THE FULL ANGLE DEPENDENCE OFTHE FOUR-LOOP CUSP ANOMALOUS DIMENSION IN QED

Kai Yan

Max-Planck Institute for Physics

The angle-dependent cusp anomalous dimension governs infinite-mass limit of physical processes involving heavy-quark scattering/production:

Heavy quark scattering off an external potential: heavy meson decay.
cross channel: top quark pair production.
$m_{Q} \rightarrow \infty$, Form factor is a function of a single variable $v_{1} \cdot v_{2}=\cosh \phi_{M}$ (Minkowski recoiling angle).

trajectory of classical source: semiinfinite Wilson-line with a cusp
velocity $v_{i}^{\mu}=\frac{p_{i}^{\mu}}{m_{Q}}$
$v_{1}^{2}=1, v_{2}^{2}=1$,
$v_{2} \quad v_{1} \cdot v_{2}:=\cosh \phi_{M}:=\cos \phi$

Cusp anomalous dimension governs the infrared divergences of massive scattering amplitudes.
$\log A_{4}\left(s, t, m^{2} ; m_{g}\right) \sim \log m_{g} \Gamma_{\text {cusp }}(\phi) \quad s=4 m^{2} \sin ^{2} \frac{\phi}{2}$
Plays a role in study of IR structure of massive scattering amplitudes; connects to high~energy (Regge) limit (e.g. via dual conformal symmetry in massive planar $\mathrm{N}=4 \mathrm{sYM}$)

Anomalous dimension of cusped Wilson loop

$$
\begin{aligned}
& \qquad\left\langle W_{C}\right\rangle=\frac{1}{N_{R}}\left\langle\operatorname{tr}_{R} P \exp \oint_{C} d t \dot{x}_{\mu} \cdot A^{\mu}(x)\right\rangle \\
& \text { Local UV divergence: } \quad \frac{d}{d \ln \mu} \log \left\langle W_{C}\right\rangle=\Gamma_{\text {cusp }}(\phi)
\end{aligned}
$$

- Expectation value of Wilson loop studied in $\mathrm{N}=4$ sYM in particular in its planar limit.

$$
\frac{v_{1} \cdot v_{2}}{\sqrt{v_{1}^{2} \sqrt{ } v_{2}^{2}}}=\cos \phi
$$

Integrability methods. [Beisert, Eden, Staudacher. J. Stat. Mech. 0701:P01021 (2007)]
[Basso, Korchemsky. J. Phys. A 42:254005 (2009)]
ADS~CFT correspondce. [Maldacena, Phys. Rev. Lett. 80 (1998) 4859, hep $\mathrm{th} / 9803002$]

- Full QCD result is computed at three-loop order .

Matter dependence exhibits remarkable universal iterative structure.

$$
\rightarrow\left(\frac{\alpha_{s}}{\pi}\right)^{4} n_{l} d_{R F} B(\phi)
$$

[Grozin, Henn, Korchemsky, Marquard, 2014].

$$
\Gamma_{c u s p}(\phi)=C_{R} \frac{a}{\pi}\left[\Omega(\phi)+C_{A} \Omega_{A}(\phi) \frac{a}{\pi}+C_{A}^{2} \Omega_{A A}(\phi)\left(\frac{a}{\pi}\right)^{2}\right]+O\left(a^{4}\right)
$$

Breaks Casimir scaling; Breaks universal structure of matter dependence
$\Omega(\phi)$ independent of the particle content of the theory. n_{f} - depdence encoded in the effective coupling a.

OUTLINE

- The four-loop matter-dependent quartic casimir component of angle dependent cusp anomalous dimension in a generic $\mathrm{U}(\mathrm{N})$ gauge theory. [Brüser, Dlapa, Henn,Yan 2002.02340]
- A novel algorithm for solving coulpled sytem of differential system based on n-th order PicardFuchs equations. [Dlapa, Henn, Yan 2007.0485 I]

$$
\left.\Gamma_{c u s p}\right|_{d_{R F}, \alpha^{4}}=\left(\frac{\alpha}{\pi}\right)^{4} \frac{d_{R} d_{F}}{N_{R}}\left[n_{f} B(\phi)+n_{s} C(\phi)\right]
$$

- Methods of calculation and analytic results.
- Properties of the four loop formula, asymptotic behaviours.

