi}^{2} - m_{\rho}^{2}) + x^{2} m_{\rho}^{2}} \right)^{2} \frac{F_{E}(x_{B}, Q^{2})}{Q^{2} + M_{\chi}^{2} - m_{\rho}^{2}} + \frac{x^{2}}{4} \frac{1}{x_{B}^{2}} \left(\frac{\mathbf{k}_{\perp}^{2}}{\mathbf{k}_{\perp}^{2} + x(M_{\chi}^{2} - m_{\rho}^{2}) + x^{2} m_{\rho}^{2}} \right) \frac{2x_{Bj}F_{1}(x_{B}, Q^{2})}{Q^{2} + M_{\chi}^{2} - m_{\rho}^{2}} + \frac{x^{2}}{4} \frac{1}{x_{Bj}^{2}} \left(\frac{\mathbf{k}_{\perp}^{2}}{\mathbf{k}_{\perp}^{2} + x(M_{\chi}^{2} - m_{\rho}^{2}) + x^{2} m_{\rho}^{2}} \right) \frac{2x_{Bj}F_{1}(x_{Bj}, Q^{2})}{Q^{2} + M_{\chi}^{2} - m_{\rho}^{2}} + \frac{x^{2}}{4} \frac{1}{x_{Bj}^{2}} \left(\frac{\mathbf{k}_{\perp}^{2}}{\mathbf{k}_{\perp}^{2} + x(M_{\chi}^{2} - m_{\rho}^{2}) + x^{2} m_{\rho}^{2}} \right) \frac{2x_{Bj}F_{1}(x_{Bj}, Q^{2})}{Q^{2} + M_{\chi}^{2} - m_{\rho}^{2}} + \frac{x^{2}}{4} \frac{1}{x_{Bj}^{2}} \left(\frac{\mathbf{k}_{\perp}^{2}}{\mathbf{k}_{\perp}^{2} + x(M_{\chi}^{2} - m_{\rho}^{2}) + x^{2} m_{\rho}^{2}} \right) \frac{2x_{Bj}F_{1}(x_{Bj}, Q^{2})}{Q^{2} + M_{\chi}^{2} - m_{\rho}^{2}} + \frac{x^{2}}{4} \frac{1}{x_{Bj}^{2}} \left(\frac{\mathbf{k}_{\perp}^{2}}{\mathbf{k}_{\perp}^{2} + x(M_{\chi}^{2} - m_{\rho}^{2}) + x^{2} m_{\rho}^{2}} \right) \frac{2x_{Bj}F_{1}(x_{Bj}, Q^{2})}{Q^{2} + M_{\chi}^{2} - m_{\rho}^{2}} + \frac{x^{2}}{4} \frac{1}{4} \frac{1}{x_{Bj}^{2}} \left(\frac{\mathbf{k}_{\perp}^{2}}{\mathbf{k}_{\perp}^{2} + x(M_{\chi}^{2} - m_{\rho}^{2}) + x^{2} m_{\rho}^{2}} \right) \frac{2x_{Bj}F_{1}(x_{Bj}, Q^{2})}{Q^{2} + M_{\chi}^{2} - m_{\rho}^{2}} + \frac{x^{2}}{4} \frac{1}{4} \frac{1}{4}$$

Photon fluxes & proton modelling

Elastic photon emission

- theoretical uncertainty dominated by proton electromagnetic form factors modelling
- usually dipole model for F_E and F_M is a good extrapolation of low- Q^2 measurements
- later parameterisations for broader Q² ranges can be used too

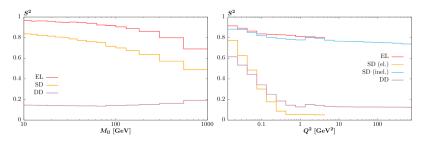
[Nucl. Phys. A 596, 367, Phys. Rev. C 65, 051001(R), Phys. Rev. C 76, 035205, ...]


