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trajectory of classical source: semi-

The angle-dependent cusp anomalous dimension governs > P infinite Wilson-line with a cusp

infinite-mass limit of physical processes involving heavy-quark
scattering/production: 2

: no_
velocity v, = g

Heavy quark scattering off an external potential:

heavy meson decay. J \

2 __ 1 2 _ 1
, : : vi =1,v5 =1,
cross channel: top quark pair production. s vy

Vq - Vy:=cosh gy :=cos

mq — oo, Form factor is a function of a single variable
V1 - V5 = cosh ¢y, (Minkowski recoiling angle).

Cusp anomalous dimension governs the infrared
divergences of massive scattering amplitudes.

10gA4(S' L, mz; mg) ~ log mg I‘cusp ((]5) s = 4m? sinzg

Plays a role in study of IR structure of

massive scattering amplitudes;

connects to high-energy (Regge) limit (e.g.

t via dual conformal symmetry in massive 2
planar N=4 sYM )




Anomalous dimension of cusped Wilson loop

1
(WC)=N—R(trRPexijdtfcu-A“(x)) v v, ]
= COS
log{( W¢) = cusp ($) \/v12\/772

Local UV divergence: dlnu

®  Expectation value of Wilson loop studied in
N=4 sYM in particular in its planar limit.

Integrabﬂity methods. [Beisert, Eden, Staudacher. J. Stat. Mech. 0701:P01021 (2007)]
[Basso, Korchemsky. J. Phys. A 42:254005 (2009)]
ADS-CFT COI‘I‘CSpOHdC@. [Maldacena, Phys. Rev. Lett. 80 (1998) 4859, hep-th/9803002]

®  Full QCD result is computed at three-loop order . as\*
P — (;S) ndrrB ()
Matter dependence exhibits remarkable universal iterative structure.
[Grozin, Henn, Korchemsky, Marquard, 2014]. Breaks Casimir scaling;
2
Fousp () = Cr = |9) + G404~ + C3014(9) (%) | + 0(a

Breaks universal structure
of matter dependence

Q(¢) independent of the particle content of the theory.
ng — depdence encoded in the effective coupling a.



OUTLINE

®  The four-loop matter-dependent quartic

casimir component of angle dependent cusp . : :
anomalous dimension in a generic U(N) gauge A novel algorithm for solving coulpled sytem of

theory. [Briiser, Dlapa, Henn,Yan 2002.02340] differential system based on n-th order Picard-
Fuchs equations. [Dlapa, Henn,Yan 2007.04851]

an* dpdp
I = (- ne B +ng C
s [, 0 = () N [ B@) + 1 C(@)]
— ideas for finding basis of uniform
— Methods of calculation and analytic transcendental weight integral
results.

— Design of algorithm and work flow

— Properties of the four-loop formula, — Cutting-edge applications, efficiencies
asymptotic behaviours.



Case of study Euclidean cusp angle
V() V(@) irreducible vetex _
log( W¢) = log V(0) corrections, V(0) self- x:=el?®
energy correction
V1 Uy 1 N 1
¢ ~ 0 (x = 1): HQET field-strength anomalous == (x )
dimension y, = 2%8Y©® 1 _ 0(¢?) /i \ \/7712 Vvi o 2
Cusped Wilon loop in
Full angle dependence of T'ysp (¢) Euclidean space mapped onto

antipodal lines on S3xR

o ~m(x—->-—-1) \£P<

quark-antiquark
static potential.

~igp = oo (x — 0): light-like cusp anomlous
dimension K(a) In 3—16 Recent 4~loop result
from massless form factor; null-polygon

Wilson IOOp. I‘cusp (T[ - 5)
[Henn, Korchemsky, Mistlberger.(2020)] o E )
[von Manteuffel, Panzer, Schabinger. (2020)] Cr S [VQQ + B (a)C(a)]

(



Matter dependence of

I‘cusp

K@D 1+ 9@ ,

log(WC)| =1+ + 0 (a®)

N=4sYM

N=4sYM

logWe)| = log(We) + £ 0@

matter dependence is proportional to the lower-loop formula ~B; Q™

— (1) (2)
ratio fixed by the asymptotic behaviour in the light-like limit. = CrCyTrny| B4 Q27 + B Q]

This pattern holds up to three-loop order in QCD.

