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trajectory of classical source:  semi-
infinite Wilson-line with a cusp
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Cusp anomalous dimension governs the infrared
divergences of massive scattering amplitudes. 
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Heavy quark scattering off an external potential:  
heavy meson decay. 
cross channel:  top quark pair production.

Plays a role in study of IR structure of
massive scattering amplitudes;
connects to high-energy (Regge) limit (e.g. 
via dual conformal symmetry in massive 
planar N=4 sYM ) 

log 𝐴( 𝑠, 𝑡, 𝑚"; 𝑚) ∼ log 𝑚) Γ*+,& 𝜙 𝑠 = 4𝑚" sin"
𝜙
2

𝑚- → ∞, Form factor is a function of a single variable  
𝑣! ⋅ 𝑣" = cosh𝜙# (Minkowski recoiling angle). 

The angle-dependent cusp anomalous dimension governs
infinite-mass limit of physical processes involving heavy-quark 
scattering/production:  

𝑚! → 0
𝑚

𝑚
𝑚)𝑠

𝑡



Anomalous dimension of cusped Wilson loop 
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Γ*+,& 𝜙 = 𝐶.
𝑎
𝜋 Ω 𝜙 + 𝐶/Ω/ 𝜙

𝑎
𝜋 + 𝐶/

"Ω// 𝜙
𝑎
𝜋

"
+ 𝑂(𝑎()

Ω 𝜙 independent of the particle content of the theory. 
𝑛0 − depdence encoded in the effective coupling 𝑎.

𝜙

𝑣! 𝑣"

𝑑
𝑑 ln 𝜇 log⟨ 𝑊"⟩ = Γ%&'((𝜙)

[Beisert, Eden, Staudacher. J. Stat. Mech. 0701:P01021 (2007)]
[Basso, Korchemsky. J. Phys. A 42:254005 (2009)]
[Maldacena, Phys. Rev. Lett. 80 (1998) 4859, hep-th/9803002] 

Local UV divergence: 

⊐
𝛼,
𝜋

(
𝑛1𝑑.2𝐵(𝜙)

¡ Full QCD result is computed at three-loop order . 

Matter dependence exhibits remarkable universal iterative structure. 
[Grozin, Henn, Korchemsky, Marquard, 2014]. 

¡ Expectation value of Wilson loop studied in 
N=4 sYM in particular in its planar limit.  

Integrability methods. 

ADS-CFT correspondce. 

Breaks Casimir scaling; 
Breaks universal structure
of matter dependence



OUTLINE

- Methods of calculation and analytic
results.  

- Properties of the four-loop formula, 
asymptotic behaviours.
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¡ The four-loop matter-dependent quartic
casimir component of angle dependent cusp
anomalous dimension in a generic U(N) gauge
theory.  [Brüser, Dlapa, Henn,Yan 2002.02340]

¡ A novel algorithm for solving coulpled sytem of
differential system based on n-th order Picard-
Fuchs equations. [Dlapa, Henn,Yan 2007.04851]

Γ*+,& J3$%,5&
=

𝛼
𝜋

( 𝑑.𝑑2
𝑁.

[𝑛0 𝐵 𝜙 + 𝑛, 𝐶 𝜙 ]

- ideas for finding basis of uniform 
transcendental weight integral 

- Design of algorithm and work flow

- Cutting-edge applications, efficiencies



𝑣! ⋅ 𝑣"
√𝑣!"√𝑣""

=
1
2

𝑥 +
1
𝑥

= cos𝜙

𝜙
Euclidean cusp angle 

𝑥:= 𝑒$ 6

𝑣! 𝑣"

[Henn, Korchemsky, Mistlberger.(2020)]
[von Manteuffel, Panzer, Schabinger. (2020)]  

-i𝜙 → ∞ (𝑥 → 0): light-like cusp anomlous
dimension 𝐾 𝛼 ln )*. Recent 4-loop result
from massless form factor; null-polygon 
Wilson loop. 

Cusped Wilon loop in 
Euclidean space mapped onto
antipodal lines on 𝑆+×𝑅

Full angle dependence of  Γ*+,&(𝜙)
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Case of study

𝜙 ∼ 0 (𝑥 → 1):  HQET field-strength anomalous
dimension 𝛾, =

- ./0 1 2
- .3 $ , Γ%&'(∼ 𝑂 𝜙4 .

