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event classification for reconstruction of water Cherenkov events.
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We are exploring an alternative approach to the more traditional “end-to-end” CNN
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framework to form an event reconstruction algorithm.

and fime pdf prediction

A CNN is trained to predict the hit charges and times for a given set of track parameters.
This Cherenkov ring generator is incorporated into a maximume-likelihood estimation

*  While | don't necessarily expect this method to outperform the end-to-end CNN

classifier's accuracy, it has potential advantages in the context of physics analyses.
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This method is analogous to FiTQun reconstruction: the CNN replaces the parameterized charge



Why this might be inferesting

« Single-ring predictions can be combined to predict arbitrary event hypotheses.
« E.g.in FiTQun mean predicted charges at each PMT are added up and time
pdfs are combined, weighted by charge.
* Neural network can be trained on single-particle MC:
* A priori not relying on problematic neutrino interaction and secondary
inferaction models.
* Avoid multi-particle final states combinatorics.
« “Interesting” event topologies do not need to be defined at training stage.
* Analyzers have flexibility to produce very specific event hypotheses out of
single-ring predictions without having to retrain the neural network.

* E.g..proton decay to kaon and neutrino analysis with FiTQun specifies
event with single de-excitation gamma followed (12 ns) by mono-energetic
muon.

* This reconstruction approach would be a drop-in replacement for FiTQun.
* Could be used with current analysis and systematic uncertainty estimation
techniques.
* Could be a useful first step in the move towards end-to-end ML reconstruction. 3



Generating images with CNNs

® Firstiteration of a Cherenkov ring generator neural network follows approach in

IEEE Trans. Pattern Anal. Mach. Intell. 39(4): 692-705, Apr 2017 (arXiv:1411.5928 [cs.CV]).
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Learning to Generate Chairs, Tables and Cars
with Convolutional Networks

Alexey Dosovitskiy, Jost Tobias Springenberg, Maxim Tatarchenko, Thomas Brox
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https://arxiv.org/abs/1411.5928

Generating rings with CNINs

¢ Follow network architecture described in the paper as close as possible, output is the

observed (mean) charge at each PMT in the barrel.
* Almost certainly not optimal, just want to see if it works.
* Implemented in PyTorch, based on Kazu’s examples from the workshop.
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Training

Used training sample prepared by Nick for the workshop:

* 1M of each: electrons, gammas and muons.
* Batch size: 200, train for 10 epochs (~day using PC w/ GPU)

e SmoothL1Loss (Huber)
* Adam optimizer

Hitting loss “floor” due to variation in the

samples themselves?
*  Move from predicting mean charge
to predicting the charge pdf?
* E.g. Output of the network is
a Gaussian mixture model?
*  Capture event-by-event variation
with additional “latent” input
parameters? Something along the

lines of a VAE? Not sure if feasible...

Maybe just terrible network architecture...
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CNN-generated rings
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Plans

® Ramp up on this work at Stony Brook over the coming weeks.

* One or two students + myself, Mike Wilking and Chiaki Yanagisawa.
* Focus will likely be toward T2K and Super-K reconstruction
* Short/medium term tasks:
* Generate large training Super-K training sample using SKDETSIM.
* Happy to share with this group (as long as it’s for Hyper-K use).
* Investigate neural network architecture further:
» Effects of layer size and number.
* Tryto implement pdf output, rather than mean charges.
* Look info introducing latent features on the input?
* Add hit fimes to the output - will need some kind of pdf output first, | don't
think mean hit times will work...
* Run basic checks of how this would look like as a reconstruction tool.
« Start with simple likelihood scans, using FiTQun to pre-process events.



