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The ALICE detector in Run 3

• ALICE uses mainly 3 detectors for barrel tracking: ITS, TPC, TRD + (TOF)

• 7 layers ITS (Inner Tracking System – silicon tracker)

• 152 pad rows TPC (Time Projection Chamber)

• 6 layers TRD (Transition Radiation Detector)

• 1 layer TOF (Time Of Flight Detector)

• In the shutdown before Run 3, there are several major upgrades:

• The TPC is equipped with a GEM readout.

• The ITS is completely replaced by 7 layers of silicon pixels.

• Major computing upgrade in the O² project.
ITS

TPC

TRD

TOF
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Run 3 data processing in a nutshell

• Synchronous processing while there is beam in the 

LHC and raw data is recorded.

• All data is compressed and stored on a disk buffer.

• When there is no beam in the LHC (or the computing 

farm is not fully loaded during pp data taking), the 

computing resources are used for asynchronous 

reprocessing of the data.

• Details on next slides.

Data links from detectors
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Synchronous processing

- Local processing

- Event / timeframe building

- Calibration / reconstruction

Asynchronous processing

- Reprocessing with full 

calibration

- Full reconstruction

Permanent storage
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3.5 TB/s

< 100 GB/s

Readout nodes

600 GB/s

Time Frames assembled in 

synchronous processing:

• ~10 ms of data

• Contains O(500) collisions
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GPU compatible workloads

• ALICE runs reconstruction in 2 phases during Run 3: synchronous (online) and asynchronous (~offline).

• Synchronous reconstruction dominated by TPC tracking (>90% of compute load).

• Fully running on GPUs and defines capacity of online computing farm → 2000 GPUs.

• Other steps might run on GPU (e.g. ITS tracking of few % of events), but GPUs mostly needed for TPC.

• GPUs are available during asynchronous reconstruction.

• Not dominated by TPC tracking → Asynchronous reconstruction at O2 farm has GPU capacity available.

• GPUs in the GRID not so clear, but makes sense to leverage whatever might become available.

• ITS tracking large part of asynchronous reconstruction, and most steps supports GPUs already.

• Candidate for extended GPU usage: Full Barrel Tracking + related.

• As long as GPU capacity is available, every work offloaded from the CPU frees CPU resources.

Baseline solution

(almost available today):

Most of sync. reco on GPU

Optimistic solution

(what could we do in the ideal case):

Run most of tracking + X on GPU.
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• With more tasks to the GPU,

→ Avoid GPU/Host copies.

→ Intermediate steps must run on GPU.

(Running only the track

fit produces infeasible overhead.
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For Run 3, we want to merge

transformation and Tracking.

Approach of Run 2 HLT TPC / ITS Tracking Components
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• All intermediate shared buffers

on GPU.

• Keep the component structure

• Create a super-component that runs

everything at once on GPU.
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Approach for Run 3
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Approach for Run 3

Everything can still run on the 

host in the exact same way.

Just shared buffer in host 

memory not GPU memory.
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• Handling of asynchronous computation / data transfers

• 1st iteration (Run 1 HLT): Split event in chunks, to pipeline CPU processing, GPU processing, and PCIe transfer.

• 2nd iteration (Run 2 HLT): Processing of two events in parallel on the GPU concurrently in addition.

– ~20% faster than first version – GPUs have become wider and this exploits the parallelism better.

– Not possible during Run 1 due to GPU limitations at that time.

– We still kept the pipeline-scheme within each event, to maximize performance.

• 3rd iteration (Run 3): Go back to the old scheme from Run 1 – with time frames instead of events.

– Time frames are large → avoid keeping multiple in memory.

– Enough parallelism inside one time frame.

Pipelined processing (from Run 2)

Time
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• Plot shows TPC Clusterization stage (part with heaviest DMA transfers).

• Full profile of 3 time frames: 100% GPU kernel execution:

Pipelined GPU processing (Run 3)

Light / dark blue: GPU kernel execution

Green: DMA transfer

1 pipeline iteration

Pipeline margin:

No performance loss when the

DMA transfer finishes before

Transfer of input for next iteration is 

chunked itself into small pieces to avoid 

for intermittent transfers for current 

iteration.

time
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Memory requirements

• ALICE reconstructs timeframes (TF) independently: ~10 ms of continuous data / ~500 Pb-Pb collisions @ 50 kHz.