𝜋 − 𝜙
𝜙 ∼ 𝜋 (𝑥 → −1): 
quark-antiquark
static potential. 

log⟨ 𝑊7⟩ = log
𝑉(𝜙)
𝑉(0)

𝑉 𝜙 irreducible vetex
corrections, 𝑉 0 self-
energy correction

Γ%&'( 𝜋 − 𝛿

∼ −𝐶#
𝛼
𝛿
[𝑉5 65 + 𝛽(𝛼)𝐶 𝛼 ]



Matter dependence of   Γ*+,&

log 𝑊7 J
89( ,:#

= 1 + + + 𝑂 (𝛼!)

log 𝑊7 J
-7;

= + 𝑂 (𝛼!)log 𝑊7 J
89( ,:#

+

matter dependence is proportional to the lower-loop  formula ~𝐵1Ω(!). 
ratio fixed by the asymptotic behaviour in the light-like limit. 

This pattern holds up to three-loop order in QCD.  

The conjecture breaks down at four loop order for certain new types of color structure. 
[Brüser, Grozin, Henn, Stahlhofen 2019] 

Γ*+,&(𝜙, 𝛼) = 𝐶.U
>?!

𝐾 𝛼
𝐶.

>

Ω > (𝜙) Γ*+,& 𝑥, 𝛼 −→ 𝐾 𝛼 log
1
𝑥

𝐾(𝛼) : light-like cusp anomalous dimension. 

Ω > (𝑘 > 1) vanishes in the light-like limit
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= 𝐶.𝐶/𝑇2𝑛1[𝐵/1Ω ! + 𝐵1Ω(")]

Ω(!)
K(")Ω(!) + Ω(")



Four loop quartic casimir color structure

t𝑟. [𝑇@𝑇A𝑇*𝑇3] = 𝑑.
𝑑" tems is the first non-planar contribution to Γ*+,&

𝑑.𝑑/
𝑁.

𝑑.𝑑2
𝑁.

Γ*+,& J3$%
=

𝛼
𝜋

( 𝑑.𝑑2
𝑁.

[𝑛0 𝐵 𝜙 + 𝑛, 𝐶 𝜙 ]

We are interested in the matter-dependent quartic casimir component

§ Necesary input to obtain full QCD result: the gluon quartic Casimir term
could be obtained from N=4 super Yang-Mills result for the bosonic Wilson loop ! 

§ First quantum correction in the U(1) abelian theory (𝑑.= 𝑑2 = 1,𝑁. = 1. )

4-loop planar contribution in N=4 obtained [Huber, Henn, 2013] 

thansks to the simplicity in massive planar amplitudes [Bern, 

Czakon, Dixon,  Kosower, Smirnov 2007]. Less is known for non-planar
contributions.

7



decomposed onto quasi-finite HQET Integrals 

= 𝑔"^𝑑3𝑘
1

−2 𝑘 ⋅ 𝑣! + 1 −2 𝑘 ⋅ 𝑣" + 1 𝑘"

= 𝑔"^𝑑𝑠 𝑑𝑡 𝑒B
,CD
"

1
[ 𝑠 𝑣! − 𝑡 𝑣" "]!CE

Methodology

At higher-loop order,  web diagrams only contain overall
!
E

divergence, the coefficient is scheme

independent.  

¡ Quasi-finiteness:  
integrals are free from
subdivergence. 
Coefficent of the leading
pole is determined by
the properties of 
integrand in 4D. 

Compute HQET integrals through Integration-by-part (IBP) reduction + canonical differential equation (DE)  

𝑙𝑜𝑔 𝑊" = ∑(𝑤7 𝜙 − 𝑤7(0))

Bring Wilson lines offshell (𝛿 = 1), long-distance divergence regulated

𝜌 ≔ 𝑠 + 𝑡, 𝑦 ≔ ,
,CD

, ∫ 3 F
F'()*

𝑒B
+
) ∼ − !

