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A heterogeneous computing framework

The Allen framework is a modular, scalable and flexible framework for physics
reconstruction on accelerators.

Features:

 Supports CPU, CUDA, CUDACLANG and HIP targets. Possibly SYCL (tbhd).
« Multi-threaded, pipelined, configurable framework.

+ Multi-event scheduler (soon), event batches support.
 Custom memory manager, no dynamic allocations, flexible datatypes.
« Built-in validation. Generation of graphs with ROOT.


https://root.cern.ch/

Host and device



Host and device

The framework is geared towards using an accelerator to speed up parts of the computation. We
can distinguish:

+ Host processor - Processor that steers the computation.
« Device processor - Accelerator specialized for parallel processing.
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The host is always a CPU. However, the device is configurable. Typically, the device is one of the
following:

+ ACPU.
+ AGPU.
* An FPGA.

Allen supports several device as targets with the cmake option TARGET DEVICE:

« CcPU (default) - Sets the CPU as the device.

« CUDA - Targets an NVIDIA GPU, uses the nvcc compiler.
 HIP - Targets an AMD GPU with either hipcc or clang-hip.
 CUDACLANG - Targets an NVIDIA GPU with clang.



Types of algorithms

Allen distinguishes two types of algorithms:

+ HostAlgorithm - The execution of the algorithm happens solely on the host.
« DeviceAlgorithm - The algorithm offloads some of the work to the device.
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In order to use the device, one has to define kernels. A global kernel (or global function) is a function
that executes on the device.

DeviceAlgorithms use global kernels to offload execution to the device. Many kernels may be de-
fined for a DeviceAlgorithm, although typically one is enough.

Eg. A SAXPY kernel:

__global__
void saxpy(int n, float a, float *x, float *y)
{
for (unsigned i = threadIdx.x; i < n; i += blockDim.x) {
y[il = a * x[i]l + y[il;
¥
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Configuring kernel invocations

Generally when invoking a kernel, there are some configurable options, namely:

* Grid dimension - Number of blocks of kernel call.
* Block dimension — Number of threads per block.
* Dynamic shared memory size (notsupported by Allen) - Size of dynamic shared memory.

+ Stream - Stream that steers the execution.

Every kernel invocation can be configured differently. Usually a property is defined to be able to
test the most efficient configuration in practice.



Two processors, two memories

Host and device are two conceptually separate processors. Therefore, host and device have two
separate memories.

In order to avoid blocking memory allocation requests on the device, we have created our own
memory manager. Contrary to main memory, the device memory is limited in space and thus buffers
are freed as soon as they are not needed anymore.

The memory manager can be configured as:

« Single allocation (default) - A single allocation happens on the memory manager instance of
a user-defined memory amount. All subsequent malloc requests must fit under this memory
amount, else they trigger a restart of the event batch with less events in the batch.

+ Multiple allocations - Each malloc / free triggers a backend-specific call (eg. memalign,
cudaMalloc, ...). Slower but allows to test out-of-bound accesses and better for memchecks.

We use an instance for the host and an instance for the device memory.



Allen algorithms



Types of algorithms

Sequence of algorithms

DEVICE ALGORITHM "Generate candidates"

HOST INPUT host_number_of_selected_events_t
DEVICE INPUT dev_event_list_t

DEVICE OUTPUT dev_candidates_sizes_t
PROPERTY "block dimensions" = {256, 1, 1}
PROPERTY "tolerance" = 2.5f

\/

HOST ALGORITHM '"Prefix sum candidates"

HOST OUTPUT host_number_of_cluster_candidates_t »--

DEVICE INPUT dev_candidates_sizes_t =
DEVICE OUTPUT dev_candidates_offsets_t >

\j

Memory manager

Host memory

"host_number_of_selected_events"

"host_number_of_cluster_candidates"

Device memory

"dev_event_list"
"dev_candidates_sizes"

"dev_candidates_offsets"



Declaration of two methods

Every algorithm must declare methods set_arguments_size and operator ().

Algorithm sequence

—> "Generate candidates" ———> "Prefix sum candidates" ———>

e e
set_arguments_size — memory (de)allocation *,:‘ operator()
i

If you are familiar with Gaudi / Athena, you may think of the operator () as in those frameworks. It
is essentially where the algorithm action happens.