• TF must be processes more or less as a whole, at least in some phases all data must be available.

→ Timeframe should fit in GPU memory. Otherwise could use a ring-buffer but that would complicate things.

→ Need efficient memory usage.

• Custom allocator: grabs all GPU memory, gives out chunks manually, memory will be reused when possible.

• Classically: reuse memory between events, collisions are not that large.

• ALICE reuses memory between different algorithms in a TF, possibly also between independent collisions.

• Some memory must persist during timeframe processing.

Memory
TPC 

Raw 1

TPC 

Hits 1

Non-persisting input dataPersistent data

TPC cluster 

finder
TPC raw data can be 

removed after 

clusterization, memory 

will re reused.

TPC hits must persist, 

needed for final refit.
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Memory requirements

• ALICE reconstructs timeframes (TF) independently: ~10 ms of continuous data / ~500 Pb-Pb collisions @ 50 kHz.

• TF must be processes more or less as a whole, at least in some phases all data must be available.

→ Timeframe should fit in GPU memory. Otherwise could use a ring-buffer but that would complicate things.

→ Need efficient memory usage.

• Custom allocator: grabs all GPU memory, gives out chunks manually, memory will be reused when possible.

• Classically: reuse memory between events, collisions are not that large.

• ALICE reuses memory between different algorithms in a TF, possibly also between independent collisions.

• Some memory must persist during timeframe processing.
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Memory requirements

• ALICE reconstructs timeframes (TF) independently: ~10 ms of continuous data / ~500 Pb-Pb collisions @ 50 kHz.

• TF must be processes more or less as a whole, at least in some phases all data must be available.

→ Timeframe should fit in GPU memory. Otherwise could use a ring-buffer but that would complicate things.

→ Need efficient memory usage.

• Custom allocator: grabs all GPU memory, gives out chunks manually, memory will be reused when possible.

• Classically: reuse memory between events, collisions are not that large.

• ALICE reuses memory between different algorithms in a TF, possibly also between independent collisions.

• Some memory must persist during timeframe processing.
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Memory requirements

• ALICE reconstructs timeframes (TF) independently: ~10 ms of continuous data / ~500 Pb-Pb collisions @ 50 kHz.

• TF must be processes more or less as a whole, at least in some phases all data must be available.

→ Timeframe should fit in GPU memory. Otherwise could use a ring-buffer but that would complicate things.

→ Need efficient memory usage.

• Custom allocator: grabs all GPU memory, gives out chunks manually, memory will be reused when possible.

• Classically: reuse memory between events, collisions are not that large.

• ALICE reuses memory between different algorithms in a TF, possibly also between independent collisions.

• Some memory must persist during timeframe processing.
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Memory requirements

• ALICE reconstructs timeframes (TF) independently: ~10 ms of continuous data / ~500 Pb-Pb collisions @ 50 kHz.

• TF must be processes more or less as a whole, at least in some phases all data must be available.
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and the memory 
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Memory requirements

• ALICE reconstructs timeframes (TF) independently: ~10 ms of continuous data / ~500 Pb-Pb collisions @ 50 kHz.

• TF must be processes more or less as a whole, at least in some phases all data must be available.

→ Timeframe should fit in GPU memory. Otherwise could use a ring-buffer but that would complicate things.

→ Need efficient memory usage.

• Custom allocator: grabs all GPU memory, gives out chunks manually, memory will be reused when possible.

• Classically: reuse memory between events, collisions are not that large.

• ALICE reuses memory between different algorithms in a TF, possibly also between independent collisions.

• Some memory must persist during timeframe processing.
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• We employ a single source-code for CPU and GPU.

• It can parallelize on the CPU via OpenMP.

• We support GPUs via CUDA, OpenCL, HIP.

• CPU and GPU tracker (CUDA, OpenCL, …) share common source files.

• Specialist wrappers for CPU and GPU exist, that include these common files.

→ Same source code for CPU and GPU version

− The macros are used for API-specific keywords only.

− The fraction of common source code is above 90%.

common.cpp:

__DECL FitTrack(int n) {

….

