
Nsight Compute
CERN Compute Accelerator Forum

Felix Schmitt

Mahen Doshi, Jonathan Vincent

2

Nsight Systems - Analyze application algorithms system-wide
https://www.olcf.ornl.gov/calendar/nvidia-profiling-tools-nsight-systems/

Nsight Compute - Analyze CUDA kernels

Nsight Graphics - Debug/analyze graphics workloads

Nsight Product Family

Workflow

Compute Graphics

You are
here

Systems

Start here

https://www.olcf.ornl.gov/calendar/nvidia-profiling-tools-nsight-systems/

3

Nsight Compute

4

Nsight Compute

CUDA Kernel profiler

Targeted metric sections for

various performance aspects

Customizable data collection

and presentation (tables,

charts, …)

UI and Command Line

Python-based rules for guided

analysis (or post-processing)

Support for remote profiling

across machines and platforms

5

Nsight Compute

Detailed memory workload

analysis chart and tables

6

Nsight Compute

Comparison of results directly

within the tool with

“Baselines”

Supported across kernels,

reports, and GPU architectures

7

Nsight Compute

Source/PTX/SASS

analysis and

correlation

Source metrics per

instruction and

aggregated (e.g. PC

sampling data)

Metric heatmap

8

An example:

GROMACS 2020
pme spread/gather kernels

Old Version

9

spline_and_spread: Old Version

Memory units more utilized than SM (Compute), but overall utilization is low

Nsight Compute hints that this is a latency issue, recommends further sections to check

We will still go through other sections for training purposes

Live

10

spline_and_spread: Old Version

Memory chart shows that stores are much more common in this kernel,

transferring ~10x as much data as reads

Since bandwidth is not saturated, it’s likely frequent operations

11

spline_and_spread: Old Version

We have many active warps available, but most of them are not eligible

(and hence not issued) on average

The next section (Warp State Statistics) can indicate which stall reasons cause this

12

spline_and_spread: Old Version

Most important stall reason (by far) is LG (local/global) Throttle

This indicates extremely frequent memory instructions, according to the guided analysis rule

13

spline_and_spread: Old Version

Disabling global memory writes to store temporary data (for the gather kernel)

could reduce this latency issue

This implies that the gather kernel has to re-compute this data

14

gather: Old Version

More balanced compute/memory utilization, but also likely latency bound

15

gather: Old Version

Reads temporary spline_and_spread kernel data from global memory

Therefore, much more load operations and data transfered in that direction

16

gather: Old Version

Long Scoreboard stalls cause most wasted cycles

These indicate waiting on local or global memory

17

GROMACS 2020
pme spread/gather

New Version

18

Code Changes

https://redmine.gromacs.org/projects/gromacs/repository/revisions/22118220401cee6f51d49c0a034e9fe5b4ba4260/diff?utf8=%E2

%9C%93&type=sbs

Two new template arguments added to spread/gather kernels

Optimal kernel selected based on input data size

Disabled temp data storage in global memory for this analysis

pme_spline_and_spread_kernel pme_gather_kernel

writeSplinesToGlobal

control if we should write spline data to

global memory

useOrderThreadsPerAtom*

control if we should use order or

order*order threads per atom

readGlobal

control if we should read spline values

from global memory

useOrderThreadsPerAtom*

control if we should use order threads per

atom (order*order used if false)

* not activated

https://redmine.gromacs.org/projects/gromacs/repository/revisions/22118220401cee6f51d49c0a034e9fe5b4ba4260/diff?utf8=%E2%9C%93&type=sbs

19

spline_and_spread: New Version

Overall performance improvement is ~15% (fewer cycles)

Highest contributor appears to be the 54% reduced GPU DRAM throughput (SOL FB)

Live

20

gather: New Version

Performance decreased slightly compared with “unoptimized” version

The other individual sections would allow us to identify what has changed in detail

21

New Version Summary

Overall, combined performance improved by ~10%

Use CSV export from CLI or UI to further analyze data in e.g. Excel

22

Back to theory:
Nsight Compute on

your cluster

23

Collecting Data

By default, CLI results are printed to stdout

Use --export/-o to save results to a report file, use -f to force overwrite
$ ncu -f -o $HOME/my_report <app>