"E
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6 integral families, each
involves ~500 integrals 
differential equation contains
coupled system of size up to 
17×17,  denominators of up
to degree-20 polynomials in x 
and D. 

Possibily non-polylogarithmic
integral sector

Technical bottleneck

𝑂 𝜖 terms may be scheme dependent, live 
in a more complicated function space (e.g. 
elliptic function)
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¡ New efficient tools needed for the
automation of solving large 
complicated four-loop system.  

see e.g. [Lee, Talk at „Elliptics
and Beyond 2020“]

Coupled two-by-two sub-
system. One of which is strictly
finite, free from 𝜖 −poles.  
System decouples at 𝑂(𝜖B!)

𝑔! 𝑔"

IBP reduction [Smirnov 2019 (FIRE6)][Lee 
2013 (LiteRed)][Peraro 2019 (FiniteFlow)] 



We develop a new method „Initial 
Algorithm“  based on n-th order Picard 
Fuchs equation and overcome these
difficulties

¡ Disentangle the finite and 𝑂(𝜖) contributions in the non-polylogarithmic
sectors .  Quasi-finite integrals relevant for Γ%&'( are all polylogarithmic.

¡ Information about finite and 𝑂(𝜖)
contributions are mixed through IBP,  
due to the arbitrariness in the choice
of integral basis. 

10

Boundary constants computed from small angle 
expansions in the straight-line limit

¡ Transform DEs in polylogarithmic sectors
into canonical form. 

𝑑 𝑓 = 𝜖U
@

𝑑 ln 𝛼@ 𝑥 𝑚@ 𝑓

[Brüser, Grozin, Henn, Stahlhofen 2019]

𝛼 = { 𝑥, 1 ± 𝑥, 1 + 𝑥", 1 − 𝑥 + 𝑥",
1 − 𝑥
1 + 𝑥

,
1 − 𝑥 + 𝑥
1 + 𝑥 + 𝑥

}



Results for the four-loop quatic casimir terms

𝑑.𝑑2
𝑁.

𝑛0
1 + 𝑥"

1 − 𝑥" 𝐵! +
𝑥

1 − 𝑥" 𝐵" +
1 − 𝑥"

𝑥 𝐵G + 𝐵(

𝐵$(𝐶$) : Multiple polylogarithms of weight ranging from 3 to 7,  symbol alphabet �⃗� = 𝑥, 1 + 𝑥, 1 − 𝑥, 1 + 𝑥" .

§ Small angle limit (x->1)  [Grozin, Henn, Stahlhofen 2017] [Bru ̈ser, Grozin, Henn, Stahlhofen,2019] 

Knowlege on the function space
provides valuable input for
bootstrapping the gluonic quartic
casimir terms.
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The first three rational structures appear in three-loop answer. 
Symbol of 𝐵!,(( 𝐵",G), even (odd) under 𝑥 ↔ −𝑥.

Similar for the 𝑛, −terms, 𝐵$ → 𝐶$

𝑛0 −terms:

Asymptotic behaviours

agree up to 𝑂(𝜙()



Results for the four-loop quatic casimir terms

§ 4-loop light-like cusp in QED : 𝐾(9) = ;!

< −
="
+ − >=#

+
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§ Quark-antiquark static potential in N=4 sYM at three-loop order for
bosonic static charge

[Lee, Smirnov^2, Steinhauser, 2019; Henn, 
Peraro, Stahlhofen,Wasser, 2019] 

𝐵 𝑥

→ − ln 𝑥
𝜋4

6 −
𝜁+
3 −

5𝜁>
3 +

5𝜋4

8 −
11𝜋9

36 +
53𝜋<

2835 −
35𝜁+
12

−
𝜋4𝜁+
6

+
185𝜁>
12

−3𝜁+4

𝑉,:# J3$,

→ 7𝜋" −
47𝜋(

24 +
413𝜋H

1440 +
116𝜋"𝑙"

3 −
89𝜋"𝜁G
4 +

3𝜋(𝑙"
2

+
2
3𝜋

"𝑙"" − 14𝜋"𝑙"𝜁G −
17
12𝜋

"𝑙"( − 34𝜋"𝐿𝑖((
1
2)

gluon and the fermion quartic Casimir 
terms known [Lee, Smirnov^2,  
Steinhauser 2016] 

