FTS Log Analysis in Atlas - Status and Plans

 $\bullet \bullet \bullet$

Mayank Sharma (on behalf of the Operational Intelligence collaborators)

NLP components in OpInt Framework

- Abstract classes and methods
- Provide an interface between the framework and various ML approaches for log analysis
- ML experts arrange their code into 3 classes provided by the framework
 - Tokenization
 - Vectorization
 - Clusterization
- ML Experts are free to use any libraries
- OpInt Framework services can train/load models, evaluate results on demand (UI) or
- <u>Specification document</u>
- <u>OpInt F/w code</u>

NLP components in OpInt Framework

- Support for Jupyter Notebooks
- ML experts can use their NLP components of the Framework in jupyter notebooks
- Good to test implementation of ML approach within the Framework

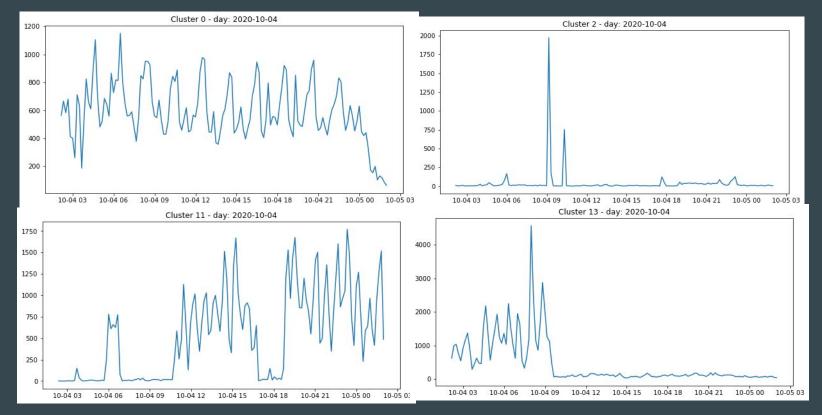
```
def train kmeans(dataset, k, ft col='features', distance="cosine", initSteps=100,
10
                     tol=0.00001, maxIter=50, save path=None, mode="new", log path=None):
11
        """Train K-Means model.
12
13
14
        -- params:
        dataset (pyspark.sql.dataframe.DataFrame): data frame with a vector column with features for the kmeans algorithm
15
        k (int): number of clusters
16
17
        ft col (string): name of the features column
        distance ("euclidean" or "cosine"): distance measure for the kmeans algorithm
18
19
        tol (int): tolerance for kmeans algorithm convergence
        maxIter (int): maximum number of iterations for the kmeans algorithm
20
21
        save path (string): where to save trained kmeans model
        mode ("new" or "overwrite"): whether to save new file or overwrite pre-existing one.
22
        log path (string): where to save optimization stats. Default None (no saving)
23
24
25
        Returns:
26
        model fit (pyspark.ml.clustering.KMeansModel): trained K-Means model
        .....
27
```

FTS Log Analysis: Data

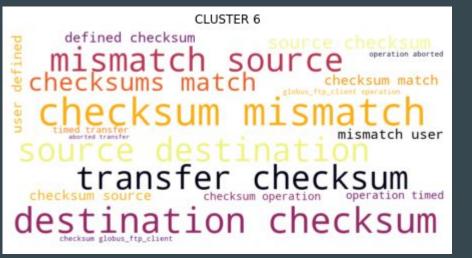
- FTS data fetched from HDFS

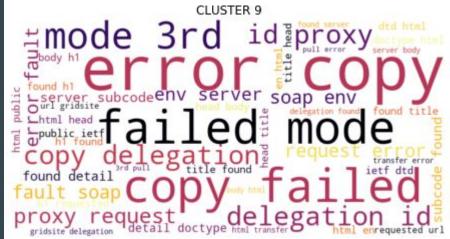
t_error_message	src_hostname	dst_hostname	tr_timestamp_complete
DESTINATION OVERWRITE Result (Neon): Could not read status line: Secure connection truncated after 1 attempts	ccdavatlas.in2p3.fr	dynafed- atlas.cern.ch	2020-10-04 17:42:36.041
TRANSFER ERROR: Copy failed with mode 3rd pull, with error: copy (Neon): Could not parse redirect destination URL	sdrm.t1.grid.kiae.ru	eosatlas.cern.ch	2020-10-04 17:41:54.533
DESTINATION OVERWRITE Result (Neon): Could not read status line: Secure connection truncated after 1 attempts	t2-dpm-01.na.infn.it	dynafed- atlas.cern.ch	2020-10-04 17:43:33.281
[gfalt_copy_file][perform_copy][gfal_http_copy] DESTINATION OVERWRITE [gfal_http_copy_overwrite] [gfal_http_exists] [gfal_http_access][davix2gliberr] Failure (Neon): Server certificate verification failed: certificate has expired after 1 attempts	se03.esc.qmul.ac.uk	dynafed.stfc.ac.uk	2020-10-04 17:44:48.205
DESTINATION OVERWRITE Result (Neon): Could not read status line: Secure connection truncated after 1 attempts	atlas.dcache.nikhef.nl	dynafed- atlas.cern.ch	2020-10-04 17:42:59.003
DESTINATION OVERWRITE Result (Neon): Could not read status line: Secure connection truncated after 1 attempts	sdrm.t1.grid.kiae.ru	dynafed- atlas.cern.ch	2020-10-04 17:41:58.083