$ my_report.ncu-rep

Use --log-file to pipe text output to a different stream (stdout/stderr/file)

Can use (env) variables available in your batch script or file macros to add report name placeholders

Full parity with nvprof filename placeholders/file macros
$ ncu -f -o $HOME/my_report_%h_${LSB_JOBID}_%p <app>

$ my_report_host01_951697_123.ncu-rep

https://docs.nvidia.com/nsight-compute/NsightComputeCli/index.html#command-line-options-file-

macros

https://docs.nvidia.com/nsight-compute/NsightComputeCli/index.html#command-line-options-file-macros

24

Multi-Process Profiling

jsrun

rank 0

GPU

0

GPU

1

rank 1

GPU

2

GPU

3

Nsight Compute

node 0

gpu0-3

On a single-node submission, one Nsight

Compute instance can profile all

launched child processes

Data for all processes is stored in one

report file

ncu --target-processes all -o <single-

report-name> <app> <args>

25

Multi-Process Profiling

jsrun

rank 0

GPU

0

GPU

1

rank 1

GPU

2

GPU

3

Nsight

Compute

node 0
gpu0-1

On multi-node submissions, one tool

instance can be used per node

Ensure that instances don’t write to the

same report file on a shared disk

ncu -o report_%q{OMPI_COMM_WORLD_RANK}

<app> <args>Nsight

Compute

node 1

gpu2-3

26

Multi-Process Profiling

jsrun

rank

0

GPU

0

GPU

1

rank

2

GPU

2

GPU

3

NC

node 0

Multiple tool instances on the same node

are supported, but…

All kernels across all GPUs will be

serialized using system-wide file lock

All instances must be of the same user,

or have file permissions (fixed in next

version - permissions are set

automatically)

NC

node 1

rank

1

rank

3

NC NC

27

Multi-Process Profiling

jsrun

rank

0

GPU

0

GPU

1

rank

2

GPU

2

GPU

3

NC

node 0

Consider profiling only a single rank, e.g. using a

wrapper script

#!/bin/bash

if [["$OMPI_COMM_WORLD_RANK" == "3"]] ; then

/sw/cluster/cuda/11.1/ nsight-compute/ncu -

o report_${OMPI_COMM_WORLD_RANK} --target-

processes all $*

else

$*

fi

node 1

rank

1

rank

3

gpu3

28

What To Collect

Curated “sets” and “sections” with commonly-used, high-value metrics

$ ncu --list-sets

Identifier Sections Estimated Metrics

default LaunchStats, Occupancy, SpeedOfLight 35

detailed ComputeWorkloadAnalysis, InstructionStats, LaunchStats, MemoryWorkloadAnaly 157

sis, Occupancy, SchedulerStats, SourceCounters, SpeedOfLight, SpeedOfLight_

RooflineChart, WarpStateStats

full ComputeWorkloadAnalysis, InstructionStats, LaunchStats, MemoryWorkloadAnaly 162

sis, MemoryWorkloadAnalysis_Chart, MemoryWorkloadAnalysis_Tables, Occupancy

, SchedulerStats, SourceCounters, SpeedOfLight, SpeedOfLight_RooflineChart,

WarpStateStats

source SourceCounters 47

Use defaults, or combine as desired

$ ncu --set default --section SourceCounters --metrics sm__inst_executed_pipe_tensor.sum ./my-app

29

What To Collect

Query metrics for any targeted chip

$ ncu --query-metrics --chip ga100

smsp__warps_issue_stalled_not_selected cumulative # of warps waiting

for the microscheduler to select the warp to issue

smsp__warps_issue_stalled_selected cumulative # of warps selected

by the microscheduler to issue an instruction

smsp__warps_issue_stalled_short_scoreboard cumulative # of warps waiting

for a scoreboard dependency on MIO operation other than (local, global, surface, tex)

…

tpc__cycles_active # of cycles where TPC was active

tpc__cycles_elapsed # of cycles where TPC was active

==PROF== Note that these metrics must be appended with a valid suffix before profiling them. See --help for

more information on --query-metrics-mode.