}

cpu_wrapper.cpp:

#define __DECL void

#include ``common.cpp``

void FitTracks() {

for (int i = 0;i < nTr;i++) {

FitTrack(n);

}

}

cuda_wrapper.cpp:

#define __DECL __ device void

#include ``common.cpp``

__global void FitTracksGPU() {

FitTrack(threadIdx.x);

}

void FitTracks() {

FitTracksGPU<<<nTr>>>();

}

Shared source code between CPU and GPU

Opencl_wrapper.cl

#define __DECL void

#include ``common.cpp``

__kernel void FitTracksGPU() {

FitTrack(threadIdx.x);

}

Opencl_wrapper.cxx

void FitTracks() {

clEnqueueNDRangeKernel(…

FitTracksGPU, ….);

}
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• A lesson learned in the HLT farm: we should have a common software package:

• The HLT farm consisted of GPU-equipped nodes and nodes without GPU.

• GPU code that links to the CUDA runtime requires the CUDA runtime library to be present.

• Just installing the library on non-GPU nodes is insufficient, as the library fails to load when the kernel module is not loaded.

• Back then, the kernel module failed to load without an NVIDIA device present.

• Still, we do not want to ship different software packages.

• To facilitate software distribution, we have one binary package that contains all versions.

– The GPU versions of the code are contained in special GPU-tracking libraries.

– These GPU-tracking libraries are accessed via dlopen.

– Only the GPU-tracking libraries link to the GPU driver / runtime.

→ The tracking software (without GPU acceleration) runs on all compute nodes, irrespective of the presence of a driver.

Common 

Tracking Part 

(including 

CPU)

Tracking part 

for CUDA

Tracking part 

for OpenCL

CUDA 

Runtime

OpenCL 

Runtime

dlopen
normal

.so linking

Provided  by 

NVIDIA / AMD 

driver

Distribution of same software to CPU and non-GPU nodes
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• Generic common C++ Code compatible to CUDA, OpenCL, HIP, and CPU (with pure C++, OpenMP, or OpenCL).

• OpenCL needs clang compiler (ARM or AMD ROCm) or AMD extensions (TPC track finding only on Run 2 GPUs and CPU for testing).

• Certain worthwhile algorithms have a vectorized code branch for CPU using the Vc library.

• All GPU code swapped out in dedicated libraries, same software binaries run on GPU-enabled and CPU servers.

Compatibility with several GPU frameworks

Still simplified example, e.g.

GPU measurement and tracking

are in fact independent libraries…
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• Generic common C++ Code compatible to CUDA, OpenCL, HIP, and CPU (with pure C++, OpenMP, or OpenCL).

• OpenCL needs clang compiler (ARM or AMD ROCm) or AMD extensions (TPC track finding only on Run 2 GPUs and CPU for testing).

• Certain worthwhile algorithms have a vectorized code branch for CPU using the Vc library.

• All GPU code swapped out in dedicated libraries, same software binaries run on GPU-enabled and CPU servers.

• Screening different platforms for best price / performance.
(including some non-competitive platforms for cross-checks and validation.)

• CPUs (AMD Zen, Intel Skylake)

C++ backend with OpenMP, AMD OCL

• AMD GPUs

(S9000 with OpenCL 1.2, MI50 /

Radeon 7 / Navi with HIP / OCL 2.x)

• NVIDIA GPUs

(RTX 2080 / RTX 2080 Ti / Tesla T4

with CUDA)

• ARM Mali GPU with OCL 2.x

(Tested on dev-board with Mali G52)

Compatibility with several GPU frameworks
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• For CUDA / HIP, normally just use the compiler via CMake (nvcc / hipcc).

• Can also just use other compilers, e.g. clang for CUDA.

• Initially, wanted to avoid OpenCL run time compilation:

→ Small binary that is compiled in the Cmake process, compiles the program, and dumps the binary code.

→ In the meantime we have just replaced this by clang and llvm-spirv converter (still, spirv support in the backend is

disappointing…).

• In the end, OpenCL run time compilation is not that bad…

• …preprocess all sources into a single .cl file, include the source in our software, compile at runtime.

• This actually allows additional optimization, e.g. we support in some places replacing runtime-constant variables by

constexpr.

• That said, run time compilation really is not that bad.

