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OUTLINE

3 developments addressing fundamental issues in the analysis of particle physics data:

e 1) combining or interpreting results of experiments, where the likelihood of the
data given some physically meaningful parameters is the key object.

e recent progress in the 20-year quest to publish these likelihoods.

e 2) reinterpretation of results that cannot be addressed by the likelihood alone as it
requires processing alternative signal hypotheses through the analysis pipeline.

e recent progress in RECAST, which was proposed 10 years ago.

e 3) a challenge at the heart of analyzing HEP data: our predictions are based on
simulations, but the likelihood for the simulator is intractable

* how machine learning is pushing the frontier of simulation-based inference
and how it can greatly enhance the sensitivity of measurements at the LHC
(eg. for constraining effective tield theories).



STATISTICAL FRAMING
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1) Likelihood Publishing

+ Some History of PhyStat
and LHC Statistics




THE FIRST PHYSTAT

CERN 2000-005
30 May 2000

SwaooZé'

It was 20 years ago!

ORGANISATION EUROPEENNE POUR LA RECHERCHE NUCLEAIRE

e | was there and jUSt CERN ' EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH
getting started in HEP
and statistics

WORKSHOP ON CONFIDENCE LIMITS

® T h a n |<S LO U IS ! CERN, Geneva, Switzerland

17-18 January 2000

- PROCEEDINGS
Editors: F. James, L. Lyons, Y. Perrin

Louis Lyons of Oxford, co-convenor of the workshop on confidence limits.

https://cds.cern.ch/record/4115377In=en

GENEVA
2000



AN OBSERVATION

The emphasis of the PhyStat series and academic training lectures on
statistics has typically been on statistical methods

e hypothesis tests, confidence intervals, Bayes vs. Frequentist etc.

These are important topics, but most are well defined statistical
orocedures with well detined properties

e The statistical model p(data | theory) (aka “likelihood function”) is
the input to almost all of these statistical procedures.

e This allows us to decouple modeling of the data from debates
about statistical procedures

e We should focus less on statistical procedures and more on how
we model the data.



TERMINOLOGY
Given a probability model p(X| ) and a data x,

e The likelihood function is a function of the parameter 6,
and the value is given by L(0) = p(X = x| 0)

e But L(0) doesn’t describe the distribution in X

e Technically the likelihood function doesn’t have enough

enough information to generate synthetic data (toy Monte
Carlo), which is needed for most frequentist statistical
orocedures

Colloquially, the term likelihood function is used in HEP often
when we mean the full probability model p(X | 0)
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The situation 106 20 years ago... o
Origins I: The First “Statistics in HEP” conference

WORKSHOP ON CONFIDENCE LIMITS

CERN, Geneva, Switzerland
17-18 January 2000 CERN 2000-005

Massimo Corradi
Does everybody agree on this statement, to publish likelihoods?
Louis Lyons

Any disagreement ? Carried unanimously. That’s actually quite an achievement for this Workshop.
...[Fred James wants to be able to calculate coverage, Don Groom wants to able to calculate goodness of fit]...

Cousins

I thought the point of unanimity was that publishing the likelihood function was a necessary con-
dition, not a sufficient condition.

But a practical problem remained: How to communicate multi-D likelihood?

From Bob Cousins Slides: http://indico.cern.ch/conferenceDisplay.py?confld=100458

Kyle Cranmer (NYU) Likelihood Workshop, Jan 21, 2013


http://indico.cern.ch/conferenceDisplay.py?confId=100458

PHYSTAT 2007/

NATIONAL LABORATORY

Progress, Challenges, and Future of
Statistics for the LHC

Kyle Cranmer

ROOT Statistical
Software

Lorenzo Moneta (CERN, PH-SFT)

on behalf of the ROOT Math Work Package
(R. Brun, A. Kreshuk, E. Offermann + many others contributors)

(BNL)

Kyle Cranmer (BNL) PhySeat 2007, CERN, June 26,2007 |

Statistics software for the LHC Wouter Verkerke

The Workspace as publication

Workspace

o

e Now have functional RooWorkspace
class that can contain

Probability density functions and its components
(Multiple) Datasets
Supporting interpretation information (RooMode1Config)

Can be stored in file with regular ROOT persistence

¢ Ultimate publication of analysis...
- Full likelihood available for Bayesian analysis
- Probability density function available for Frequentist analysis
- Information can be easily extracted, combined etc...