Specify sub-metrics in section files, or on the command line

$ ncu --query-metrics-mode suffix --metrics sm__inst_executed_pipe_tensor ./my-app

sm__inst_executed_pipe_tensor.sum

sm__inst_executed_pipe_tensor.avg

sm__inst_executed_pipe_tensor.min

…

30

Source Analysis

SASS (assembly) is always available embedded into the report

CUDA-C (Source) and PTX availability depends on compilation flags

Use -lineinfo to include source/SASS correlation data in the binary

cmake/gmxManageNvccConfig.cmake:201

macro(GMX_SET_CUDA_NVCC_FLAGS)

set(CUDA_NVCC_FLAGS "${GMX_CUDA_NVCC_FLAGS};${CUDA_NVCC_FLAGS};-lineinfo")

endmacro()

Source is not embedded in the report, need local access to the source file to resolve in the UI

Comparing different iterations (e.g. optimizations) of the same source file can be difficult

Next version will support importing CUDA-C source into the report

Compiler optimizations can prevent exact source/SASS correlation

31

Another example:

Roofline analysis
for image feature
extraction kernel

32

Roofline Analysis

ExtractFeatures

analyzes an image for

interesting pixels

Part of the algorithm is

converting the pixel color

format

Kernel is heavily

compute-bound, utilizing

the SM units > 80%

Fp64 (64bit/double

floating-point math)

pipeline is by far the

biggest contributor

33

Roofline Analysis

Roofline chart suggests to use float

instead of double, due to the 32:1

peak perf ratio between 32bit and

64bit HW units (on Turing)

On V100, the ratio would be 2:1

Float roofline (peak)

Double roofline (peak)

Double achieved

(close to peak)

Float achieved

(far from peak)

34

Roofline Analysis

On the Source page, we

can see where in the

code those instructions

are executed.

Make sure that

“Instructions Executed”

is selected in the metrics

drop down, then use

navigation buttons.

Live

35

Roofline Analysis

Change the kernel to use

32bit-precision math, only.

Can now compare all data

from the first, unoptimized

kernel compared against the

Current (blue) kernel.

Most notably, it is 92% faster

(Duration), and doesn’t use

64bit (Fp64) math anymore.

Since we are blocked less by

the fp64 pipeline, we now

have a 12x better memory

HW-units utilization

36

Further Reading

https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#roofline

https://github.com/NVIDIA/nsight-training/tree/master/cuda/2020_gtc

https://gitlab.com/NERSC/roofline-on-nvidia-gpus

https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#roofline
https://github.com/NVIDIA/nsight-training/tree/master/cuda/2020_gtc
https://gitlab.com/NERSC/roofline-on-nvidia-gpus

37

Conclusion

38

Known Issues/Outlook

https://docs.nvidia.com/nsight-compute/ReleaseNotes/index.html#known-issues

Outlook for next version

Source import

Roofline analysis improvements

Source-level divergence metrics

Profile series experiments

39

Conclusion

Nsight Compute enables detailed kernel analysis

Rules give guidance on optimization opportunities and help metric understanding

Limit sections/metrics to what is required when overhead is a concern

Still requires level of hardware understanding to fully utilize the tool - pay attention to rule results and

refer to https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html

https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html

40

THANK YOU!

Download https://developer.nvidia.com/nsight-compute (can be newer than toolkit version)

Documentation https://docs.nvidia.com/nsight-compute (and local with the tool)

Forums https://devtalk.nvidia.com

Further Training https://developer.nvidia.com/nsight-compute-videos

https://developer.nvidia.com/nsight-compute-blogs

https://developer.nvidia.com/nsight-systems
https://docs.nvidia.com/nsight-compute
http://devtalk.nvidia.com
https://developer.nvidia.com/nsight-compute-videos
https://developer.nvidia.com/nsight-compute-blogs

42

PME spread/gather

https://indico.cern.ch/event/791712/contributions/3407944/attachments/1839813/3015919/Tk1.3-MolecularDynamicsGromacs-F2FCERN.pdf

PME: Particle

Mesh Ewald

Algorithm