• In the meantime, have implemented RTC support for NVIDIA (tried nvrtc but ran into some issues, now just using nvcc with 

fatbin output).

• Working on RTC with HIP.

• In any case: the executable by itself will only contain the CPU code.

• GPU code in optional libraries, loaded at runtime, defined by command line argument / env variable / etc.

• RTC can be enabled optionally and replaces the compile-time compiled code (but delays startup significantly).

A quick word on compilation:
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• For ALICE: everything more or less manual, CMake, C++, and some preprocessor magic.

• Not beautiful but it works.

• Why not a modern framework like Alpaka?

• Primary reason: historically – we started like this in Run 1, it works, never change a running system.

• Our approach gives access to all API specific features if protected by #ifdef.

• Actually the framework is rather lightweight:

– Started with few 100 lines of code – OK, in the meantime it has grown to 5k lines today.

– But this contains a lot of general framework code for synchronization, memory management, etc.

– Includes the backends for CPU / OpenMP / CUDA / HIP / OpenCL.

– Still quite manageable.

• One problem with general frameworks:

– Abstraction layers solve all complexity problems except for thing with too many layers of abstraction…

– Not clear if Alpaka would be fully sufficient for us, so perhaps we would still add something on top / below.

• Would we do it again this way?

• I would certainly look into some established frameworks first (Don’t reinvent the wheel for general principle).

• But to be honest, not sure what would be the outcome.

Programming framework
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• Try to keep as much code shared as possible.

• Using some #ifdefs to have some shortcuts for serial CPU version, or use special GPU optimizations.

• Some compiler macros, e.g. to cache data in GPU shared memory.

• Can use different depth of abstraction:

Code optimization

Baseline:

• Kernels are common and 

called by wrappers

More abstraction:

• Also kernel calls, outer loops, and general 

workflow common (used in TPC)

• Exact same algorithm for CPU / GPU

More flexibility:

• Common code for base classes, virtual class 

with “traits” for CPU and GPU steer the 

workflow. Main tracking class is common and 

uses the traits. (used in ITS)

runKernel<krnlTrackFit>({nBlocks, nThreads}, {&eventWait, &eventRecord}, nTracks);

General kernel call, will dispatch to CUDA / OpenCL / CPU API via virtual interface

Actual kernel is static class function, selected via template parameter

Number of threads/blocks on GPU/GPU Events for synchronization

Kernel arguments, variable number, passed as Variadic macro

Tracker 

class

(CPU)

CPU 

Traits

CUDA

Traits

Base 

classes 

(tracks / 

hits)

Less API-specific 

code

Less complicated 

abstraction
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• Examplary definition of an algorithm.

Some words on the technical implementation

class GPUTPCCompressionKernels : public GPUKernelTemplate

{

public:

GPUhdi() constexpr static GPUDataTypes::RecoStep GetRecoStep() { return GPUDataTypes::RecoStep::TPCCompression; }

enum K : int {

step0attached = 0,

step1unattached = 1,

};

struct GPUSharedMemory : public GPUKernelTemplate::GPUSharedMemoryScan64<int, 256> {

GPUAtomic(unsigned int) nCount;

unsigned int lastIndex;

unsigned int sortBuffer[512];

};

template <int iKernel = defaultKernel>

GPUd() static void Thread(int nBlocks, int nThreads, int iBlock, int iThread, GPUsharedref() GPUSharedMemory& GPUrestrict() smem,

processorType& GPUrestrict() processors, …);

Give the related reconstruction 

task a name, just for accounting 

during debugging / benchmarking.

Algorithm can consist of multiple 

consecutive kernels, so give them 

names.

This algorithm requires some 

shared memory, and derives from 

some common predefined shared 

memory algorithms.

krnlName, as krnlTrkFit in the last slide.

Main processing function, called 

nBlocks * nThreads times, in the 

obvious GPU grid configuration. 

Additional parameters forwarded 

via variadic template.

Processor is a struct that contains 

the context for the algorithm (can 

also be passed in via additional 

variadic template parameters).
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• Examplary definition of a context.