- Common format for sharing, combining of various
physics results

Framework design & RooFit adaptations

¢ Have had more meetings last 3 months to review RooFit

lessons from BaBar

- Kyle, Amir Farbin (ex-Babar), Frank Wrinklmeyer (ex-Babar), WV

- Design for WorkSpace and ModelConfig concept in R
interface with statistics tools

Stores & Specifies interpretation & use

organizes of workspace contents in detail

data

ooFit to

ModelConfig
gaussl = signal
gauss2,cheby=bkg

Statistics tools

Common configuration language
of statistics tools

Workspace
Management Tools

Bob Cousins Slide: http://indico.cern.ch/conferenceDisplay.py?confld=100458

Calculate limits,
Significances etc...



http://indico.cern.ch/conferenceDisplay.py?confId=100458

NOT JUST THE LIKELIHOOD, THE FULL MODEL

Example of Digital Publishing N,
File View Options [_A RooPlot of "x"_|
£ wspace .root LI | Ig:-g_lgzgzlg-égl <:|| |e| _ml §1oo_—
|AII Folders |Contents of "/ROOT Files/wspace.root" g ao:—
(oot I% B
(_]PROOF Sessions j 60—
[:] lusarive ke ke/roofit/wo dkdir . B
D ROOT Files MyWorkSpace;1 a0 -
) —— .
20
Wouter recently demonstrated the 2 !
ability to save the function L(z(0,,05) e
in a Root file with minimal data e
necessary to reproduce likelihood £
5 °F
function. & o
Full statistical model | o4, 150 evaluate integrals over x g
pX|[0) =% necessary for Neyman construction! 2F
can generate toys Need this for combinations, we should 13
oublish them to some repository! S ™ TR T T o1
Kyle Cranmer (BNL) PhyStat 2007, CERN, June 26, 2007 65




EARLY LHC EXAMPLES (2011)
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Kyle Cranmer (NYU) *fitting, CERN, Feb 11, 2011 17
3-channel top combination s, @

The graph below represents this PDF

L(0yig, 2, atj) = H {];[ [Pois(M."“\]\]SZ)Gaus(,?\f,of) H Gaus(O\aj,l)]}
1e{ee.pipen} \ i€bins JEsyst

» where there are several relations between the expected means
in the different channels

o
3 observations from data !
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Kyle Cranmer (NYU) *fitting, CERN, Feb 11, 2011 18

Global BSM fits and LHC data

10-11 February 2011

CERN search 2

Europe/zurich timezone

ORIy The aims of this workshop include:

Llstb e to review the progress of the tools for global fits of BSM models

e to propose benchmarks for the parameterization of specific classes of models, in order to
facilitate and standardize the representation of the results of the experimental searches at the
LHC, and their use in the fitting codes

e to liaise with the "simplified models" approaches, as discussed e.g. in the "Characterization of
new physics at the LHC" meetings

e to provide an update of the work carried out within the DESY SUSY/BSM Fit Working Group

Registration

List of registrants

Information on accommodation, access to CERN and laptop registration is available
from http://Ipcc.web.cern.ch/LPCC/index.php?page=visit

Starts 10 Feb 2011, 08:00 CERN
Ends 11 Feb 2011, 18:00 TH Theory Conference Room

Michelangelo Mangano

https://indico.cern.ch/event/118137/overview

9 Channel ATLAS H->WW combination S @

4-channel ATLAS Higgs combination

top level model
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25 measurements from data

parameter of interest
1 parameter of interest and 24 nuisance parameters __ 9B
osmBRsm

Kyle Cranmer (NYU)

1 parameter of interest
27 nuisance parameters

9 observations of continuous variables

FEEETEE u i i UL : RN -t

*fitting, CERN, Feb 11, 2011 20

Kyle Cranmer (NYU)

*fitting, CERN, Feb 11, 2011

Visualization of the ATLAS+CMS Workspace
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The full model has
12 observables and
~50 parameters
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Kyle Cranmer (NYU)

*fitting, CERN, Feb 11, 2011

21




Collaborative Statistical Modeling
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Collaborative Statistical Modeling
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-PRODUCIBILITY PROBLEM