K (a) : light-like cusp anomalous dimension.

K(@)"
Leusp (¢, @) = Cg Z ( C: > 0% (¢) Feusp (x, @) — K(a) log%

k=1

Q%) (k > 1) vanishes in the light-like limit

The conjecture breaks down at four loop order for certain new types of color structure.
[Briiser, Grozin, Henn, Stahlhofen 2019]



Four loop quartic casimir color structure

trg [TATPT°T?] = dj

d® tems is the first non-planar contribution to I,

4-loop planar contribution in N=4 obtained [Huber, Henn, 2013]

drdy

thansks to the simplicity in massive planar amplitudes [Bern, Nr
Czakon, Dixon, Kosower, Smirnov 2007]. Less is known for non-planar

contributions.

We are interested in the matter-dependent quartic casimir component

drdp

I, |
usp
dRrF

(

a

T

)

*drdp

Ng

[y B(¢) +ns C(¢)]

= Necesary input to obtain full QCD result: the gluon quartic Casimir term

could be obtained from N=4 super Yang-Mills result for the bosonic Wilson loop !

* First quantum correction in the U(1) abelian theory (dg=dr = 1,Np = 1.)




Methodology

Compute HQET integrals through Integration-by-part (IBP) reduction + canonical differential equation (DE)

log(Wc) = X(wi(¢) —w;(0)) decomposed onto quasi-finite HQET Integrals

Bring Wilson lines offshell (§ = 1), long-distance divergence regulated " Quasi-finiteness:
integrals are free from
5 j e 1 subdivergence.
=4 o 1. o 1. 2 Coefficent of the leading
(=2k-v+1)(=2k-v2+1)k pole is determined by
9 _S+t 1 the properties of
=9 f dsdte 2 [(s vy — t vy)2]i+e integrand in 4D.
. s dp -P 1
p'_S+try'_m’ fp1+2662~_z

At higher-loop order, web diagrams only contain overall i divergence, the coefficient is scheme

independent.



IBP reduction [Smirnov 2019 (FIRE6)][Lee

. 2013 (LiteRed) | [Peraro 2019 (FiniteFlow)]
Technical bottleneck

6 integral families, each
involves ~500 integrals
differential equation contains
coupled system of size up to
17%x17, denominators of up

to degree-~20 polynomials in x 77%
and D. yg

= New efficient tools needed for the
automation of solving large
complicated four-loop system.

Coupled two-by-~two sub- J1 g5
Possibily non-polylogarithmic system. One of which is strictly
integral sector finite, free from € —poles.

System decouples at 0(e™1)

see €.g. [Lee, Talk at ,,Elliptics

and Beyond 2020 0 (€) terms may be scheme dependent, live

in a more complicated function space (e.g. ¢
elliptic function)



Boundary constants computed from small angle

®  |nformation about finite and O (€) expansions in the straight-line limit
contributions are mixed through IBP,
due to the arbitrariness in the choice

of integral basis. E 2 E z E z
We develop a new method ,,Initial
Algorithm* based on n-~th order Picard

Fuchs equation and overcome these
difficulties

[Briiser, Grozin, Henn, Stahlhofen 2019]

" Transform DEs in polylogarithmic sectors
into canonical form.

df = eZdlnaa(x)maf a={x,1+x1+x%1—x+ x? L-vx 1-Vx+x
a

T4+ 1 +x+x

m  Disentangle the finite and O(€) contributions in the non-polylogarithmic
sectors . Quasi-finite integrals relevant for I';yg, are all polylogarithmic. 10



-
Results for the four-loop quatic casimir terms

Knowlege on the function space
provides valuable input for

b3 + B, bootstrapping the gluonic quartic
casimir terms.

dpdp 1+xZB+ X B_I_l—x2
Ng A PPt R PPl

ng —terms:

Similar for the ny —terms, B; — C;

B;(C;) : Multiple polylogarithms of weight ranging from 3 to 7, symbol alphabet @ = {x,1 + x,1 — x,1 + x?}.
The first three rational structures appear in three-loop answer.

Symbol of By 4( B, 3), even (odd) under x < —x.