Allen requires an additional set_arguments_size method. Explicit dynamic memory allocation (eg.
std: :vector) is not allowed in Allen, and instead users must use this method to decide how much
memory they needed.
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GenerateCandidates

As a brief example, we'll show a minimal implementation of DeviceAlgorithm GenerateCandidates.

+ Header file GenerateCandidates. cuh.

» Source file GenerateCandidates. cu.



Header GenerateCandidates.cuh

1 #pragma once
2 #include "DeviceAlgorithm.cuh"

3

4 namespace generate_candidates {

5 struct Parameters {

6 HOST_INPUT (host_number_of_selected_events_t, uint) host_number_of_selected_events;
7 DEVICE_INPUT (dev_event_list_t, uint) dev_event_list;

8 DEVICE_OUTPUT (dev_candidates_sizes_t, uint) dev_candidate_size;

9 PROPERTY (tolerance_t, "tolerance", "tolerance ofysearch", float) tolerance;
10 PROPERTY (block_dim_t, "block_dim", "block,dimensions", DeviceDimensions) block_dim;
n };

12

13 struct generate_candidates_t : public DeviceAlgorithm, Parameters {

14 void set_arguments_size (

15 ArgumentReferences <Parameters>,

16 const RuntimeOptions&,

17 const Constantsk,

18 const HostBuffers&) const;

19

20 void operator () (

21 const ArgumentReferences<Parameters>%,

22 const RuntimeOptionsé,

23 const Constantsk,

24 HostBuffersk,

25 const Allen::Context&) const;

26

27 private:

28 Property<tolerance_t> m_tolerance {this, 2.5f};

29 Property<block_dim_t> m_block_dim {this, {{256, 1, 1}}};

30 };

31 } // namespace generate_candidates
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Source GenerateCandidates.cu

1 #include "GenerateCandidates.cuh"

2

3 __global__ void generate_candidates::generate_candidates(generate_candidates::Parameters parameters)
4 {

5 //

6 ¥

7

8 void generate_candidates::generate_candidates_t::set_arguments_size(
9 ArgumentReferences <Parameters> arguments,
10 const RuntimeOptionsé,

b const Constants,

12 const HostBuffers&) const

13 {

U set_size<dev_candidates_size_t >(arguments, first<host_number_of_selected_events_t>(arguments));
15}

16

17 void generate_candidates::generate_candidates_t::operator ()(

18 const ArgumentReferences<Parameters>& arguments,

19 const RuntimeOptions&,
20 const Constantsk,

21 HostBuffers&,

22 const Allen::Context& context) const

23 {

24 initialize<dev_candidates_sizes_t >(arguments, O, context);

25 global_function(generate_candidates)(

26 dim3 (first<host_number_of_selected_events_t >(arguments)),

27 property<block_dim_t>(),
28 context) (arguments) ;

29 }



The CUDA kernel

Finally, we come to the global kernel definition. It accepts a single parameter:
generate_candidates: :Parameters parameters

Now every input, output, and every property can be accessed by its identifier, and decays automat-
ically to its underlying type.

// struct Parameters {

// HOST_INPUT (host_number_of_selected_events_t, uint) host_number_of_selected_events;
1/ DEVICE_INPUT (dev
// DEVICE_OUTPUT (dev_candidates_sizes_t, uint) dev_candidate_size;

event_list_t, uint) dev_event_list;

// PROPERTY (tolerance_t, "tolerance", "tolerance of search", float) tolerance;
// PROPERTY (block_dim_t, "block_dim", "block dimensions", DeviceDimensions) block_dim;
/7 };
__global__ void generate_candidates::generate_candidates(generate_candidates::Parameters parameters)
{
const uint* a = parameters.dev_event_list;
uint* b = parameters.dev_candidate_size;
float c = parameters.tolerance;
DeviceDimensions d = parameters.block_dim;
¥
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Backend




Configurable targets

Allen can be configured with any of the following targets:
« CPU, CUDA, HIP, CUDACLANG, SYCL (*).

This choice is made at compile time through a cmake option. An Allen binary is therefore compiled
for a specific target device.
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One source to rule them all

The Allen codebase is written once. The program generated depends on the configured target de-
vice.