Connects to collinear anomalous dimension of Wilson 
loop and twist-two anomalous dimensions of DGLAP 
kernels [Dixon, 2017] 

𝜋"× {1, 𝑙", 𝜁", 𝜁"𝑙", 𝛼G, 𝑙"𝛼G, 𝜁"", 𝛼(}

𝑙" ≔ log 2, 𝛼I≔ 𝐿𝑖I
1
2
+
1
𝑛!
logI

1
2

Depends on a set of constants
propotional to 𝜋$



Full four-loop result in QED 

§ In QED,  first quantum correction to the one-loop formula

Γ*+,&(𝜙, 𝛼) = U
>?!

𝐾(𝛼) >Ω > (𝜙)

= 𝐾 𝛼 𝐴 𝑥 +
𝛼
𝜋

(
𝑛0 𝐵 𝑥 − 𝐵* 𝑥 + 𝑂(𝛼J)

𝐴 = − !CK)

!BK)
ln 𝑥 − 1

Ω ( has n0 dependence, through the light-by-light scattering diagrams. 
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§ Breaks the conjecture that matter dependence can be associated with lower-loop function

𝐾 𝛼 = 𝛾 𝛼 +
𝛼
𝜋

(
𝑛0𝐾(()

corrections from propagator-
type diagrams

Γ*+,& = 𝛾 𝛼 𝐴 𝑥 +
𝛼
𝜋

(
𝑛0 𝐵 𝑥 + 𝑂(𝛼J)

𝐵% = 𝐾(9)𝐴 =
𝜋4

6 −
𝜁+
3 −

5𝜁>
3 𝐴

How big is the deviation from the conjecture? 
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Deviation from
the rescaled
one-loop 
function is small
in all kinematic
regions
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§ Quantitative study of the deviation from the conjectured formula:

𝐴 = − )B*!

)?*! ln 𝑥 − 1, 

𝐵% =
;!

< −
="
+ − >=#

+ 𝐴 =
− 0.484𝐴
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1409.0023

¡ Previous study on the three-loop Γ*+,& shows 𝐾(𝛼) is a 
better expansion parameter than the gauge coupling.   

Perturbative expansions converges better over a wide range of 
kinematic regions. 

Our four loop result in QED is another evidence of this
statement. 

¡ 𝑅𝑒[𝐵 𝑥 ] vanishes at x= -1, similarly for the scalar
contributions 𝐶(𝑥) .  No sub-leading power  corrections to
the quark-antiquark static potential.  

Γ*+,& 𝜋 − 𝛿 ∼ 𝜋[
𝑐!
𝛿 + 𝑐" + 𝑐G 𝛿 + … . ] 𝛿 = −

1
𝑖
ln(−𝑥)



THE  ‚INITIAL INTEGRAL ALGORITHM ‘  
HTTPS://GITHUB.COM/UT-TEAM/INITIAL
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𝑓!

𝑓"B(

𝑓JBL

𝑓M
−

1 + 𝑥!

−1 + 𝑥 𝑥 1 + 𝑥
−1 + 𝑥
𝑥 1 + 𝑥

−4 + 𝑑 −7 + 2 𝑑
−1 + 𝑥 1 + 𝑥 (3𝑑 + 5𝑥) −

−8 + 3 𝑑 + 24 𝑥 − 6 𝑑 𝑥 − 8 𝑥! + 3 𝑑 𝑥!

2 −1 + 𝑥 𝑥 1 + 𝑥 (3𝑑 + 5𝑥)

Coupled differential system in d-dimension
𝑑
𝑑𝑥

𝑓 = 𝐴 𝑑, 𝑥 𝑓

𝑓: basis of master integrals. Chosen in arbitrary way. IBP 
and DE are derived in d-dimension.