Case of study

$$
\log \left\langle W_{C}\right\rangle=\log \frac{V(\phi)}{V(0)}
$$

$V(\phi)$ irreducible vetex corrections, $V(0)$ self~ energy correction
$\phi \sim 0(x \rightarrow 1):$ HQET field \sim strength anomalous
dimension $\gamma_{h}=\frac{d \log V(0)}{d \ln \mu}, \Gamma_{c u s p} \sim O\left(\phi^{2}\right)$.

$$
\frac{v_{1} \cdot v_{2}}{\sqrt{v_{1}^{2}} \sqrt{v_{2}^{2}}}=\frac{1}{2}\left(x+\frac{1}{x}\right)
$$

$$
=\cos \phi
$$

$\sim \mathrm{i} \phi \rightarrow \infty(x \rightarrow 0):$ light~like cusp anomlous dimension $K(\alpha) \ln \frac{1}{x}$. Recent $4 \sim$ loop result from massless form factor; null polygon Wilson loop.
[Henn, Korchemsky, Mistlberger.(2020)]
[von Manteuffel, Panzer, Schabinger. (2020)]

$$
x:=e^{i \phi}
$$

Cusped Wilon loop in Euclidean space mapped onto antipodal lines on $S^{3} \times R$
$\phi \sim \pi(x \rightarrow-1):$
quark~antiquark
static potential.

$$
\begin{aligned}
& \Gamma_{c u s p}(\pi-\delta) \\
& \sim-C_{R} \frac{\alpha}{\delta}\left[V_{Q \bar{Q}}+\beta(\alpha) C(\alpha)\right]
\end{aligned}
$$

Matter dependence of $\Gamma_{\text {cusp }}$

$$
\left.\log \left\langle W_{C}\right\rangle\right|_{N=4 s Y M}=1+
$$

$$
\left.\log \left\langle W_{C}\right\rangle\right|_{Q C D}=\left.\log \left\langle W_{C}\right\rangle\right|_{N=4 \text { sYM }}+
$$

matter dependence is proportional to the lower - loop formula $\sim B_{l} \Omega^{(1)}$ ratio fixed by the asymptotic behaviour in the light-like limit.

This pattern holds up to three-loop order in QCD.

$$
\Gamma_{c u s p}(\phi, \alpha)=C_{R} \sum_{k \geq 1}\left(\frac{K(\alpha)}{C_{R}}\right)^{k} \Omega^{(k)}(\phi)
$$

$$
\begin{aligned}
& K(\alpha): \text { light like cusp anomalous dimension. } \\
& \Gamma_{\text {cusp }}(x, \alpha) \rightarrow K(\alpha) \log \frac{1}{x} \\
& \Omega^{(k)}(k>1) \text { vanishes in the light like limit }
\end{aligned}
$$

The conjecture breaks down at four loop order for certain new types of color structure.
[Brüser, Grozin, Henn, Stahlhofen 2019]

Four loop quartic casimir color structure

$$
\operatorname{tr}_{R}\left[T^{a} T^{b} T^{c} T^{d}\right]=d_{R}
$$

d^{2} tems is the first non~planar contribution to $\Gamma_{\text {cusp }}$

4~loop planar contribution in N=4 obtained [Huber, Henn, 2013] thansks to the simplicity in massive planar amplitudes [Bern,

$$
\frac{d_{R} d_{A}}{N_{R}}
$$

$$
\frac{d_{R} d_{F}}{N_{R}}
$$ Czakon, Dixon, Kosower, Smirnov 2007]. Less is known for non~planar contributions.

We are interested in the matter -dependent quartic casimir component

$$
\left.\Gamma_{c u s p}\right|_{d_{R F}}=\left(\frac{\alpha}{\pi}\right)^{4} \frac{d_{R} d_{F}}{N_{R}}\left[n_{f} B(\phi)+n_{s} C(\phi)\right]
$$

- Necesary input to obtain full QCD result: the gluon quartic Casimir term could be obtained from N=4 super Yang~Mills result for the bosonic Wilson loop !
- First quantum correction in the $\mathrm{U}(1)$ abelian theory $\left(d_{R}=d_{F}=1, N_{R}=1\right.$.)