- There are a few compromises to be made to achieve this. The maintainability and guarantee
that the code is the same (and therefore likely to produce same results) are worth it.

- We have also developed a thin abstraction layer in the process, which is evolving.



A distinction

- Utility functions - Functions used in the framework to carry out copy operations, explicit
synchronizations, allocations, etc.

- Kernel code - Language used in kernel functions (ie. __global__, __device_, __host_.).



Utility functions language

A common wrapper which is specialized for each backend.

1 namespace Allen {

2 // Holds an execution context. An execution

3 // context allows to execute kernels in parallel,

4 // and provides a manner for execution to be stopped.

5 struct Context;

6

7 // Utility functions

8 void malloc(void** devPtr, size_t size);

9 void malloc_host(void** ptr, size_t size);

10 void memcpy(void* dst, const void* src, size_t count, enum memcpy_kind kind);
1 void memcpy_async(void* dst, const void* src, size_t count, enum memcpy_kind kind, const Context& context);
12 void memset (void* devPtr, int value, size_t count);

13 void memset_async(void* ptr, int value, size_t count, const Context& context);
% void free_host(voidx ptr);

15 void free(void* ptr);

16 void synchronize(const Context& context);

17 void device_reset();

18 void peek_at_last_error();

19 void host_unregister(voidx ptr);

20 void host_register(void* ptr, size_t size, enum host_register_kind flags);

21 } // namespace Allen



Utility functions examples

// CPU implementations
void inline malloc(void#** devPtr, size_t size) { posix_memalign(devPtr, 64, size); }
void inline memcpy(void* dst, const void* src, size_t count, Allen::memcpy_kind)

{

std::memcpy(dst, src, count);

// CUDA / HIP implementations
void inline malloc(void** devPtr, size_t size) { cudaCheck(cudaMalloc(devPtr, size)); }
10 void inline memcpy(void* dst, const void* src, size_t count, Allen::memcpy_kind kind)

1 {

12 cudaCheck (cudaMemcpy (dst, src, count, convert_allen_to_cuda_kind(kind)));
13}

i

15 // SYCL implementations
16 void inline malloc(void** ptr, size_t size)

17 A

18 *ptr = sycl::malloc_device(size, global_queue);

19 global_queue.wait_and_throw();

20 }

21 void inline memcpy(void* dst, const void* src, size_t count, Allen::memcpy_kind)
22 {

23 global_queue.memcpy (dst, src, count);

24 global_queue.wait_and_throw();

25 }



Kernel code language

We use CUDA in all Allen kernel code. There are several reasons to this choice:

 CUDA is by far the most widely used language for GPU acceleration.

+ There are many resources for (not-so-)new developers, and developers are more likely to
succeed.

* This is where you will most likely spend a lot of time optimizing. Performance is a top priority.
+ CUDA is pleasantly evolving to support the latest features of the C++ standard.
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Kernel code language

We use CUDA in all Allen kernel code. There are several reasons to this choice:

 CUDA is by far the most widely used language for GPU acceleration.

+ There are many resources for (not-so-)new developers, and developers are more likely to
succeed.

* This is where you will most likely spend a lot of time optimizing. Performance is a top priority.

+ CUDA is pleasantly evolving to support the latest features of the C++ standard.

Note: Allen is not aiming at supporting every CUDA functionality. Typically, few constructs suffice (ie.
__syncthreads(), atomic operations, thread / block indices, grid / block dimensions). If a
developerintends to use a low-level construct that does not exist, they should provide compatibility
code.

20



Behind the scenes: HIP backend

AMD is developing the HIP language to be as close as possible to CUDA. Hence, the compatibility
between CUDA and HIP is rather simple by design, with very few exceptions.