𝐴 𝑑, 𝑥 =

Coupled sub-
system, typically
complicated.
Unphysical(appar
ent) singularites 17



dLog integrals and UT basis

∼
𝑥

𝑥4 − 1

4
f

𝑥
(𝑠)+𝑥 𝑡))(𝑠)+𝑥 𝑡))

𝑥
(𝑠4+𝑥 𝑡4)(𝑠4+𝑥 𝑡4)

?C

Leading singularity
dlog form 
(integrand has no
double poles) 

𝑑
𝑑 𝑥 �⃗� = 𝜖 𝐵 𝑥 �⃗�

Normalised integral  𝑔!: = 𝑥 − !
K

"
⋅

is purely logarithmic function of uniform transcendental weight
(UT), at each order in 𝜖.

In case one find a basis of UT integrals
�⃗�,  the DEs will simplify significantly. 

B 𝑥 =
1
𝑥 𝑚! +

1
𝑥 − 1 𝑚" +

1
𝑥 + 1 𝑚G

𝑚@ ∶ constant matrices

Fuchsian poles corresponding to
physical singualrities
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Canonical DEs [Henn 2013]  

𝜖 assigned with
weight -1𝑑 log(𝑠!+𝑥 𝑡!) ∧ 𝑑 log(𝑥 𝑠!+ 𝑡!) ∧ 𝑑 log(𝑠"+𝑥 𝑡")

∧ 𝑑 log(𝑥 𝑠"+ 𝑡")



Traditional methods to search for UT basis

𝑑
𝑑𝑥

𝑓 = 𝐴 𝑑, 𝑥 𝑓

𝑑
𝑑 𝑥 �⃗� = 𝜖 𝐵 𝑥 �⃗�

DE in terms of
arbitrary basis 𝑓

Search for UT basis �⃗�, 
with transformation
matrix 𝑇

𝑑𝐵 𝑥 =U
@

𝑑 ln 𝛼@ 𝑥 𝑚@

Iterative soluion in terms of multiple polylogarithms ∶ �⃗� = exp [𝜖 ∫ 𝑑𝐵] �⃗�N
19

¡ Methods based solely on dlog
integrand analysis [Wasser 2016]: 

often easy to find a few UT 
integrals, but hard to find a complete
UT basis.

𝑓 → 𝑇 𝑑, 𝑥 �⃗�
𝐴 → 𝑇 𝐴 𝑇B! − 𝑇B!𝜕K𝑇

DEs in canonical
form: 

¡ Mathematical tools based on the
DE itself (Moser algorithms, Lee‘s
algorithm): 

less efficient for large coupled
systems, or multi-variable problems.

(𝑎)

(𝑏)



A new algorithm to search for UT basis based on n-th order Pichard-Fuchs equations

𝑏I(𝑑, 𝑥) 𝑓!
(I)+𝑏IB! 𝑓!

(IB!) +⋯+ 𝑏N𝑓! = 0

𝑑
𝑑𝑥

𝑓 = 𝐴 𝑑, 𝑥 𝑓

𝑑
𝑑 𝑥 �⃗� = 𝜖𝐵 𝑥 �⃗�

Start with a UT 
integral 𝑓! , 
complete the basis
in an arbitrary way

𝑓!O, 𝑓!OO, … 𝑓!
I P

= Ψ 𝐴 𝑓

𝑔!O , 𝑔!OO, … 𝑔!
I P

= Ψ 𝐵 �⃗�
Assume existence of 
a UT basis �⃗�, s.t.
𝑔! = 𝑓! . DE is in  
canonical form. 

Derive nth-order Picard-Fuchs
equation. 
Plug in the ansatz and solve for
constant matrices 𝑚$ iteratively
(Gaussian ellimination)Ansatz for the alphabet {𝛼@} (based 

on singularities) and hence for 𝐵:

𝑑𝐵 𝑥 =U𝑑 ln𝛼@(𝑥) 𝑚@

§ Solution for Ψ[𝐵] allows to construct a UT basis from higher derivatives of a single UT integral. 20

Dlapa, Henn,Yan 2002.02340

(𝑎)

(𝑏)

(𝑐)



¡ Picard-Fuchs equation for a single integral is
unique, and contains valuable information
[Ho ̈schele, Hoff, Ueda 2014] 

¡ We formulate the method in matrix form, 
and solve the equations systematically.  
Proven to be efficient cutting-edge problems.   
Public code:  https://github.com/UT-team/INITIAL