Not possible for others to reproduce results from paper.
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-PRODUCIBILITY PROBLEM

Not possible for others to reproduce results from paper.
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2012 RECOMMENDATIONS

Why public likelihoods

Searches for New Physics: Les Houches Recommendations
for the Presentation of LHC Results

S. Kraml!, B.C. Allanach?, M. Mangano®, H.B. Prosper?, S. Sekmen3* (editors),

C. Balazs®, A. Barr®, P. Bechtle”, G. Belanger®, A. Belyaev?'?, K. Benslamall,
M. Campanelli'?, K. Cranmer'®, A. De Roeck?, M.J. Dolan'?, T. Eifert', J.R. Ellis'6:3,
M. Felcini!”, B. Fuks'®, D. Guadagnoli®¥, J.F. Gunion?’, S. Heinemeyer'”,
J. Hewett!®, A. Ismail'®, M. Kadastik?!, M. Kramer??, J. Lykken?® F. Mahmoudi®?*,
S.P. Martin®>26:27 T. Rizzo'®, T. Robens®®, M. Tytgat?®, A. Weiler®’

——

* The statistical model of an experimental
analysis provides the complete mathematical
description of that analysis

p(o|a) relating the observed quantities o to the parameters «

« Given the likelihood, all the standard
statistical approaches are available for
extracting information from it

* Essential information for any detailed
interpretation of experimental results

= determining the compatibility of the observations with
theoretical predictions

S. Kraml - Feedback on use of public likelihoods - 24 Sep 2020

Les Houches Recommandations (2012)

3b: When feasible, provide a mathematical
description of the final likelihood function in
which experimental data and parameters are
clearly distinguished, either in the publication
or the auxiliary information. Limits of validity
should always be clearly specified.

3c: Additionally provide a digitized
implementation of the likelihood that is

consistent with the mathematical description.

arXiv:1203.2489

https://indico.cern.ch/event/957797/contributions/4026032/
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Searches for new physics: recommendations for the presentation of LHC

results

13 February 2012
CERN Search... ,O

Europe/Zurich timezone

O During the Les Houches 2011 workshop, discussions started to define a set of recommendations for

Timetable the presentation of LHC results on searches for new physics, aimed at providing a more efficient flow
of scientific information between the experimental collaborations and the rest of the high energy

Registration physics community, and facilitating the interpretation of the results in a wide class of models. This
discussion evolved into a draft document, available for download from this page. The goal of this

Participant List meeting is to review this draft and present it to the experiments for discussion and eventual
endorsement.

EVO connection will be available: the link will appear on the agenda page 30' before the start of the
meeting. Please register even if you participate only by EVO

Starts 13 Feb 2012, 09:00 CERN
Ends 13 Feb 2012, 19:00 TH Theory Conference Room

Michelangelo Mangano

& Paper
Sabine Kraml

& Final paper, arXiv:1203.2489
LH proceedings contribution

https://indico.cern.ch/event/173341/
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Likelihoods for the LHC Searches

21-23 January 2013
CERN

Europe/Zurich timezone

Overview
Timetable
Registration

Participant List

Search... ,O

The primary goal of this 3-day workshop is to educate the LHC community about the scientific utility
of likelihoods. We shall do so by describing and discussing several real-world examples of the use of
likelihoods, including a one-day in-depth examination of likelihoods in the Higgs boson studies by
ATLAS and CMS.

The workshop will start with two pedagogical lectures that introduce likelihood concepts and
terminology. These lectures are followed, in the afternoon of Day 1, by a moderated discussion that
focuses on the concepts and issues raised in the lectures. Day 1 ends with several presentations that
illustrate the use of likelihoods in Higgs and Beyond the Standard Model (BSM) research. The goal
here is to get feedback from researchers who have used Higgs and BSM results in their work.

Given the importance of the work on the Higgs boson, we shall devote the second day of the
workshop to the thorough deconstruction of likelihood usage in the Higgs boson work by ATLAS and
CMS. The goal is to shed a bright light on the many details, and assumptions, that underlie the
likelihoods used in the recently published results.

The final day of the workshop covers the use of likelihoods in BSM work and ends with an
examination and discussion of the concrete steps needed to make the publication of likelihoods by
the LHC community systematic and routine.