U rWN o

// CUDA
#define
#define
#define
#define

to HIP conversion

cudaMalloc hipMalloc
cudaMallocHost hipHostMalloc
cudaMemcpy hipMemcpy
cudaMemcpyAsync hipMemcpyAsync

HIP is meant as a language that can compile and run in either NVIDIA or AMD architectures. However,
since performance is a top priority, we in Allen want to support the native code generation of each
vendor.
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Behind the scenes: CPU backend

Consider the following CUDA code:

constexpr int N = 32;

__global__ void saxpy_plus(float* x, float* y, const float a) {
ylthreadIdx.x] = x[threadIdx.x] * a + y[threadIdx.x];
__syncthreads () ;
if (threadIdx.x < 10) {

y[il += 13
¥
if (threadIdx.x == 10) {
ylthreadIdx.x] += 20;
}

SV ®wNwOoOUHWN o

n o}

13 saxpy_plus<<</*blocks*/ M, /*threadsx*/ N>>>(x, y, a);

« The number of threads is set statically to N=32.
* The statement in line 3 makes assumptions of the number of threads.

+ The two if statements also make assumptions of the number of threads (they require at least
11 threads).
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Flexible code

In contrast, consider this code:

1 constexpr int N = 32;

2 __global__ void saxpy_plus(float* x, float* y, const float a) {
3 for (int i=threadIdx.x; i<N; i+=blockDim.x) {

4 y[il = x[i] * a + y[il;

5 }

6 __syncthreads () ;

7 for (int i=threadIdx.x; i<10; i+=blockDim.x) {

8 y[il += 1;

9 ¥

o if (threadIdx.x == 0) {

1 y[10]1 += 20;

12 }

13}

%o

15 saxpy_plus<<</*blocksx*/ M, /xthreadsx*/ 1>>>(x, y, a);

« A call to saxpy_plus with any number of threads will produce the same result.
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A CPU version
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)

1
12
13
4
15
16

If the CUDA code satisfies that it produces the same result when invoked with a block dimension of
{1, 1, 1} -orin other words:

« for-loops over threads are block-dimension strided.
- if-statements for a single thread refer to threads of index o.

Then, with some macros and function definitions it is possible to compile the code for CPUs.

// Definitions excerpt

thread_local GridDimensions gridDim;
thread_local BlockIndices blockIdx;
constexpr BlockDimensions blockDim {1, 1, 1};
constexpr ThreadIndices threadIdx {0, 0, 0};

// Kernmel call excerpt

gridDim = {num_blocks.x, num_blocks.y, num_blocks.z}
for (unsigned int i = 0; i < num_blocks.x; ++i) {
for (unsigned int j = 0; j < num_blocks.y; ++j) {
for (unsigned int k = 0; k < num_blocks.z; ++k) {
blockIdx = {i, j, k};
function(std::get<I>(invoke_arguments)...);
i3
}
3
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Multi-threading

The previously shown example is single-threaded. There are several manners to achieve multi-
threading:

1. Make every kernel call a multi-threaded call. Each thread would have their own threadIdx,
and __syncthreads () would have to be a barrier that synchronizes threads.

2. Execute blocks in separate threads. In CUDA code block synchronization is very rare and
expensive, so in practice each thread would be able to execute its own code and join at the
end of the kernel execution.

3. Execute CUDA streams in separate threads.

Since Allen already supports running multiple concurrent sequences in parallel, we opted for option
3 (which scales best).
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CPU backend

In short, Allen for CPU is:

+ multi-threaded.
« supported across architectures (tested x86_64, ARM, PowerPC).

- a compilation of the Allen codebase. No extra maintenance.

26



SYCL support in Allen (brief)




The evolving SYCL standard

SYCL is a rapidly evolving standard that Intel is steering. It builds on top of the foundations OpenCL
set and incorporates new C++ good practices coming from the latest C++ standards.

SYCL supports a variety of architectures from the get-go:

+ CPU

* Intel GPUs

+ Intel FPGAs
NVIDIA GPUs
* AMD GPUs

Recently, SYCL 2020 was released, with more functionality that makes it easier to port already ex-
isting codebases to it.

27



Allen SYCL

The recent SYCL changes have allowed us to develop a prototype of Allen’s VELO reconstruction. We
expect the prototype to be extensible to other parts of Allen.

In order to do so, we had to alter part of the backbone of Allen to support SYCL-specific require-
ments. More details of our ongoing MR (https://gitlab.cern.ch/lhcb/Allen/-/merge_requests/
443).

Some of those requirements are rather... confusing to say the least.
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Our experience

Supporting utility functions was not a problem.

The bigger issue however is that supporting SYCL would force us to move away from CUDA as a
kernel language. Even though it is possible, this has deep implications:

SYCL is intended as a one-solution-fits-all. Developers are inteded to abandon CUDA and
adopt SYCL with the promise that compiling SYCL will retain the performance.