Methodology

Compute HQET integrals through Integration by-part (IBP) reduction + canonical differential equation (DE)
$\log \left\langle W_{C}\right\rangle=\sum\left(w_{i}(\phi)-w_{i}(0)\right)$ decomposed onto quasi~finite HQET Integrals

Bring Wilson lines offshell ($\delta=1$), long~distance divergence regulated

- Quasi-finiteness: integrals are free from subdivergence. Coefficent of the leading pole is determined by the properties of integrand in 4D.

$$
\rho:=s+t, y:=\frac{s}{s+t}, \quad \int \frac{d \rho}{\rho^{1+2 \epsilon}} e^{-\frac{\rho}{2}} \sim-\frac{1}{2 \epsilon}
$$

At higher loop order, web diagrams only contain overall $\frac{1}{\epsilon}$ divergence, the coefficient is scheme independent.

Technical bottleneck

6 integral families, each involves ~ 500 integrals differential equation contains coupled system of size up to 17×17, denominators of up to degree ~ 20 polynomials in x and D.

- New efficient tools needed for the automation of solving large complicated four-loop system.

Possibily non~polylogarithmic integral sector

Coupled two by \sim two sub~ system. One of which is strictly finite, free from ϵ-poles. System decouples at $O\left(\epsilon^{-1}\right)$

$O(\epsilon)$ terms may be scheme dependent, live in a more complicated function space (e.g. elliptic function)

- Information about finite and $O(\epsilon)$ contributions are mixed through IBP, due to the arbitrariness in the choice of integral basis.

We develop a new method „Initial Algorithm" based on n~th order Picard Fuchs equation and overcome these difficulties

Boundary constants computed from small angle expansions in the straight-line limit

[Brüser, Grozin, Henn, Stahlhofen 2019]

- Transform DEs in polylogarithmic sectors into canonical form.

$$
d \vec{f}=\epsilon \sum_{a} d \ln \alpha_{a}(x) m_{a} \vec{f} \quad \vec{\alpha}=\left\{x, 1 \pm x, 1+x^{2}, 1-x+x^{2}, \frac{1-\sqrt{x}}{1+\sqrt{x}}, \frac{1-\sqrt{x}+x}{1+\sqrt{x}+x}\right\}
$$

- Disentangle the finite and $O(\epsilon)$ contributions in the non polylogarithmic sectors. Quasi~finite integrals relevant for $\Gamma_{c u s p}$ are all polylogarithmic.

Results for the four-loop quatic casimir terms

n_{f}-terms: $\quad \frac{d_{R} d_{F}}{N_{R}} n_{f}\left[\frac{1+x^{2}}{1-x^{2}} B_{1}+\frac{x}{1-x^{2}} B_{2}+\frac{1-x^{2}}{x} B_{3}+B_{4}\right]$
Knowlege on the function space provides valuable input for bootstrapping the gluonic quartic casimir terms.

Similar for the $n_{s}-$ terms, $B_{i} \rightarrow C_{i}$
$B_{i}\left(C_{i}\right)$: Multiple polylogarithms of weight ranging from 3 to 7 , symbol alphabet $\vec{\alpha}=\left\{x, 1+x, 1-x, 1+x^{2}\right\}$.
The first three rational structures appear in three -loop answer.
Symbol of $B_{1,4}\left(B_{2,3}\right)$, even (odd) under $x \leftrightarrow-x$.

Asymptotic behaviours

- Small angle limit (x \gg 1) [Grozin, Henn, Stahlhofen 2017] [Brüser, Grozin, Henn, Stahlhofen,2019] agree up to $O\left(\phi^{4}\right)$

Results for the four-loop quatic casimir terms

- 4~loop light -like cusp in QED : $K^{(4)}=\frac{\pi^{2}}{6}-\frac{\zeta_{3}}{3}-\frac{5 \zeta_{5}}{3}$
[Lee, Smirnov^2, Steinhauser, 2019; Henn, Peraro, Stahlhofen,Wasser, 2019]

$$
\begin{aligned}
& B(x) \\
& \rightarrow-\ln x\left(\frac{\pi^{2}}{6}-\frac{\zeta_{3}}{3}-\frac{5 \zeta_{5}}{3}\right)+\frac{5 \pi^{2}}{8}-\frac{11 \pi^{4}}{36}+\frac{53 \pi^{6}}{2835}-\frac{35 \zeta_{3}}{12} \\
& -\frac{\pi^{2} \zeta_{3}}{6}+\frac{185 \zeta_{5}}{12}-3 \zeta_{3}^{2}
\end{aligned}
$$

