

Weak interaction studies via beta-delayed proton emission

Dinko Atanasov dinko.atanasov@cern.ch CERN, Experimental Physics department

on behalf of the WISArD collaboration

Outline

- Weak Interaction studies in the LHC era
- Beta-neutrino correlation with proton emission
- Kinematic shift measurements
- WISArD setup upgrades
- Beamtime Request

Weak Interaction – Standard Model

- Vector-Axial Vector interaction
- Maximal parity violation
- No Scalar (S) or Tensor (T)
- No time reversal violation

(except for the CP-violation included in the CKM matrix)

Weak Interaction – New Physics

- Vector-Axial Vector interaction
- Maximal parity violation
- No Scalar (S) or Tensor (T)
- No time reversal violation

(except for the CP-violation included in the CKM matrix)

II) Precision frontier, i.e correlation measurements

i.e LHC experiments **10⁵** SSM W' \rightarrow ev. $W \rightarrow (e,\tau)$ CMS M = 2000 GeV tt, single t 10⁴ QCD HNC CI \rightarrow ev. $\Lambda = 4000 \text{ GeV}$ 10^{3} γ + jets DM. $\Lambda = 200$ GeV. Events / 10² 10² 10⁻¹ 10⁻¹ DY 🗌 $M_{\nu} = 300 \text{ GeV}, \xi = +1$ Diboson + Data 🔆 Syst. uncer. 10^{-2}

1500

M_T (GeV)

2000

2500

1000

I) Energy frontier, i.e LHC experiments

 10^{-3}

10⁻⁴

500

J.D. Jackson et al, Nuclear Phys. 4 (1957) 206; Vos, Wilschut, Timmermans, Rev. Mod. Phys. 87, 1483 (2015) CMS Collaboration, Phys. Rev. D 91, 092005 (2015)

Beta decay observables

Pure Fermi transitions

SM: Vector current

- Preferred emission angle: $\theta = 0^{\circ}$
 - Maximum recoil energy

Correlation Parameters

$$a_{F} = 1$$

 $b_{F} = 0$

Beta decay observables

Pure Fermi transitions

SM: Vector current

- Preferred emission angle: $\theta = 0^{\circ}$
 - Maximum recoil energy

NP: Scalar current

- Preferred emission angle: θ = 180°
 - Minimum recoil energy

Correlation Parameters $a_F \cong 1 - \frac{|C_S|^2 + |C'_S|^2}{|C_V|^2}$ $b_F \cong \pm Re\left(\frac{C_S + C'_S}{C_V}\right)$

Kinematic shift: ${}^{32}Ar \rightarrow {}^{32}Cl$

Kinematic shift: ${}^{32}Ar \rightarrow {}^{31}S+p$

³²Ar decays by β-decay to ³²Cl which subsequently decays by proton emission to ³¹S

- Recoil energy ~ hundreds eV
- Protons energies ~ several MeV
- The energy of the emitted protons is subject to kinematic shift due to the recoiling daughter nucleus

Kinematic shift with β -p coinc.

9/16

Scalar couplings - present

V. Araujo-Escalonaet al. Phys. Rev. C101, 055501 (2020)

Scalar couplings - future

V. Araujo-Escalonaet al. Phys. Rev. C101, 055501 (2020)

WISArD Detection setup

* Plastic scintillator;
 ** Silicon surface-barrier (thickness = 300 μm);
 *** Aluminized Mylar (thickness = 6.7 μm)

* Plastic scintillator – EJ200;
 ** MICRON single-sided silicon-strip (thickness = 300 μm);
 *** Aluminized Mylar (thickness = 0.5 μm)

WISArD Detection setup

Ongoing Upgrades (2019-2021):

- WISArD beamline instrumentation improvements in ion-beam transport ~ 98% (SIMION)
- Proton detectors resolution 10 keV (FWHM) (8 segmented quadrants with 5 strips each)
- Improved geometry solid angle 40% + reduction of proton energy loss due to dead layer

WISArD Detection setup

Ongoing Upgrades (2019-2021):

- WISArD beamline instrumentation improvements in ion-beam transport ~ 98% (SIMION)
- Proton detectors resolution 10 keV (FWHM) (8 segmented quadrants with 5 strips each)
- Improved geometry solid angle 40% + reduction of proton energy loss due to dead layer
- Backscattering of beta particles (detection threshold as function of E and θ validation + constraints for GEANT4)

Beamtime Request - summary

$\tilde{a}_F = 1.007 (32)_{stat} (25)_{syst}$	$N_{coinc}^{2021} \sim 290 \times N_{coinc}^{2018} = 2.9E7$			
	2018	2021	Gain	Shifts (8h)
Resolution (keV)	35	10	2.1	_
Yield (pps)	~1700	~4000	2.35	-
Transport efficiency (%)	12	70	5.8	-
Detector geometry (%)	8	40	5	_
Beamtime Duration (h)	35	144	4.1	18
Calibration ³³ Ar				3
Stable beam + TISD				3
TOTAL				24

Thank you

Ph. Alfaurt, V. Araujo-Escalona, P. Ascher,
D. Atanasov, B. Blank, F. Cresto, L. Daudin, X. Fléchard,
A. Garcia, M.Gerbaux, J. Giovinazzo, S. Grévy, T. Kurtukian-Nieto,
E. Liénard, D. Melconian, M. Pomorski, N. Severijns,
S. Vanlangendonck, M. Versteegen, D. Zakoucky

Example spectra

Results – NOV2018