However, we want to continue to support native code generation.

Therefore, if we want to support SYCL we would have to write our own middle-language for
kernels, at which point SYCL becomes more of a hassle rather than a help.

The inexistence of SYCL examples online and the status of the documentation prove as a hard
entry point.
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Example: What it means for Allen

1 // Before

2 __device__ foo() {
3 threadIdx.x;

4 blockIdx.z;

5 __syncthreads ();
6 )
7

8

9

__global__ some_kernel (Parameters parameters) {
foo();
10 3
// After
__device__ foo(const Allen::KernelInvocationConfiguration& config) {

config.threadIdx<0>();
config.blockIdx<2>();
config.syncthreads () ;

__global_
const auto& config = parameters.config;

some_kernel (Parameters parameters) {

1
2
3
4
5
6 3}
7
8
9

o

foo(config);

1}

We are still evaluating the consequences of adding SYCL support in Allen.
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A word about configuration (brief)




A sequence of algorithms

Allen centers around the idea of running a sequence of algorithms on input events. This sequence
is predefined and will always be executed in the same order.

- The sequence can be configured with python.
« Existing configurations can be browsed under configuration/sequences.
« A configuration name is the name of each individual file, without the .py extension

 Sequences are chosen at compile time with cmake option SEQUENCE.

Eg. cmake -DSEQUENCE=velo ..
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Inspecting algorithms (1)

All the code is parsed with a libClang parser when the cmake command is executed.

It is possible (and encouraged) to inspect the parsed definitions of algorithms.

1 cmake

2 foo@bar:build$ cmake

3 foo@bar:build$ cd sequences

4 fooGbar:build/sequences$ python3

5 Python 3.8.2 (default, Feb 28 2020, 00:00:00)

6 [GCC 10.0.1 20200216 (Red Hat 10.0.1-0.8)] on linux

7 Type "help", "copyright", "credits" or "license" for more information.

8 >>> from definitions import algorithms

9 >>> algorithms.velo_

10 algorithms.velo_calculate_number_of_candidates_t( algorithms.velo_kalman_filter_t(

11 algorithms.velo_calculate_phi_and_sort_t( algorithms.velo_masked_clustering_t(

12 algorithms.velo_consolidate_tracks_t( algorithms.velo_pv_ip_t(

13 algorithms.velo_copy_track_hit_number_t ( algorithms.velo_search_by_triplet_t (

14 algorithms.velo_estimate_input_size_t( algorithms.velo_three_hit_tracks_filter_t(
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Inspecting algorithms (2)

One can see the input and output parameters and properties of an algorithm by just printing the
class representation of an algorithm (ie. without parentheses).

>>> algorithms.velo_calculate_number_of_candidates_t
class AlgorithmRepr : DeviceAlgorithm

1
2
3 inputs: (’host_number_of_selected_events_t’, ’dev_event_list_t’, ’dev_velo_raw_input_t’, ’dev_velo_raw_input_offsets_t’)
4 outputs: (’dev_number_of_candidates_t’,)

5

properties: (’block_dim_x’,)
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Multi-event scheduler

There is an ongoing Merge Requestin Allen (https://gitlab.cern.ch/lhcb/Allen/-/merge_requests/
429) with a multi-event scheduler. It is rather complex, and probably a topic for another meeting.

Allen will become configurable a la Gaudi with that change, adopting the same convention and a
very similar frontend, familiar to users.

If you are interested, drop us an e-mail or follow the above MR thread.
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Conclusions




An evolving design

- Allen allows developers to write algorithms, kernels, and to configure them.
 We are hiding the complexity away and giving a common look-and-feel.
+ Low entry-level, maintainability and performance are top priorities.

« Our current abstraction has been very successful considering Allen’s short development cycle.
+ Going forward, we want to extend on these features supporting relevant hardware.
« Our abstraction will likely grow with time (eg. ML frameworks, other libraries).

+ We intend to establish solid foundations and grow organically.
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Thanks for your attention!

36



	Host and device
	Allen algorithms
	Backend
	SYCL support in Allen (brief)
	A word about configuration (brief)
	Conclusions