Matrix Formulation for the Picard-Fuchs equation  

𝑑
𝑑𝑥

𝑓 = 𝐴 𝑑, 𝑥 𝑓

𝑓!O, 𝑓!OO, … 𝑓!
I P

= Ψ 𝐴 𝑓 = Ψ 𝜖𝐵 �⃗�

𝑑
𝑑 𝑥

�⃗� = 𝜖𝐵 𝑥 �⃗�

𝑑𝐵 𝑥 =h𝑑 ln𝛼D(𝑥) 𝑚D , 𝑎 = 1. . 𝐿

in terms of UT basis g: 𝑔! = 𝑓!.  

Plug in ansatz for B

-%

- *%
𝑓 = 𝐴[F]𝑓, 𝐴[F] ≔

-
-*𝐴

F?) + 𝐴 F?) 𝐴

𝑓 = 𝑇 �⃗�, 𝑇 = ΨB! 𝐴 Ψ[𝜖B]

𝑣".Ψ#$ 𝐴 Ψ[𝜖𝐵] = 𝑣". 

Transformation matrix

Given A, assume existence of its equivalent system B

Two basis are related
through higher-order 
derivatives 

Goal is to solve for each row of the constant matrices m_a , up to a constant similarity transform.

Linear equations, unknowns are row vectors
parametrizing Ψ 𝜖𝐵 .𝑣N ≔ (1,0, . . 0)



Recursive row reduction

22

Solving for the L constant matrices {𝒎𝒂} : 

{𝑣N. 𝑚@}

{𝑣N. 𝑚@ . 𝑚A}

{𝑣N. 𝑚@ . 𝑚A . 𝑚*}

𝑣N

1
1

𝑣N. 𝑚@ = 𝑞N$@ 𝑣$

. . . . .

Recurrence relations define the first row in 
each 𝑚@ in terms of 𝑣N, 𝑣!, ….  

• Row reduction on the top block 
(lowest order in 𝜖)

• Removing the pivots, remaining columns
reprensent free vectors in the linear equations, 
Redefine them as {𝑣!… , 𝑣R'}, add to the Basis U.  

Linear relations between row vectors
Expanded order by order in 𝜖, 
coefficients are rational function of x, 
evaluated on finite fields

𝜖N

𝜖!

𝜖"

𝑣N. 𝑚@ . 𝑚A = 𝑞N$@ 𝑣$ . 𝑚A

𝑖 = 0,… , 𝑆)

• Define a basis 𝑈 of independent free
row vectors. Initially,  𝑈 = 𝑣N .

Reduced linear relations



23

{𝑣$} {𝑣$ . 𝑚@}

{𝑣$ . 𝑚@ . 𝑚A}

• Moving onto the next order,  repeat the
above procedure.

𝑣$ . 𝑚@ = 𝑞$S@ 𝑣S , 𝑎 = 1. . 𝐿, 𝑖 = 0. . , 𝑛 − 1

{𝑣N, . . , 𝑣IB!}
1

. .
1

1 . . . . .

all linear  relations obtained

Defines coefficients the 𝑚@ matrices, up to a 
constact similarity transform. 

no new vectors added to the basis. In the next
step, there will be no new unknowns.

1) All relations will be trivially satisfied. 
Solution found. 
2) Certain vectors in U must vanish : Leads to
contradiction. 

𝜖!

𝜖"

𝑚@ = 𝑈B!. 𝑞@ . 𝑈 , 𝑈 ≔ 𝑣N, 𝑣!, . . , 𝑣IB! .

Recursive row reductionSolving for the L constant matrices {𝒎𝒂} : 

• Size of U keeps growing until a certain step
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Application I: 

Application II: 

7 6
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81

1

2 7 5

109
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8

6

1

7 8 9 10

3 5

642

Our algorithm provides an efficient tool for solving large DE system automatically

Full diffenitial system for 3L planar ladder
and tenis-court integral  family

Size: 26×26, and 41×41.
alphabet {,

D
, 1 + ,

D
} No need to decompose sector by sector. A 

single UT integral from top sector is
sufficient to derive the canonical DE in the
family

Non-planar four-loop HQET integral sector
on maximal cut

input: a single UT integral taken from
planar amplitude in N=4 sYM .

input: generate candidate UT integrals
by power-counting and integrand
analysis. Use our algorithm to test UT 
property.  

