

The muCool project at PSI: A novel high-brightness muon beam

Angela Papa, Paul Scherrer Institut and University of Pisa/INFN on behalf of muCool collaboration CERN, Switzerland (remote)

Muon Cooling Working group, 10th December 2020

Outline

- Current and incoming status of PSI facility
- Developments for high brightness muon beams

The world's most intense continuous muon beam

- PSI delivers the most intense continuous low momentum muon beam in the world (Intensity Frontiers)
 - Intensity = 5x 10⁸ muon/s, low momentum p = 28 MeV/c

590 MeV proton ring cyclotron Time structure: 50 MHz/20 ns

Power: 1.4 MW

PSI landscape

The role of the low energy precision physics

 The Standard Model of particle physics: A great triumph of the modern physics but not the ultimate theory

 Low energy precision physics: Rare/forbidden decay searches, symmetry tests, precision measurements very sensitive tool for unveiling new physics and probing very high energy scale

The world's most intense continuous muon beam

HiMB motivations

- PSI delivers the highest intensity DC μ + beam: 5 x 10 8 μ +/s
- Aim: O(10¹⁰ muon/s); Surface (positive) muon beam (p = 28 MeV/c); DC beam
- Time schedule: **O(2025)**
- Next generation cLFV experiments require higher muon rates
- New opportunities for future muon (particle physics) based experiments
- New opportunities for µSR experiments
- Different experiments demand for a variety of beam characteristics:
 - DC vs pulsed
 - Momentum depends on applications: stopped beams require low momenta
- Here focus on DC low momenta muon beams
- Maintain PSI leadership in DC low momentum high intensity muon beams

Fermilab →5x10¹⁰ μ⁻/s Mu2e:R_{μe} =
$$\mathcal{O}$$
(10⁻¹⁷)

$$J$$
-PARC →10¹⁰ μ-/s
COMET: $R_{\mu e} = O(10^{-17})$

HiMB @ HE

- Back to standard target to exploit possible improvements towards high intensity beams:
 - Target
 - alternate materials
 - geometry

- Beam line
 - high capture efficiency
 - large phase space acceptance transport channel

Slanted target: towards the test

Prototype for the New Target E

- Upgrade existing graphite production target E 40 mm
 - 8° slanting angle: Measurement in forward / backward / sideways direction
 - Production and implementation feasible
 - Mechanical and thermal simulations completed and no show-stopper found
 - Installed in week 48 (Nov. 25th, 2019)
 - · Goals
 - Increase surface muon rates for all connected beam lines
 - · Increase safety margin for "missing" target with the proton beam

New Target E

Slanted target: 2019 test Results

- Expect ~30-60 % enhancement
- Measurements successfully done in different experimental areas in fall 2019
- Analysis still undergoing: increased muon yield CONFIRMED!

New Target E

· To be seen: impact of higher thermal stress on long term stability of target wheel

- Aim: low energy high-brightness muon beam
- Phase space reduction based on: dissipative energy loss in matter (He gas) and position dependent drift of muon swarm
- Increase in brightness by a factor 10¹⁰ with an efficiency of 10⁻³

for: μSR (solid state physics) muonium (spectroscopy, gravitational interaction...) muon experiments (μEDM, g-2...)

- Aim: low energy high-brightness muon beam
- Phase space reduction based on: dissipative energy loss in matter (He gas) and position dependent drift of muon swarm
- Increase in brightness by a factor 10¹⁰ with an efficiency of 10⁻³

for:

μSR (solid state physics) muonium (spectroscopy, gravitational interaction...) muon experiments (μΕDM, g-2...)

- Aim: low energy high-brightness muon beam
- Phase space reduction based on: dissipative energy loss in matter (He gas) and position dependent drift of muon swarm
- Increase in brightness by a factor 10¹⁰ with an efficiency of 10⁻³

for:

μSR (solid state physics) muonium (spectroscopy, gravitational interaction...) muon experiments (μΕDM, g-2...)

ightarrow Transforms a standard μ ⁺ beam into a high-brightness low-energy μ ⁺ beam

- Aim: low energy high-brightness muon beam
- Phase space reduction based on: dissipative energy loss in matter (He gas) and position dependent drift of muon swarm
- Increase in brightness by a factor 10¹⁰ with an efficiency of 10⁻³

for:

μSR (solid state physics) muonium (spectroscopy, gravitational interaction...) muon experiments (μΕDM, g-2...)

Trajectories in E and B field

Trajectories in E and B field

$$\uparrow \vec{E} \qquad + \qquad \downarrow \qquad =$$

Trajectories in E and B field + gas

Working principle: 1st Stage

Experimental setup and results: 1st stage and 2 stage

- Separately longitudinal and transverse compression: PROVED
- Very good agreement between data and simulations

Experimental setup and results: 1st stage

- Separately longitudinal and transverse compression: PROVED
- Very good agreement between data and simulations

Experimental setup and results: 1st stage

- Separately longitudinal and transverse compression: PROVED
- Very good agreement between data and simulations

Experimental setup and results: 1st stage

Experimental setup and results: 2nd stage

- Separately longitudinal and transverse compression: PROVED
- Very good agreement between data and simulations

The muCool project at PSI: Status

- 1st stage + 2nd stage
- Next Step: Extraction into vacuum

Outlook - HiMB

- HiMB aims at surface high intensity muon beam O(10¹⁰ muon/s)
- Initial simulations show that such rates are feasible
- Beam optics and investigations on proton beam modifications underway
- HiMB opens the door to interesting physics opportunities for particle physics and materials science using high-intensity and high-brightness muon beams (Mu3e Phase II, Low energy MuSR, Muonium spectroscopy, ...)
- Put into perspective the target optimisation only, corresponding to 50% of muon beam intensity gain, would corresponds to effectively raising the proton beam power at PSI by 650 kW, equivalent to a beam power of almost 2 MW without the additional complications such ad increased energy and radiation deposition into the target and its surroundings
- If the same exercise is repeated put into perspective the beam line optimisation the
 equivalent beam power would be of the order of several tens of MW

Outlook - muCool

- Aim: low energy high-brightness muon beam
- Increase in brightness by a factor 10¹⁰ with an efficiency of 10⁻³
- First two stages demonstrated independently
- Measurements and simulations agree
- · Current development: vacuum extraction

Thank you for your attention!

The muCool project at PSI: Status

- Separately longitudinal and transverse compression: PROVED
- Very good agreement between data and simulations

