

Imperial College London

Weak Mixing Angle: LHCb Pseudodata Studies

W. Barter

Imperial College London 07/10/20

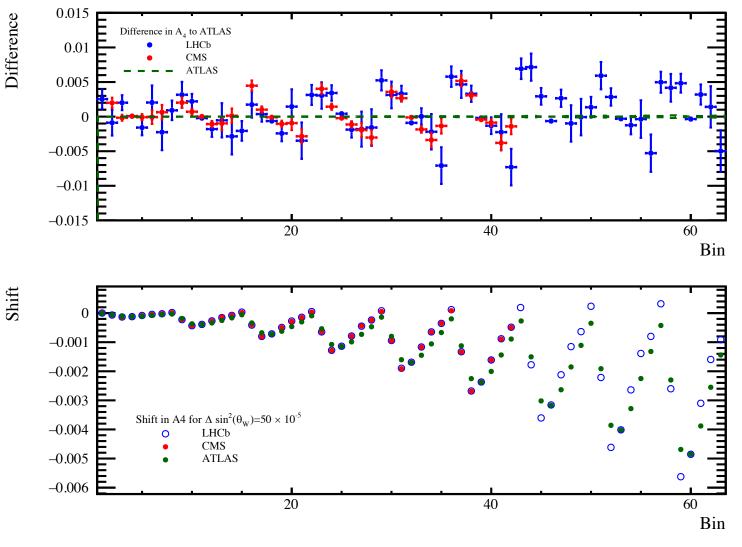
Details

- Compare and combine pseudodata of measurements of A_4 at different experiments.
- Use a common framework for these studies:
 - POWHEG + Pythia8; LO EW, NLO(+PS) QCD
 - PDF: NNPDF31_nnlo_as_0118_hessian
 - Bins of width 0.4 in |y|
 - 7 bins in dimuon invariant mass: {50, 66, 76, 86, 96, 106, 116, 150 GeV}
- Since last time:
 - Sample size increased (750M events generated in 4pi, sample in LHCb equivalent to a luminosity >30 times larger than Run III)
 - Sensitivity per bin determined.

LHCb Pseudodata Studies

LHCb acceptance

Increasing mass \mathbf{A}_{4} 1.5 0.5 -0.5 -1-1.5-210 20 30 40 3.2 3.6 2.8 4.0 4.4 2.0 2.4 4.8 $y_z =$ ΔA_4 0.05ահահահահահահահահահա 0.04 0.03 0.02 0.01 -0.01-0.02-0.03-0.04-0.0510 20 30 40 Bin number - 35 Increasing rapidity

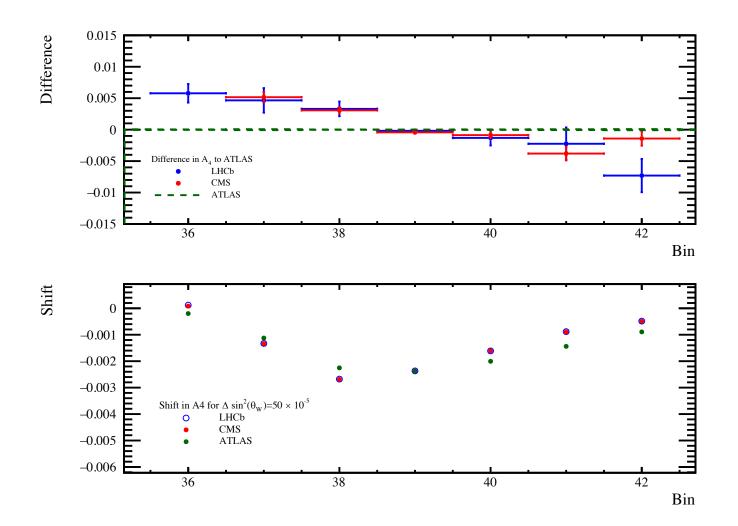

- A_4 determined with fit to generator level data (leptons in 4π).
- Bins in mass and rapidity; shift from weak mixing angle in blue (±50×10⁻⁵); uncertainty from PDFs in red.
- Binning scheme here:

Bin number = Mass Bin + Rapidity Bin * 7

CMS values from: aleko_sw2_v1.root Is there a version without "first mass bin" cuts?

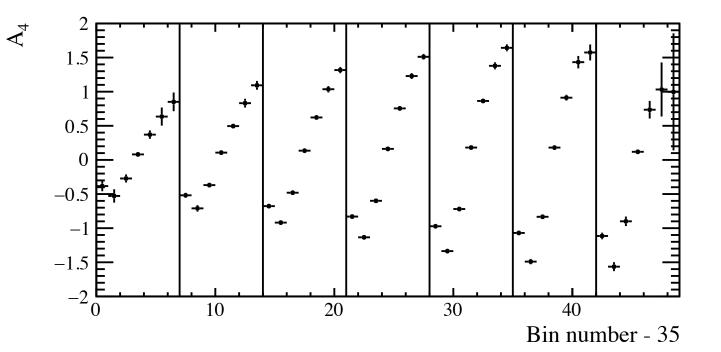
Validation

- ATLAS, CMS, LHCb all produce A₄ predictions, and we see excellent agreement on the Z peak.
- We also agree on the shift in A₄ at mZ that is induced by a shift in the weak mixing angle.
- Plot excludes lowest mass CMS bin.