FTS Log Analysis: Results


- Cluster Summary
- Word Clouds
- Time Plots

FTS Log Analysis: Cluster Summary


Full results at: sample_app_results


Progressive ID	ID	n_mes sages	unique_ strings	unique_ pattern s	top_5_msg	top_5_src	top_5_dst
4	13	65574	6760		msg': 'transfer globus_ftp_client the server responded with an error 500 command failed internal server error', 'n': 45867, 'n_perc': 0.6995	src': 'NDGF-T1_SE', 'n': 5029, 'n_perc': 0.0767	dst': 'GRIF_LAL_SE_LHCB', 'n': 45690, 'n_perc': 0.6968
					msg': 'transfer globus_ftp_client the server responded with an error 500 command failed open/create [error] server responded with an error [3021] unable to get quota space quota not defined or exhausted \\\$FILE_PATH disk quota exceeded', 'n': 8656, 'n_perc': 0.132	src': 'SARA-MATRIX_SE', 'n': 4658, 'n_perc': 0.071	dst': 'USCMS-FNAL-WC1_S E_CMS', 'n': 6558, 'n_perc': 0.1
				0 73	msg': '[gfalt_copy_file][perform_copy][gridftp_plugin_filecopy][gridftp_plugin_filecopy] transfer globus_ftp_client the server responded with an error 500 command failed open/create [error] server responded with an error [3021] unable to get quota space quota not defined or exhausted \\\$FILE_PATH disk quota exceeded', 'n': 2403, 'n_perc': 0.0366	src': 'NIKHEF-ELPROD_SE_ 167_ATLAS', 'n': 4564, 'n_perc': 0.0696	dst': 'CERN-PROD_SE_CMS ', 'n': 4680, 'n_perc': 0.0714
					msg': 'transfer globus_ftp_client the server responded with an error 500 command failed ipc failed while attempting to perform request', 'n': 2175, 'n_perc': 0.0332	src': 'RAL-LCG2_SE_1_ATL AS', 'n': 4432, 'n_perc': 0.0676	dst': 'IFCA-LCG2_SE_CMS', 'n': 1398, 'n_perc': 0.0213
					msg': 'source checksum globus_ftp_client the server responded with an error 500 error commands denied', 'n': 1489, 'n_perc': 0.0227	src': 'RRC-KI-T1_SE_1_ATL AS', 'n': 2845, 'n_perc': 0.0434	dst': 'UKI-SCOTGRID-GLAS GOW_SE_0_ATLAS', 'n': 1132, 'n_perc': 0.0173

FTS Log Analysis: Time Plots

FTS Log Analysis: Word Cloud

FTS Log Analysis: Practical Implications

- Luca recently presented Atlas Software and Computing Week
 - <u>Slides</u>
- Detected clusters dominated by certain sites based on the output of his ML approach
- Found a corresponding GGUS ticket for the site

FTS Log Analysis: Approach

Start from error messages and try to group them based on meaning. The extra information is considered in a second phase.

In order to do that, we can distinguish two steps:

- vectorization (tokenization + language model^(*)): first transform text to numeric
- clustering^(#): then try to group numeric representations of messages

10

Current strategy: online re-training

Train a vectorization model once on a big dataset (possibly updating once in a while).

Re-train a clustering algorithm online every time new data come in (perhaps 1 day time windows)

11

Implementation in OpInt Framework

- Luca provided implementation of his algorithms corresponding to the abstract NLP classes of the OpInt Framework

- PySpark based approach
 - <u>Tokenization</u>
 - <u>Vectorization</u>
 - <u>Clustering</u>
- <u>Jupyter Notebook</u>
- <u>Django app</u>

Execution Environment

- OpInt Framework has been deployed on CERN OpenShift and CERN OpenStack VMs
- Resources provisioned by us for the web application are optimized for ML.
- ML needs to be delegated to dedicated ML clusters or better K8s based backend.
- We used workers in the CERN Spark clusters for ML tasks.
 - OpenStack VM acts as a spark submit node
 - Runs OpInt Framework + Luca's implementation of NLP adapters.
 - Spark_submit with command line options used to execute the ML jobs.
- Panos is looking into K8s based deployments

What's Next

- Look into dedicated resources for ML workloads.
 - Spark team would be able to provision a spark queue for this purpose.
 - GPUs?
- Interface OpInt Framework to interact with these resources.
- Evaluation of results is required
 - How to convince people to invest time into it?
 - Cross check with GGUS tickets as pre-validation to show the approach has potential
 - Improve result visualization (Make it more user friendly and intuitive)
 - Involve Experts
- Result exposure to <u>live page</u> (ADCoS)
- <u>Annotations</u> of results?