
FTS Log Analysis in Atlas - Status
and Plans

Mayank Sharma

(on behalf of the Operational Intelligence collaborators)

NLP components in OpInt Framework
- Abstract classes and methods

- Provide an interface between the framework and various ML approaches for log

analysis

- ML experts arrange their code into 3 classes provided by the framework

- Tokenization

- Vectorization

- Clusterization

- ML Experts are free to use any libraries

- OpInt Framework services can train/load models, evaluate results on demand (UI)

or

- Specification document

- OpInt F/w code

https://docs.google.com/document/d/1qztk6n6_OYubDKynQL05G0H9Yuwf7CX8K-SFJyeE4z0/edit#heading=h.d58inb9lq317
https://github.com/operationalintelligence/opint-framework/blob/master/opint_framework/core/nlp/nlp.py

NLP components in OpInt Framework
- Support for Jupyter Notebooks

- ML experts can use their NLP components of the Framework in jupyter

notebooks

- Good to test implementation of ML approach within the Framework

FTS Log Analysis: Data
- FTS data fetched from HDFS

FTS Log Analysis: Results
- Cluster Summary

- Word Clouds

- Time Plots

FTS Log Analysis: Cluster Summary
Full results at: sample_app_results

https://docs.google.com/spreadsheets/d/1mikf7BP51hHDgiC37CLo_suCLW3ylb_zovGQ4swF4Jo/edit?usp=sharing

FTS Log Analysis: Time Plots

Luca Clissa -- luca.clissa2@unibo.it

FTS Log Analysis: Word Cloud

Luca Clissa -- luca.clissa2@unibo.it

FTS Log Analysis: Practical Implications

- Luca recently presented Atlas Software and Computing Week

- Slides

- Detected clusters dominated by certain sites based on the output of his ML

approach

- Found a corresponding GGUS ticket for the site

https://docs.google.com/presentation/d/1zJl2oLDO1S6l8T09e-pWS-Rx7aTxr9hGCMh8bPLo3pc/edit?ts=5f742b35#slide=id.g71852d99bc_3_318

Start from error messages and try to group them based on meaning.

The extra information is considered in a second phase.

In order to do that, we can distinguish two steps:

● vectorization (tokenization + language model

(*)

): first transform

text to numeric

● clustering

(#)

: then try to group numeric representations of

messages

FTS Log Analysis: Approach

10

Slide by Luca Clissa -- luca.clissa2@unibo.it

#
#

Current strategy: online re-training

Train a vectorization model once on a big dataset (possibly updating

once in a while).

Re-train a clustering algorithm online every time new data come in

(perhaps 1 day time windows)

11

Slide by Luca Clissa -- luca.clissa2@unibo.it

Implementation in OpInt Framework
- Luca provided implementation of his algorithms corresponding to the abstract

NLP classes of the OpInt Framework

- PySpark based approach

- Tokenization

- Vectorization

- Clustering

- Jupyter Notebook

- Django app

https://github.com/operationalintelligence/opint-framework/blob/master/opint_framework/apps/example_app/nlp/pyspark_based/tokenization.py
https://github.com/operationalintelligence/opint-framework/blob/master/opint_framework/apps/example_app/nlp/pyspark_based/vectorization.py
https://github.com/operationalintelligence/opint-framework/blob/master/opint_framework/apps/example_app/nlp/pyspark_based/clustering.py
https://github.com/operationalintelligence/opint-framework/blob/master/opint_framework/apps/example_app/notebooks/101_samlpeAPP_train.ipynb
https://github.com/operationalintelligence/opint-framework/tree/master/opint_framework/apps/example_app

Execution Environment
- OpInt Framework has been deployed on CERN OpenShift and CERN OpenStack

VMs

- Resources provisioned by us for the web application are optimized for ML.

- ML needs to be delegated to dedicated ML clusters or better K8s based backend.

- We used workers in the CERN Spark clusters for ML tasks.

- OpenStack VM acts as a spark submit node

- Runs OpInt Framework + Luca’s implementation of NLP adapters.

- Spark_submit with command line options used to execute the ML jobs.

- Panos is looking into K8s based deployments

What’s Next
- Look into dedicated resources for ML workloads.

- Spark team would be able to provision a spark queue for this purpose.

- GPUs?

- Interface OpInt Framework to interact with these resources.

- Evaluation of results is required

- How to convince people to invest time into it?

- Cross check with GGUS tickets as pre-validation to show the approach has potential

- Improve result visualization (Make it more user friendly and intuitive)

- Involve Experts

- Result exposure to live page (ADCoS)

- Annotations of results?

https://adcos.web.cern.ch/adcos/For_ADCoS_Shifters/