Bin = Mass Bin + Rapidity Bin * 7

07/10/20

Slide 4


Validation

- Zoom in on the overlap region between the LHCb, ATLAS and CMS acceptance.
- Very good agreement between CMS and LHCb in A4 values.
- In the Z bin: Very good agreement between all 3 studies.

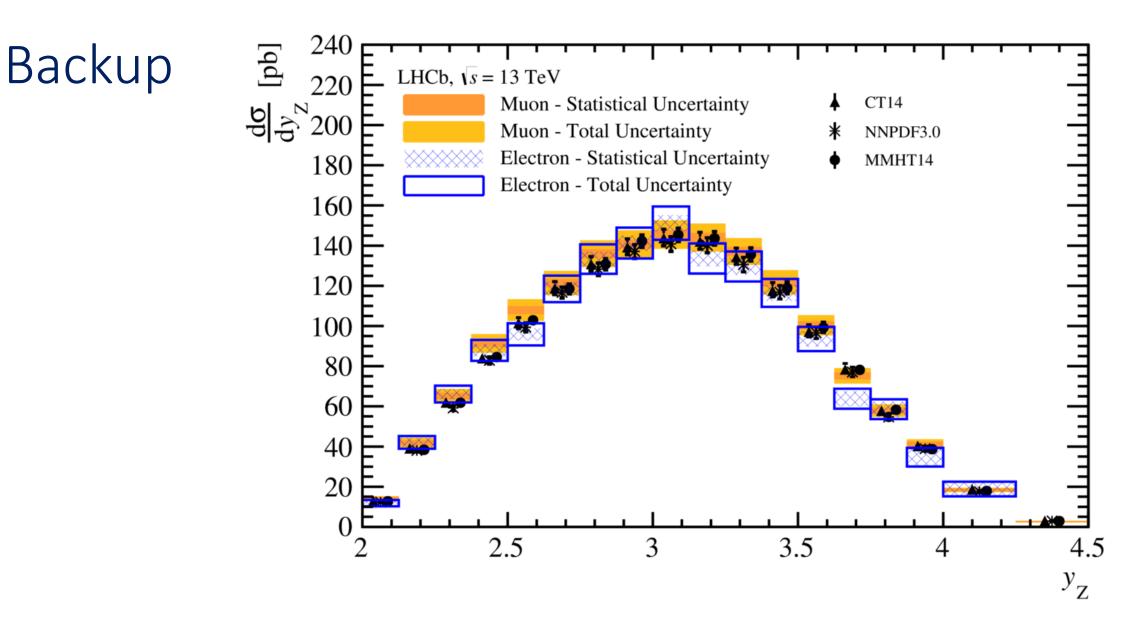
- Consider events within LHCb acceptance:
 - Kinematic selection defined by previous analyses and current plans for weak mixing angle measurement.
 - Consider 2 < y_z < 4.8.
- Study performed at generator level (no smearing).
- Normalise expected yields to those found in √s = 13 TeV cross-section analysis, scaled by full Run II integrated luminosity (6/fb) so include effects of detection efficiency ≠ 100%.
- Expect roughly 1M events in LHCb acceptance in Run II dataset.
- Fit $\cos \theta$ distribution for A₄(m,y).

 Fit to extract A4 values (and expected statistical uncertainty on these values).

LHCb Pseudodata Studies

- Extract favoured value of weak mixing angle from pseudodata.
- For Run II, LHCb expects Stat Unc: 31×10^{-5} ; PDF Unc (not profiled): 21×10^{-5}
 - Asimov and Poisson-fluctuated sets agree.
 - Eigenvector with largest contribution to uncertainty is eigenvector 29
 - Aleko showed profiling had biggest impact on this eigenvector.
 - Use of PDF reweighting techniques (and MC replica sets) already show that LHCb Run II dataset does not significantly further reduce the PDF uncertainty in the LHCb acceptance.
 - Work to be done: implement PDF profiling (numerically equivalent to reweighting)
- LHCb Run III (using LHCb upgrade) should reduce this statistical uncertainty by a factor 2.
- Will upload data to /afs/cern.ch/user/w/wbarter/public/ForEWWG/ in next few days.

	_			_	
bin	уZ	sensitivity / 1E-5	bin	уZ	sensitivity / 1E-5
36		32000	57		4400
37		3700	58		610
38		1100	59		190
39	2.0 - 2.4	330	60	3.2 - 3.6	60
40		1900	61		360
41		7500	62		1400
42		14000	63		2300
43		11000	64		3400
44		1300	65		570
45		410	66		190
46	2.4 - 2.8	120	67	3.6 - 4.0	63
47		720	68		390
48		2800	69		1600
49		5100	70		2900
50		6300	71		3100
51		780	72		660
52		240	73		240
53	2.8 - 3.2	74	74	4.0 - 4.4	91
54		440	75		650
55		1700	76		3400
56		2900	77		13000


bin	уZ	sensitivity / 1E-5
78		3400
79		1300
80		560
81	4.4 - 4.8	290
82		3700
83		38000
84		34000

- Pseudodata assumes use of full LHCb Run II dataset.
- Sensitivity to the weak mixing angle in each bin.
- Note majority of LHCb events in region 2.4<yZ<3.6

William Barter (Imperial College London)

Conclusions

- CMS and LHCb A4 predictions agree well.
- All 3 experiments agree well at mZ.
- LHCb pseudodata analysed assuming Run II yields.
- Sensitivity to the weak mixing angle shown in each bin.
- To Do: PDF profiling (reweighting of MC replica PDF sets shows expected impact is small).

William Barter (Imperial College London)

07/10/20

Slide 11