Connects to collinear anomalous dimension of Wilson loop and twist-two anomalous dimensions of DGLAP kernels [Dixon, 2017]

- Quark~antiquark static potential in $\mathrm{N}=4$ sYM at three - loop order for bosonic static charge
gluon and the fermion quartic Casimir terms known [Lee, Smirnov^2, Steinhauser 2016]

$$
\begin{aligned}
& \left.V_{S Y M}\right|_{d_{R A}} \\
& \rightarrow 7 \pi^{2}-\frac{47 \pi^{4}}{24}+\frac{413 \pi^{6}}{1440}+\frac{116 \pi^{2} l_{2}}{3}-\frac{89 \pi^{2} \zeta_{3}}{4}+\frac{3 \pi^{4} l_{2}}{2} \\
& +\frac{2}{3} \pi^{2} l_{2}^{2}-14 \pi^{2} l_{2} \zeta_{3}-\frac{17}{12} \pi^{2} l_{2}^{4}-34 \pi^{2} L i_{4}\left(\frac{1}{2}\right)
\end{aligned}
$$

Depends on a set of constants propotional to π^{2}

$$
\begin{aligned}
& \pi^{2} \times\left\{1, l_{2}, \zeta_{2}, \zeta_{2} l_{2}, \alpha_{3}, l_{2} \alpha_{3}, \zeta_{2}^{2}, \alpha_{4}\right\} \\
& l_{2}:=\log 2, \alpha_{n}:=L i_{n}\left(\frac{1}{2}\right)+\frac{1}{n!} \log ^{n} \frac{1}{2}
\end{aligned}
$$

Full four-loop result in QED

- In QED, first quantum correction to the one - loop formula

$$
\Gamma_{\text {cusp }}=\underbrace{\gamma(\alpha) A(x)}_{\begin{array}{c}
\text { corrections from propagator~ } \\
\text { type diagrams }
\end{array}}+\left(\frac{\alpha}{\pi}\right)^{4} n_{f} B(x)+O\left(\alpha^{5}\right) \quad A=-\frac{1+x^{2}}{1-x^{2}} \ln x-1
$$

- Breaks the conjecture that matter dependence can be associated with lower -loop function

$$
\begin{array}{cl}
\Gamma_{c u s p}(\phi, \alpha)=\sum_{k \geq 1}(K(\alpha))^{k} \Omega^{(k)}(\phi) & K(\alpha)=\gamma(\alpha)+\left(\frac{\alpha}{\pi}\right)^{4} n_{f} K^{(4)} \\
=K(\alpha) A(x)+\left(\frac{\alpha}{\pi}\right)^{4} n_{f}\left(B(x)-B_{c}(x)\right)+O\left(\alpha^{5}\right) & B_{c}=K^{(4)} A=\left(\frac{\pi^{2}}{6}-\frac{\zeta_{3}}{3}-\frac{5 \zeta_{5}}{3}\right) A
\end{array}
$$

$\Omega^{(4)}$ has n_{f} dependence, through the light-by-light scattering diagrams.
How big is the deviation from the conjecture?

- Quantitative study of the deviation from the conjectured formula:
$0<x=e^{-\varphi}<1$
$A=-\frac{1+x^{2}}{1-x^{2}} \ln x-1$, $B_{C}=\left(\frac{\pi^{2}}{6}-\frac{\zeta_{3}}{3}-\frac{5 \zeta_{5}}{3}\right) A=$ $-0.484 A$

Deviation from

the rescaled
one \sim loop
function is small in all kinematic regions
$-1<x<0$, imaginary part

$-1<x<0$, real part

- Previous study on the three - loop $\Gamma_{\text {cusp }}$ shows $K(\alpha)$ is a better expansion parameter than the gauge coupling.
Perturbative expansions converges better over a wide range of kinematic regions.

Our four loop result in QED is another evidence of this statement.

$$
\Gamma_{c u s p}(\pi-\delta) \sim \pi\left[\frac{c_{1}}{\delta}+c_{2}+c_{3} \delta+\ldots .\right] \quad \delta=-\frac{1}{i} \ln (-x)
$$

1409.0023

- $\operatorname{Re}[B(x)]$ vanishes at $\mathrm{x}=\sim 1$, similarly for the scalar contributions $C(x)$. No sub leading power corrections to the quark~antiquark static potential.

