Decay spectroscopy of neutron-rich Zn isotopes by total absorption

CERN-INTC-2020-069 INTC-P-584

L.M. Fraile

Grupo de Física Nuclear & IPARCOS Universidad Complutense, Madrid, Spain A.I. Morales IFIC – CSIC / Universidad de Valencia Valencia, Spain

Region under study

1g_{9/2}

INTC November 2020

ß

Investigate the β decay of ⁸⁰⁻⁸²Zn by total absorption spectroscopy using the Lucrecia setup at ISOLDE

Competition of Gamow-Teller and first-forbidden transitions beyond ⁷⁸Ni Includes accurate measurement of g.s. feeding

Gamma-ray emission from neutron unbound states Competition of decay modes for (n,γ) rates

β decay is relevant for r-process nucleosynthesis Gamow-Teller are normally considered, but First-forbidden transitions play a role in medium and heavy nuclei

Region above ⁷⁸Ni:

- $\cdot {}^{81}Zn \rightarrow {}^{81}Ga (N=50)$
- Decay to odd-odd Ga

Total absorption γ spectroscopy ideal to measure beta feeding to high-lying states

Important process for radiative capture rates in nucleosynthesis · Gamma-decay of neutron-unbound states by γ rays may have a sizeable impact in astrophysical scenarios

Usually assumed that n decay dominates for β -fed nuclear states above S_n

- Process has been documented for a few cases
- · Photon strength function increase leads to a similar increase in the (n,γ) cross section: r process abundance calculations!

Emission of n above S_n hindered by the / barrier. Nuclear structure and β selection rules play a role

> Total absorption γ spectroscopy is the better suited tool to efficiently detect γ cascades from neutron unbound states.

J. L. Tain et al., PRL115, 062502 (2015) A. Spyrou et al., PRL117, 142701 (2016) INTC November 2020

r-process sensitivity studies of (n,γ) rates

TABLE II. Nuclei with maximum neutron capture rate sensitivity measures F > 10 from the combined results of fifty-five neutron capture rate sensitivity studies run under a range of distinct astrophysical conditions, from Fig. 7.

Z	Α	F
26	67	15.8
26	71	11.3
27	68	11.0
27	75	17.3
28	76	17.3
28	81	34.1
29	72	10.4
29	74	15.1
29	76	25.0
29	77	12.5
29	79	10.2
30	76	13.1
30	78	23.
30	79	15.3
30	81	13.0
31	78	12.5
31	79	12.1
31	80	26.0
31	81	18.5
31	84	10.
31	86	11.0
32	81	17.
32	85	13.1
32	87	19.1
33	85	10.
33	86	22.5
33	87	17.5
33	88	22.0
34	87	18.0
34	88	11.3
J 1		
34	89	10.3

R. Surman et al., WSPC Proceedings (2013)

Fig. 1. Shows the nuclei whose capture rates affect at least a 5-10% (lightest shading), 10-15%, or > 15% (darkest shading) change to the overall *r*-process abundance pattern when increased by a factor of 100 over a baseline simulation. Hatchmarks indicate the nuclei whose capture rates affect at least a 5% change in ten or more simulations.

r-process sensitivity studies of (n,γ) rates point toward the key role of the nuclei of interest

M. Mumpower et al., AIP Advances 4, 041008 (2014)

Allowed Gamow-Teller decays to positive parity states

- \rightarrow core excited states
- \rightarrow may appear close to S_n = 6.5 MeV
- First-forbidden decays to negative parity states
 - \rightarrow lower energies
 - \rightarrow sizeable (apparent) feeding in the region

```
Spin-parity <sup>81</sup>Ga g.s is 5/2<sup>-</sup>
Cheal et al., PRL 104, 252502 (2010)
```

$$B(\text{GT}) = |\langle \Psi_f| \sum_{\mu} \sum_{k} \sigma_k^{\mu} t_k^{\pm} |\Psi_i\rangle|^2$$

Beta decay of ⁸¹Zn

Results from ISOLDE: decay of ⁸¹Zn

FF transitions to lowlying (negative) states

Revised compared to previous highresolution paper

Apparent beta-feeding to ground state revised

Need for TAS Direct measurement of g.s. feeding

V. Paziy et al., Phys. Rev. C102, 014329 (2020)

Results from ISOLDE: decay of ⁸¹Zn

Allowed GT populates high-energy states

Breaking of odd proton orbitals

Large P_n value suggests a relevant role of those

Levels known up to S_n

V. Paziy et al., Phys. Rev. C102, 014329 (2020)

TAS measurement required

Beta-n decay of ⁸¹Zn to ⁸⁰Ga

V. Paziy et al., Phys. Rev. C102, 014329 (2020)

Large P_n value: feeding to states in ${}^{80}Ga$

Information available to take care of TAS response to beta-delayed neutrons

Beta and beta-n decay of ⁸²Zn

Allowed GT populates 1⁺ states, only one identified

FF highly suppresed but negative states exist: apparent feeding to 4⁻!

Most of the feeding above S_n , large P_n value

Gamma-decay above S_n?