Size: 17×17 on maximal cut.  
alphabet 𝑥, 1 + 𝑥, 1 − 𝑥 .
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Application III: 

7

6

1 4

8

2

3 5

Multi-variable differential system .  
Non-planar double-pentagon integral family
on maximal cut.

Size: 9×9 on maximal cut.  Ansatz for alphabet
{𝑊!… ,𝑊G!} . [Chicherin, Henn, Mitev, 2019 ]

- Algorithm can be executed in 
the same way as the single-
variable case. 

- Requiries minimum input
from the integrand analysis, 
compared with the methods in 
the literature [Abreu,  Dixon, 
Herrmann, Page, Zeng, 2019] [ 
Chicherin, Gehrmann, Henn, Wasser, 
Zhang ,Zoia, 2019]   

Input: parity-even or odd UT integral given in 
literature. [ Chicherin, Gehrmann, Henn, Wasser, Zhang ,Zoia, 
2019]

Methods: Set 𝑏G,(,J to constants. derive partial 
differential equation w.r.t. 𝑏".

𝜕A) 𝑔 = 𝜖U𝜕A) ln 𝛼@({𝑏$}) 𝑚@ 𝑔 𝑎 = 1. . , 12

Solve for constant matrices 𝑚!, …𝑚!".
Compute transformation matrix.   
Reconstruct full analytic dependence on the
other variables.  Final canonical form 
dependends on 17 letters.



Algorithm is efficient for many coupled integrals, and in multi-variable case. 

¡ New tools for systematic computation of 
finite integrals 

IBP + DE methods suited to the system of 
finite integrals. 26



𝑔!

𝑔"

𝑔G

𝑔(

𝑑
𝑔$
𝑔%
𝑔!
𝑔&

=
+

𝑑 ln 𝑥
𝑑 ln

𝑥
(𝑥 + 1)(𝑥 − 1)

𝑑 ln 𝑥

𝑔$
𝑔%
𝑔!
𝑔&

0

0

The size of the coupled system in 4D is reduced
compared with the d-dimensional system. 
Certain sectors completely decouple.[Caron-Huot, 
Henn `14] 
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Application IV:  (quasi-)finite differential system

These observations are crucial to solving for
the four-loop HQET integrals.
The non-polylogarithmic integrals drop out 
of the differential system and do not 
contribute to Γ*+,& .

𝜒"

𝜒 𝜒 cos𝜙

𝜒



¡ Our algorithm is particular suited to dealing with finite 
sytem,  without a priori knowledge of basis of finite integrals. 

¡ Start from a single finite UT integral , directly set d=4 in the
Picard-Fuchs equation. 
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descen
ding
transc
endent
al
weight

𝑑
𝑑 𝑥 �⃗� = 𝐵 𝑥 �⃗�

�⃗�:  finte, purely logarithmic with
uniform transcendental weight

𝐵 𝑥 =

For finite integrals, B is nilpotent. 
DE can be easily solved iteratively
(bottom-up). 

¡ The solution for B matrix and infomation on boundary
values often suggests further relations between memebers of
the basis. The size of finite differential system is typically
smaller. 

We find polylogarithmic solution for integrals needed
for the cusp anomaloud dimension, in particular
quasi-finite and dlog integral ,e.g.



Future directions:

¡ Obtained full four-loop QED angle-dependent cusp anomalous dimension 

Result is qualitatively well described by rescaled one-loop function

¡ Analytic result depends on relatively simple function alphabet.

Gives valuable input for bootstrap of soft anomalous dimension. 

Conclusion and outlook

¡ Full 4loop non-planar contribution in QCD can be determined by considering
bosonic Wilson loop in N=4 sYM . 

¡ Systems of finite integrals has a smaller size, much simpler IBP relations and DEs.  
Our algorithm suggests one can build finite basis from higher-order derivatives. Shed
new lights on novel methods for calculating finite loop integrals.
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Thank you for your attention ! 
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