THE ,INITIAL INTEGRAL ALGORITHM ‘
HTTPS://GITHUB.COM/UT-TEAM/INITIAL

Coupled differential system in d-dimension

$$
\frac{d}{d x} \vec{f}=A(d, x) \vec{f}
$$

\vec{f} : basis of master integrals. Chosen in arbitrary way. IBP and DE are derived in d-dimension.
 complicated.
Unphysical(appar ent) singularites

$$
\left[\begin{array}{c}
-\frac{1+x^{2}}{(-1+x) x(1+x)} \\
\frac{(-4+d)(-7+2 d)}{(-1+x)(1+x)(3 d+5 x)}
\end{array}\right.
$$

$$
\left.\begin{array}{c}
\frac{-1+x}{x(1+x)} \\
-\left(\frac{-8+3 d+24 x-6 d x-8 x^{2}+3 d x^{2}}{2(-1+x) x(1+x)\left(3 d^{\prime}+5 x\right)}\right)
\end{array}\right]
$$

dLog integrals and UT basis

 $d \log \left(s_{1}+x t_{1}\right) \wedge d \log \left(x s_{1}+t_{1}\right) \wedge d \log \left(s_{2}+x t_{2}\right)$ $\wedge d \log \left(x s_{2}+t_{2}\right)$
dlog form

Leading singularity
(integrand has no double poles)

Normalised integral $g_{1}:=\left(x-\frac{1}{x}\right)^{2}$
is purely logarithmic function of uniform transcendental weight (UT), at each order in ϵ.

Canonical DEs [Henn 2013]

In case one find a basis of UT integrals \vec{g}, the DEs will simplify significantly.

$$
\begin{gathered}
\frac{d}{d x} \vec{g}=\epsilon B(x) \vec{g} \\
\mathrm{~B}(x)=\frac{1}{x} m_{1}+\frac{1}{x-1} m_{2}+\frac{1}{x+1} m_{3}
\end{gathered}
$$

Fuchsian poles corresponding to physical singualrities

Traditional methods to search for UT basis

DE in terms of arbitrary basis \vec{f}
(a) $\frac{d}{d x} \vec{f}=A(d, x) \vec{f}$

Search for UT basis \vec{g}, with transformation matrix T

$$
\begin{aligned}
& \vec{f} \rightarrow T(d, x) \vec{g} \\
& A \rightarrow T A T^{-1}-T^{-1} \partial_{x} T
\end{aligned}
$$

DEs in canonical form:
(b) $\frac{d}{d x} \vec{g}=\epsilon B(x) \vec{g} \quad d B(x)=\sum_{a} d \ln \alpha_{a}(x) m_{a}$

- Methods based solely on dlog integrand analysis [Wasser 2016]:
often easy to find a few UT integrals, but hard to find a complete UT basis.
- Mathematical tools based on the DE itself (Moser algorithms, Lee's algorithm):
less efficient for large coupled systems, or multi-variable problems.

Iterative soluion in terms of multiple polylogarithms : $\vec{g}=\exp \left[\epsilon \int d B\right] \vec{g}_{0}$

A new algorithm to search for UT basis based on n-th order Pichard-Fuchs equations

Start with a UT integral f_{1}, complete the basis
in an arbitrary way
(a) $\frac{d}{d x} \vec{f}=A(d, x) \vec{f}$
$\left(g_{1}^{\prime}, g_{1}^{\prime \prime}, \ldots g_{1}^{(n)}\right)^{T}=\Psi[B] \vec{g}$
Assume existence of a UT basis \vec{g}, s.t. $g_{1}=f_{1}$. DE is in canonical form.
(b) $\frac{d}{d x} \vec{g}=\epsilon B(x) \vec{g}$

Ansatz for the alphabet $\left\{\alpha_{a}\right\}$ (based on singularities) and hence for B :

$$
d B(x)=\sum d \ln \alpha_{a}(x) m_{a}
$$

Derive nth~order Picard-Fuchs equation.
Plug in the ansatz and solve for constant matrices m_{i} iteratively (Gaussian ellimination)

- Solution for $\Psi[B]$ allows to construct a UT basis from higher derivatives of a single UT integral.