Asymptotic behaviours

= Small angle limit (x~>1) [Grozin, Henn, Stahlhofen 2017] [Bruser, Grozin, Henn, Stahlhofen,2019]

agree up to 0(¢*)



Results for the four-loop quatic casimir terms

= 4-loop light-like cusp in QED : K® — n? {3 5 [Lee, Smirnov~2, Steinhauser, 2019; Henn,
6 3 3 Peraro, Stahlhofen,Wasser, 2019]
B(x)
g n_z_C_g 505 +5n2_11n4+53n6_35(3
6 3 3 8 36 2835 12 ) _ ) _

2 185 Connects to collinear anomalous dimension of Wilson
. m°¢s + (s —3 53% loop and twist-two anomalous dimensions of DGLAP

6 12 kernels [Dixon, 2017]

= Quark-antiquark static potential in N=4 sYM at three-loop order for ~ &luon and the fermion quartic Casimir
terms known [Lee, Smirnov/2,

bosonic static charge Steinhauser 2016]

Vsy M Depends on a set of constants

dra propotional to 12
47n* 413m® 116m?l, 89m?{; 3m*l,
- 7m? — + + — +
5 24 144017 3 4 1 2 2 X {1,13, 05, (oly, a3, L3, 5, g}
+ =121 — 14n%1,{3 — —m?l; — 34n?Liy (o) 1\ 1 1
3 12 2 l, =log2, a,==Li, (E) + Elognz



Full four-loop result in QED

* In QED, first quantum correction to the one-loop formula

4

a 2
Feusp = y(@)A(x) + (;) ng B(x) + O(st) A=— 1ti2 Inx —1

corrections from propagator-
type diagrams

= Breaks the conjecture that matter dependence can be associated with lower-loop function

Feusp (P, @) = Z(K(a))kﬂ(k) () K@) =y(a) + (g)4 nf[((4)
k=1 T
4
= K(a)A(x) + (%) nf(B(x) = Bc(x)) + 0(a®) B, = K®A = <7%2_% —%)A

0™ has ny dependence, through the light-by-light scattering diagrams.

How big is the deviation from the conjecture?



* Quantitative study of the deviation from the conjectured formula:

Deviation from
the rescaled
one-loop
function is small
in all kinematic
regions
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one loop
two loop -----

= Previous study on the three-loop I, shows K(a) is a 4f Mwoloop —---
better expansion parameter than the gauge coupling. >T

Perturbative expansions converges better over a wide range of
kinematic regions.

Our four loop result in QED is another evidence of this
statement.

Q(a,e™ )

C 1
[eysp(m —8) ~ H[El +c, +e36+ ....] § = —=In(—x) 1409.0023

m  Re[B(x)] vanishes at x= -1, similarly for the scalar
contributions C(x) . No sub-leading power corrections to
the quark-antiquark static potential.



THE ,INITIAL INTEGRAL ALGORITHM °

HTTPS:/IGITHUB.COM/UT-TEAMI/INITIAL




Coupled differential system in d-dimension

d - 5

f : basis of master integrals. Chosen in arbitrary way. IBP
and DE are derived in d~dimension.

®fi

pr—

A(d, x) =
Coupled sub-
system, typically A )
. + x -1+ x
complicated. NS X1+ %)
Unphysical(appar (4 + d)(=7 + 2d) _(—8 +3d+24x — 6dx — 8x%+ 3 dxz)




dLog integrals and UT basis Canonical DEs [Henn 2013]

In case one find a basis of UT integrals

0 1 x x € =l . . . . . e
~ (x2 — 1) f [(sl+x D GiTr ) ot x ) Gt tz)l g, the DEs will simplify significantly.

igned with
dlog(s;+x t;) ANdlog(x s+ t;) Adlog(s,+x t,) ;ngsﬁni b
ANdlog(x s,+ t,) /
L j=eBG) g
v dlog form dx 979
Leading singularity (integrand has no
double poles)
B() 1 N 1 N 1
2 X) = — m1 - mz - m3
Normalised integral g,: = (x — i) A & x—1 x+1
is purely logarithmic function of uniform transcendental weight Fuchsian poles corresponding to
(UT), at each order in €. physical singualrities

m, : constant matrices I8



Traditional methods to search for UT basis

. d - =2
DE in terms c?f L (@ — f=Ad,x)f
arbitrary basis f dx

Search for UT basis g,

with transformation
matrix T

f-TWdx)g
A-> TAT*-T"19,T

DEs in canonical d

form: (b) EQ):EB(x)ﬁ

dB(x) = Z dlna,(x) m,

Iterative soluion in terms of multiple polylogarithms : g =

®=  Methods based solely on dlog
integrand analysis [Wasser 2016]:

often easy to find a few UT
integrals, but hard to find a complete
UT basis.