Some words on the technical implementation

struct GPUTPCCompression : public GPUProcessor

{

#ifndef GPUCA_GPUCODE

void InitializeProcessor(); // Callbacks only available if compiled for the host

void RegisterMemoryAllocation();

#endif

static constexpr unsigned int P_MAX_QMAX = 1 << 10;

// […]

// Ptrs to GPU / host memory

memory* mMemory = nullptr;

unsigned int* mAttachedClusterFirstIndex = nullptr;

unsigned char* mClusterStatus = nullptr;

// some (runtime) constants.

unsigned int nMaxTracks;

}

The framework will create 2 instances of the processor:

• One in host memory.

• One in constant GPU memory.

• Processor is copied there before algorithms starts.

• Memory is allocated twice, once on host, once on GPU.

• Allocations defined in the callback, sizes can be

derived from variables (e.g. nMaxTracks).

• Processors points to correct memory location.

• Flags in the callback can suppress allocation on 

either host or GPU, if the memory is not needed 

there.

→ Nice debugging feature: If all memory is allocated on both

memory spaces and has the same size, it can easily be 

copied forth and back.

→ Execution can be interrupted between every kernel,

moved between host or device, and continued on the 

other side.

Usage of this semantic is basically optional, all ptrs can be passed in as additional variadic arguments.

Just give the developers the freedom they want:

• Better provide optional features than force people into constraints they might not like.
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• As said, we allow different code paths for different architectures, if there is a real benefit.

• Many things can be done without #ifdef, but e.g. with templates.

• And try to keep the mess out of the actual algorithm.

• (OK, one could also encapsulate reading from /

writing to the charge array in a class applying

the factor automatically…. but just to

demonstrate the idea….)

Avoiding #ifdef

// Architecture namespace defined via #ifdefs / different includes

Namespace {

template <typename T, typename fake = void> struct scalingFactor;

template <typename fake> struct scalingFactor<unsigned short, fake> {

static constexpr float factor = 4.f;

};

template <typename fake> struct scalingFactor<float, fake> {

static constexpr float factor = 1.f;

};

template <typename fake> struct scalingFactor<half, fake> {

static constexpr float factor = 1.f;

};

}

struct someAlgorithm { // (here dE/dx energy loss)

using chargeDataType = architecture::dataTypes::lowPrecisionFloat;

chargeDataType chargeArray[128];

[…]

chargeArray[i] = cl.getCharge() * scalingFactor<chargeDataType>::factor;

[…]

};
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• First version: Inconsistent results between CPU / GPU

• Root causes:

• Concurrency

• Non-associative floating point arithmetic

Consistency of Tracking Results

• Problem: Cluster to track assignment was 

depending on the order of the tracks.

– Each cluster was assigned to the longest 

possible track. Out of two tracks of the same 

length, the first one was chosen.

– Concurrent GPU tracking processes the tracks 

in an undefined order.

• Solution: Need a continuous (floating point) 

measure of the track quality.

– Two 32-bit floats can still be identical, but that 

is unlikely.

• In general: If the order doesn‘t matter,

just still take something that is

deterministic (e.g. random spatial

coordinate).
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• To simplify Q/A, GPU and CPU results should be as close as possible!

• 100% identical result on binary level is difficult.

• Prevents all fast-match optimization → >10% performance loss.

• Difficult to kill concurrency issue completely:

– 32-bit float gives ca 25 bit of entropy (do not use full range of exponent).

– 1000 Events of ~ 10000 tracks per time frame → collision probability non-zero.

– Could use double / 64-bit integer…

• Good measure for us:

• Do not compare track parameters (float values might differ).

• Compare cluster to track association.

– Almost binarily compatible: 0.00024% of clusters assigned differently.

Comparison of tracking results
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• GPUs acquired mostly for synchronous TPC processing (impossible without / prohibitively expensive).

• Since we have them, use them in as many places as possible.

• Software runs as independent algorithms operating on data in shared buffers (can be in GPU memory or in host memory).

• Pipeline processing hides data transfers.

• Efficient memory usage is critical to process large time frames.

• Algorithms (majority of the code) written in generic C++, special keywords come in via preprocessor marcros.

• Two approaches for workflow:

• Fully generic code, common workflow on CPU and GPU.

• Traits for CPU and GPU that implement parts of the algorithm, more flexibility but more code duplication.

• Can run on CPU / CUDA / HIP / OpenCL.

• Consistent and reproducible results make your live much easier.

Summary
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