Matrix Formulation for the Picard~Fuchs equation

Given A, assume existence of its equivalent system B
in terms of UT basis $g: g_{1}=f_{1}$.

$$
\frac{d}{d x} \vec{f}=A(d, x) \vec{f} \quad \frac{d}{d x} \vec{g}=\epsilon B(x) \vec{g}
$$

Two basis are related through higher~order derivatives

$$
\left(f_{1}^{\prime}, f_{1}^{\prime \prime}, \ldots f_{1}^{(n)}\right)^{T}=\Psi[A] \vec{f}=\Psi[\epsilon B] \vec{g}
$$

Transformation matrix

$$
\vec{f}=T \vec{g}, \quad T=\Psi^{-1}[A] \Psi[\epsilon \mathrm{B}]
$$

$$
v_{0} . \Psi^{-1}[A] \Psi[\epsilon B]=v_{0} . \quad v_{0}:=(1,0, \ldots 0)
$$

Plug in ansatz for $\mathrm{B} \quad d B(x)=\sum d \ln \alpha_{a}(x) m_{a}, a=1 . . L$

- Picard-Fuchs equation for a single integral is unique, and contains valuable information [Höschele, Hoff, Ueda 2014]
- We formulate the method in matrix form, and solve the equations systematically. Proven to be efficient cutting-edge problems. Public code: https://github.com/UT-team/INITIAL

Linear equations, unknowns are row vectors parametrizing $\Psi[\epsilon B]$.

Goal is to solve for each row of the constant matrices m_a, up to a constant similarity transform.

Solving for the L constant matrices $\left\{\boldsymbol{m}_{\boldsymbol{a}}\right\}$: Recursive row reduction

Linear relations between row vectors Expanded order by order in ϵ, coefficients are rational function of x , evaluated on finite fields

- Define a basis U of independent free row vectors. Initially, $U=\left\{v_{0}\right\}$.
- Row reduction on the top block (lowest order in ϵ)

Reduced linear relations

$$
v_{0} \cdot m_{a}=q_{0 i}^{a} v_{i} \quad i=0, \ldots, S_{1}
$$

Recurrence relations define the first row in each m_{a} in terms of v_{0}, v_{1}, \ldots.

- Removing the pivots, remaining columns reprensent free vectors in the linear equations,

$$
v_{0} \cdot m_{a} \cdot m_{b}=q_{0 i}^{a} v_{i} \cdot m_{b}
$$

Solving for the L constant matrices $\left\{\boldsymbol{m}_{\boldsymbol{a}}\right\}$: Recursive row reduction

- Moving onto the next order, repeat the above procedure.
- Size of U keeps growing until a certain step

no new vectors added to the basis. In the next step, there will be no new unknowns.

1) All relations will be trivially satisfied. Solution found.
2) Certain vectors in U must vanish : Leads to contradiction.

all linear relations obtained

$$
v_{i} . m_{a}=q_{i j}^{a} v_{j}, \quad a=1 . . L, i=0 . ., n-1
$$

Defines coefficients the m_{a} matrices, up to a constact similarity transform.

$$
m_{a}=U^{-1} \cdot q^{a} \cdot U, \quad U:=\left\{v_{0}, v_{1}, . ., v_{n-1}\right\} .
$$

Our algorithm provides an efficient tool for solving large DE system automatically

Application I:

Full diffenitial system for 3L planar ladder and tenis~court integral family

Size: 26×26, and 41×41. alphabet $\left\{\frac{s}{t}, 1+\frac{s}{t}\right\}$
input: a single UT integral taken from planar amplitude in $\mathrm{N}=4 \mathrm{sYM}$.

No need to decompose sector by sector. A single UT integral from top sector is sufficient to derive the canonical DE in the family

Application II:

Non~planar four~loop HQET integral sector on maximal cut
input: generate candidate UT integrals by power-counting and integrand analysis. Use our algorithm to test UT

Size: 17×17 on maximal cut. alphabet $\{x, 1+x, 1-x\}$.

$$
\epsilon^{6}\left(\frac{1-x^{2}}{x}\right)^{2} G_{1,0,1,1,0,1,1,2,2,0,0,1,0,0,0,0,0,0}
$$ property.