m  Mathematical tools based on the
DE itself (Moser algorithms, Lee's
algorithm):

less efficient for large coupled
systems, or multi-variable problems.

exp [€ | dB] go



A new algorithm to search for UT basis based on n-th order Pichard-Fuchs equations

Dlapa, Henn,Yan 2002.02340
Start with a UT
integral f; ,
complete the basis
in an arbitrary way

d A F
(a) dxf— ,x) f

T -
(£ 7)) =wlAl f
bo(d, ) P 4byy [V 4 hofi =0 ©

Derive nth-order Picard-~Fuchs
T equation.

=WY[B]g Plug in the ansatz and solve for
constant matrices m; iteratively
Ansatz for the alphabet {a,} (based (Gaussian ellimination)
on singularities) and hence for B:

dB(x) = Z dlna,(x) m,

(9197, 07)

Assume existence of

a UT basis g, s.t. d
g1=fi.DEisin ) S~ g=€eB(x)g
canonical form.

= Solution for W[B] allows to construct a UT basis from higher derivatives of a single UT integral.



I

Matrix Formulation for the Picard-Fuchs equation " Picard-Fuchs equation for a single integral is
unique, and contains valuable information
Given A, assume existence of its equivalent system B [Hoschele, Hoff, Ueda 2014]

in terms of UT basis g: g; = fi- = We formulate the method in matrix form,

and solve the equations systematically.

i f = A(d, x) f i g=¢€eB(x)g Proven to be efficient cutting-edge problems.
dx dx Public code: https://github.com/UT-team/INITIAL
Two basis are related . ) 0
through higher-order (f1’» - 1(")) = Y[A] f = Y[eB] g % f=Alkf Alkl .= . A
. . d : B = :
derivatives EA[k 1 4 plk=1l4 oAl

Transformation matrix f =Tg, T=WY1A]¥Y[eB]

_ Linear equations, unknowns are row vectors
w-li41w — — f
vo- [A]¥[€B] = vo. v = (1,0,..0) parametrizing ¥[eB].

Plug in ansatz for B dB(x) = Z dina,(x)m, ,a=1..L

Goal is to solve for each row of the constant matrices m_a , up to a constant similarity transform.



Solving for the L constant matrices {m,} :

Linear relations between row vectors

Expanded order by order in €, e’
coefficients are rational function of x,
evaluated on finite fields el

* Define a basis U of independent free 2
row vectors. Initially, U = {v,}.

* Row reduction on the top block
(lowest order in €)

Recursive row reduction

pr—

Vo {vo.Mmg}

{vy.-my.my.m.}

)

* Removing the pivots, remaining columns

reprensent free vectors in the linear equations,
Redefine them as {v; ..., vs, }, add to the Basis U.

Reduced linear relations

— a .
Vo-Mg = (qp; Vi i=0,..,5

Recurrence relations define the first row in
cach m, in terms of vy, v4, ....

— a
vo.ma.mb = qu vl‘.mb 22



Solving for the L constant matrices {m,} :

* Moving onto the next order, repeat the
above procedure.

Size of U keeps growing until a certain step

{Vo,++»Vn_1}

1
1

no new vectors added to the basis. In the next
step, there will be no new unknowns.

1) All relations will be trivially satisfied.
Solution found.

2) Certain vectors in U must vanish : Leads to
contradiction.

Recursive row reduction

{vi}  {viomg}

MY
El
_ J =
r \
- @O

all linear relations obtained

vi.ma=qiajvj, a=1..L,i=0..,.n—1

Defines coefficients the m, matrices, up to a
constact similarity transform.

mg=U"1.q% U, U:={vyvq,..,Vp_1}.