Inelastic photon fluxes derived from *proton structure functions*, defined over a broad range of Q^2/x_{Bi} :

- resonances-dominated regime for low-Q², high-x_{Bi}
 - e.g. Fiore-Brasse, Christy-Bosted fits of CLAS/JLab-C measurements
- continuum fit of measurements of photoproduction processes (IP, IR exchanges) cross sections σ(γ*p)
 e.g. Suri-Yennie (default in LPAIR), ALLM, GRV
- DIS, partonic-like SFs in high-Q² range (typically > 10 GeV²)
 - from PDFs,

 $F_{2}(x_{\mathsf{Bj}}, Q^{2}) = \sum_{i=1}^{n_{q}} e_{i}^{2} \left[q_{i}(x_{\mathsf{Bj}}, Q^{2}) + \bar{q}_{i}(x_{\mathsf{Bj}}, Q^{2}) \right]$

 cocktail of all three regimes, with interfacing conditions (see e.g. LUXqed sets)


Depending on process kinematics (e.g. $w_{\gamma\gamma}$ range of interest), each structure functions set may be used to derive an envelope of systematics

In exclusive mode, observed cross section expected to be spoiled by kinematics-dependent rapidity gap survival probability

- fraction of events in which colliding beam particles kinematics is not affected by extra soft interactions
- reduction of visible cross section if rapidity gap veto is assumed, production of additional final state particles
- in PPS $\gamma\gamma \rightarrow l^+l^-$ observation with forward proton tagging, with track veto of 500 µm surrounding dilepton vertex [arXiv:1803.04496]:
 - 89%, 76%, and 13% survival probability expected for elastic, SD and DD subprocesses!
- depending on overall kinematics ranges, usually process-dependent soft survival effects

arXiv:2007.12704 [hep-ph]

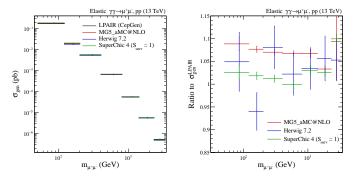
CepGen [arXiv:1808.06059]

- limited number of processes handled
 - includes LPAIR $\gamma\gamma \rightarrow l^{+}l^{-}$ as "mother process", but also k_{T} -factorisation with on- and off-shell $\gamma\gamma \rightarrow l^{+}l^{-}, \gamma\gamma \rightarrow W^{*}W^{-}$, more to come: $l^{+}l^{-}, H^{+}H^{-}, ...$
 - very modular, simple interfacing can be used to generate a large variety of processes (C++ and Fortran definitions)

current snapshot, 4 proton electromagnetic form factors and 12+ structure functions modellings implemented

- from HERA-like Suri-Yennie to "LUX-like" cocktail
- interfacing to LHAPDF for partonic SFs
- kinematics-dependant taming functions to simulate effect of a survival factor on full phase space
- still a few "childhood illnesses" to be cured, but mostly stable

SuperChic [arXiv:2007:12704]


- collinear photon PDF, with partonic treatment (DGLAP evolution) of coherent-incoherent photon emission schemes
- many processes already implemented, both on-shell and off-shell treatments of matrix element

Other **EPA** (MadGraph_aMC, Pythia, Herwig, CalcHEP, ...) and **non-EPA** (Graniitti, ...) simulation tools

- large variety of processes handled internally, or relying on external matrix elements definitions (usually only on-shell matrix elements are considered)
- usually no survival factor treatment, "Born-level" cross-sections

Baseline comparison: generator-level cross section for elastic $\gamma\gamma \rightarrow \mu^+\mu^-$ with "realistic" LHC conditions ($p_T^{\mu} > 15$ GeV, $|\eta_{\mu}| < 2.5$), binned in m_{ll}

Compatibility (10% difference at most) between all elastic $\gamma\gamma \rightarrow l^+l^-$ predictions, gives a good hint of **EPA validity** for this kinematics mode

Dissociative predictions (only handled by SuperChic and LPAIR/CepGen) differ by a few percents too, neglecting soft survival factor contributions (SuperChic 4 only)

• for processes probing a high- Q^2 /perturbative regime (e.g. $\gamma\gamma \rightarrow t\bar{t}$), combined el.+SD+DD in the same ballpark as CepGen (k_T) and SuperChic

LHC experiments are now probing two-photon processes (and more subclasses of central exclusive processes) on a more regular basis

- first confined to "specialised forward study groups", now extending to more SM/BSM studies probing higher and higher mass ranges where they become noticeable
- not only an extra background source, also interesting observations to be made
 - see for instance, still competitive sensitivity to AQGCs for $\gamma \gamma \rightarrow W^+ W^-$ studies in CMS and ATLAS)
- differential distributions are a good input to theorists, either in the modelling of structure functions, or characterisation of rapidity gap survival factor