Information on $I_{\beta n}$ exists

TAS measurement required

M.F. Alshudifat et al., Phys. Rev. C 93, 044325 (2016)

Total absorption spectroscopy

- A large Nal cylindrical crystal 38 cm Ø, 38 cm length
- An X-ray detector (Ge)
- A β detector
- Possibility of collection point inside the crystal

Well-known technique

Beta transition probability to daughter nucleus levels

Use of a high-efficiency device to detect gamma rays

- \rightarrow Sum energy in the detector (calorimeter)
- → Detect gamma-ray cascades

$$d_i = \sum_j R_{ij} f_j$$
 or $\mathbf{d} = \mathbf{R}(b) \cdot \mathbf{f}$

Taín, Cano et al., NIM A 571, 710 (2007), NIM A 571, 728 (2007) Rubio et al., Phys. G: Nucl. Part. Phys. 44 (2017) 084004

INTC November 2020

Dealing with neutrons in the TAS

V. Guadilla, J.L. Taín et al., PRC 100, 044305 (2019)

"Contamination" from the interaction of neutrons with the spectrometer

- \rightarrow NaI(TI): n capture or inelastic
- \rightarrow Taken care by **simulations**
- \rightarrow $I_{\beta n}$ needed, but known to excited states!
- → Simulations validated using segmentation for DTAS @ JFYL

Alternative: time discrimination

→ Beta-TAS timing

- · UC₂/graphite target + neutron converter
- · Temperature-controlled quartz glass transfer line
- · RILIS

Nuclide	$T_{1/2} (ms)$	ABRABLA	Exp. yield/ μ C	$Q_{\beta} (keV)$	$Q_{\beta n} (\text{keV})$	\mathbf{P}_n (%)
⁸⁰ Zn	562(3)	1.40E + 05	1.0E + 04	7575(4)	2828(3)	~ 1
⁸¹ Zn	290(4)	2.50E + 03	$6.0E{+}02$	11428(6)	4953(6)	23(4)
⁸² Zn	155(26)		$\sim 1.5 \text{E} + 01$	10617(4)	7243(4)	69(7)
Nuclide	$T_{1/2} (ms)$	ABRABLA	DB yield / μC	$Q_{\beta} \ (keV)$	$Q_{\beta n} (\text{keV})$	\mathbf{P}_n (%)
⁸⁰ Ga	1900(100)	1.80E + 07	6.7E + 04	10312(4)	2230(40)	0.9
⁸¹ Ga	1217(5)	5.80E + 06	$7.9E{+}03$	8664(4)	3836(4)	12
⁸² Ga	599(2)	3.30E + 05	$1.8E{+}03$	12484(3)	5290(3)	20
Nuclide	$T_{1/2}$ (min)	ABRABLA	DB yield / μC	Q_{EC} (keV)		
⁸⁰ Rb	0.557(12)	1.60E + 08	1.1E + 05	5718(2)		
⁸¹ Rb	$30.5(3) \ / \ 274.3(2)$	5.70E + 08	$1.7E{+}05$	2240(5)		
⁸² Rb	1.2575(2) / 388.3(4)	$1.1E{+}09$	4.50E + 06	4404(3)		

Optimization of transfer line: 1 shift

⁸⁰Zn and ⁸¹Zn: 4 shifts (including background and daughter activities)
 ⁸²Zn: 10 shifts (including RILIS off)

Collaboration

L.M. Fraile¹, J. Benito¹, O. Moreno¹, J.R. Murias¹, V. Sánchez-Tembleque¹,
J.M. Udías¹, A.I. Morales², J.L. Taín², E. Nácher², A. Algora², J. Agramunt²,
B. Rubio², S. E. A. Orrigo², M. Fallot³, M. Estienne³, A. Beloeuvre³, L. Giot³,
R. Kean³, A. Porta³, A. Fijałkowska⁴, V. Guadilla⁴, Z. Janas⁴, M. Karny⁴, A. Korgul⁴,
C. Mazzocchi⁴, K. Miernik⁴, M. Piersa⁴ R. Grzywacz⁵, M. Madurga⁵, T. King⁵, Z. Xu⁵,
R. Yokoyama⁵ M.J.G. Borge⁶, J.A. Briz⁶, A. Perea⁶, O. Tengblad⁶, E. Ganioğlu⁷,
L. Sahin⁷ W. Gelletly⁸, Z. Podolyak⁸, R. Lică⁹, B. Olaizola⁹, A. Tolosa¹⁰, N. Orce¹¹

¹Grupo de Física Nuclear & IPARCOS, Universidad Complutense de Madrid, E-28040, Spain
²Instituto de Física Corpuscular, CSIC - Universidad de Valencia, E-46071 Valencia, Spain
³Subatech, IMT-Atlantique, Université de Nantes, CNRS-IN2P3, F-44307 Nantes, France
⁴Faculty of Physics, University of Warsaw, PL-02-093 Warsaw, Poland
⁵Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, USA
⁶Instituto de Estructura de la Materia, CSIC, E-28006 Madrid, Spain
⁷Department of Physics, Istanbul University, 34134 Istanbul, Turkey
⁸Department of Physics, University of Surrey, GU2 7XH Guildford, United Kingdom
⁹ISOLDE-EP, CERN, CH-1211 Geneva 23, Switzerland
¹⁰Department of Physics, University of Jyvaskyla FI-40014, Finland
¹¹University of the Western Cape, South Africa