23



Our algorithm provides an efficient tool for solving large DE system automatically

L. \ /
Application I 1 3 5
Full diffenitial system for 3L planar ladder 7 8 9 10 }_ _{
and tenis~court integral family |
2 4 6
Size: 26X26, and 41x41. )_ J_ A
alphabet {%, 1+ %} No need to decompose sector by sector. A
. . . single UT integral from top sector is
input: a single UT integral taken from sufficient to derive the canonical DE in the
planar amplitude in N=4 sYM . family
Application II:
Non-planar four-loop HQET integral sector Size: 17%X17 on maximal cut.

)3\ on maximal cut alphabet {x,1 + x, 1 — x}.
1 8

%9 17 input: generate candidate UT integrals
7 6 \\ by power-counting and integrand 6 (1 — z?
\ analysis. Use our algorithm to test UT ‘ T
property.

2
) G1,0,1,1,0,1,1,2,2,0,0,1,0,0,0,0,0,0 -
24



Application III: Multi~variable differential system .
Non-planar double-pentagon integral family
on maximal cut.

3 S . : = by, = byby,
Size: 9X9 on maximal cut. Ansatz for alphabet e v
8
{Wl ey ng} . [Chicherin, Henn, Mitev, 2019 | $45 = b1bs, s15 = b1b(ba — ba + bs)
2 — 6 . . . . bl( 1+ b3)b4
) Input: parity-even or odd UT integral given in ss = = ~bibs(1-bs)
literature. [ Chicherin, Gehrmann, Henn, Wasser, Zhang ,Zoia,
1 4 2019]
— Algorithm can be executed in
Methods: Set b3 4 5 to constants. derive partial the same way as the single-
differential equation w.r.t. b,. variable case.
— Requiries minimum input
O, 9 =€) I, aq(bDMag  a=1.,12 from the integrand analysis,
compared with the methods in
Solve for constant matrices my, ... mq5. the literature [Abreu, Dixon,
Compute transformation matrix. Herrmann, Page, Zeng, 2019] |

Chicherin, Gehrmann, Henn, Wasser,

Reconstruct full analytic dependence on the Zhang Zoia, 2019

other variables. Final canonical form
dependends on 17 letters.

25



Algorithm is efficient for many coupled integrals, and in multi-variable case.

Type of

problem

Full three- Y 3 f

loopDE . L. L.
T
Tl

Full four- "

loop DE >< |

HQET /

DE on cut %
Five-point T i f

integrals 7
DE on cut LJ“‘

H#MI

26| 3

413

19 12

17117

919

Hvars Hletters

time [min.] M[egélry
2 330
34 1710
I 240
2 390
5 510

26



X + X cos ¢

91

92

93

94

Application IV: (quasi-)finite differential system

91 —0 dlnx x

dl 9z |= A I DE=-D
g3 d
94 L

The size of the coupled system in 4D is reduced

In x

0

compared with the d-dimensional system.
Certain sectors completely decouple.[Caron-Huot,

Henn " 14]

These observations are crucial to solving for

the four-loop HQET integrals.

The non-polylogarithmic integrals drop out

of the differential system and do not
contribute to Iy -

27
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" Qur algorithm is particular suited to dealing with finite g: finte, purely logarithmic with
sytem, without a priori knowledge of basis of finite integrals. uniform transcendental weight
m  Start from a single finite UT integral , directly set d=4 in the d
Picard-Fuchs equation. P dg=Bx)g
®  The solution for B matrix and infomation on boundary -
values often suggests further relations between memebers of
the basis. The size of finite differential system is typically C] descen
smaller. ding
B (X) = fransc
endent
We find polylogarithmic solution for integrals needed al
. . . . weight
for the cusp anomaloud dimension, in particular
quasi-finite and dlog integral ,e.g.

For finite integrals, B is nilpotent.
DE can be easily solved iteratively
(bottom-~up).



Conclusion and outlook

= Obtained full four-loop QED angle-dependent cusp anomalous dimension
Result is qualitatively well described by rescaled one-loop function
®  Analytic result depends on relatively simple function alphabet.

Gives valuable input for bootstrap of soft anomalous dimension.

Future directions:

Full 4loop non-planar contribution in QCD can be determined by considering
bosonic Wilson loop in N=4 sYM .

Systems of finite integrals has a smaller size, much simpler IBP relations and DEs.
Our algorithm suggests one can build finite basis from higher-order derivatives. Shed
new lights on novel methods for calculating finite loop integrals.

29



Thank you for your attention !