Application III:

Multi-variable differential system .
 Non planar double -pentagon integral family on maximal cut.

Size: 9×9 on maximal cut. Ansatz for alphabet
$\left\{W_{1} \ldots, W_{31}\right\}$. [Chicherin, Henn, Mitev, 2019]
Input: parity~even or odd UT integral given in
literature. [Chicherin, Gehrmann, Henn, Wasser, Zhang ,Zoia, 2019]

$$
\begin{array}{r}
s_{12}=b_{1}, \quad s_{23}=b_{1} b_{4}, \\
s_{45}=b_{1} b_{5}, \quad \\
s_{15}=b_{1} b_{3}\left(b_{2}-b_{4}+b_{5}\right) \\
s_{34}=\frac{b_{1}\left(1+b_{3} b_{4}\right.}{b_{2}}-b_{1} b_{3}\left(1-b_{5}\right)
\end{array}
$$

Methods: Set $b_{3,4,5}$ to constants. derive partial differential equation w.r.t. b_{2}.

$$
\partial_{b_{2}} g=\epsilon \sum \partial_{b_{2}} \ln \alpha_{a}\left(\left\{b_{i}\right\}\right) m_{a} g \quad a=1 . ., 12
$$

Solve for constant matrices $m_{1}, \ldots m_{12}$. Compute transformation matrix. Reconstruct full analytic dependence on the other variables. Final canonical form

- Algorithm can be executed in the same way as the single variable case.
- Requiries minimum input from the integrand analysis, compared with the methods in the literature [Abreu, Dixon, Herrmann, Page, Zeng, 2019] [Chicherin, Gehrmann, Henn, Wasser, Zhang ,Zoia, 2019]

Algorithm is efficient for many coupled integrals, and in multi-variable case.

Type of problem	\#MI	\#vars	\#letters	time [min.]	Memory [MB]
Full threeloop DE	26 \| 3	I	2	2	330
	41 \| 3	I	2	34	1710
Full fourloop DE	19 \| 12	I	2	I	240
HQET DE on cut	17 \| 17	I	3	2	390
Five-point integrals DE on cut	919	4	17	5	510

Application IV: (quasi~)finite differential system

$$
d\left(\begin{array}{l}
g_{1} \\
g_{2} \\
g_{3} \\
g_{4}
\end{array}\right)=\left[\begin{array}{llll}
0 & d \ln x & & \\
& & d \ln \frac{x}{(x+1)(x-1)} & \\
& & & d \ln x \\
& & &
\end{array}\right]\left(\begin{array}{l}
g_{1} \\
g_{2} \\
g_{3} \\
g_{4}
\end{array}\right)
$$

The size of the coupled system in 4D is reduced compared with the $d \sim$ dimensional system.
Certain sectors completely decouple.[Caron-Huot, Henn ` 14]

These observations are crucial to solving for the four -loop HQET integrals.
The non polylogarithmic integrals drop out of the differential system and do not contribute to $\Gamma_{\text {cusp }}$.

- Our algorithm is particular suited to dealing with finite sytem, without a priori knowledge of basis of finite integrals.
- Start from a single finite UT integral, directly set $d=4$ in the Picard~Fuchs equation.
- The solution for B matrix and infomation on boundary values often suggests further relations between memebers of the basis. The size of finite differential system is typically smaller.

We find polylogarithmic solution for integrals needed for the cusp anomaloud dimension, in particular quasi~finite and dlog integral ,e.g.

\vec{g} : finte, purely logarithmic with uniform transcendental weight

$$
\frac{d}{d x} \vec{g}=B(x) \vec{g}
$$

For finite integrals, B is nilpotent. DE can be easily solved iteratively (bottom~up).

Conclusion and outlook

- Obtained full four -loop QED angle~dependent cusp anomalous dimension

Result is qualitatively well described by rescaled one-loop function

- Analytic result depends on relatively simple function alphabet.

Gives valuable input for bootstrap of soft anomalous dimension.

Future directions:

- Full 4loop non planar contribution in QCD can be determined by considering bosonic Wilson loop in $\mathrm{N}=4 \mathrm{sYM}$.
- Systems of finite integrals has a smaller size, much simpler IBP relations and DEs. Our algorithm suggests one can build finite basis from higher~order derivatives. Shed new lights on novel methods for calculating finite loop integrals.

Thank you for your attention !