Starts 21 Jan 2013, 09:00 CERN
Ends 23 Jan 2013, 18:00 4/3-006 - TH Conference Room
Go to map

Harrison Prosper
Kyle Stuart Cranmer

Sezen Sekmen https://indico.cern.ch/event/2186%93/overview
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LIKELIHOOD SCANS

First step: publish likelihood scans for communicating LHC Higgs results.

http://doi.org/10.7484/INSPIREHEP.DATA.A78C.HK44 http://doi.org/10.7484/INSPIREHEP.DATA.RF5P.6M3K http://doi.org/10.7484/INSPIREHEP.DATA.26B4.TY5F
z 4.5 —6 <« z 10 6 <« z —6
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= s=7TeV fl-dt =4.81b X Best fit —5 = 8 X Best fit 5 = Is=7TeV fl-dt =461b X Best fit —15
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Information References (121) Citations (128) Plots HepData )

3

Measurements of Higgs . roduction and couplings in diboson final states
with tHe ATLAS detector at the LHC

ATLAS Coll

;o ration (Georges Aad (Freiburg U.) et al.) Show all 2923 authors
Jul 4, 2013 - 32 pages
Phys.Lett. B726 (2013) 88-119

Information Citations (7) Files

diboson final states with the ATLAS detector at the LHC

ATLAS Collaboration (Aad, Georges (Freiburg U.) [...]) Show all 2923 authors

Cite as: ATLAS Collaboration ( 2013 ) HepData, http://doi.org/10.7484/INSPIREHEP.DATA.A78C.HK44

23

Blogged by 3
Tweeted by 6
Click for more details

2InA

Data from Figure 7 from: Measurements of Higgs boson production and coupnngs n



http://doi.org/10.7484/INSPIREHEP.DATA.A78C.HK44
http://doi.org/10.7484/INSPIREHEP.DATA.RF5P.6M3K
http://doi.org/10.7484/INSPIREHEP.DATA.26B4.TY5F

LIKELIHOODS SCANS

Reproducing derived results from original paper!
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LIKELIHOODS SCANS

Reproducing derived results from original paper!

(N L1 11 ' LI | l LI LI I L ] LI L l L ‘ 1 LI ] L L I LI -
~ 4 [ ]
- Vs=7TeV [Ldt}=4.6-4.8 fb" -

g \s=8TeV [Ldt{20.7fb” =

u + Standard Model -
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But still simplitied likelihood scans, not the full statistical model



OPEN WORLD

The RooWorkspace was designed to be able to store any
type of statistical model = source of many complications

broadly we have two classes of analyses: binned and unbinned

unbinned/ \ binned

A T I I l I I I I I I | I T I
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[Slide from Lukas Heinrich]



CENTER FOR

HistFactory o

HistFactory tool that ships with ROOT
targeting binned analyses

Combination
OutputFilePrefix

» XML files organize the histograms =

Dependents \ LumiRelErr
i ExportOnly

» conventions define model exactly \

POI ParamSetting ConstraintTerm
Val Type
Const RelativeUncertainty
- CERN-OPEN-2012-016
» command line tool creates likelihood
Ne In’\;ii:rl;‘;e
. HistoPath
. —_ . HistoNam
ftot(D31m7g|a) — | I POIS(nC‘I/C(a)) I | fc(xce|a) | | fp(a’p|ap) stoName
c€channels e=1 PES
Data StatErrorConfig Sample
<!DOCTYPE Channel SYSTEM ’HistFactorySchema.dtd’> [nputie RelErrorThreshold Narme
istoPath ConstraintType InputFile
HistoName HistoName
HistoPath
<Channel Name="A" InputFile="./data/ABCD.root" > NormalizeByTheory
<Data HistoName="A_data" HistoPath="" /> \\
<!-- This 1is the si gn al (e g. mu )--> StatError HistoSys OverallSys ShapeSys NormFactor ShapeFactor
<Sample Name="A_signal" HistoPath="" HistoName="unit_histogram"> Hgmﬁe J¢$§9 pioite mxﬂ;e *Ee Name
<!-- mow mu is number of events--> purte | | e | [ Lo ocrar o
<NormFactor Name= n mu " Val= W q @ Low= " O " ngh= " 200 " / > HistoNameHigh ConstraintType Const
HistoFileLow
<OverallSys Name="systl" High="1.01" Low="0.99" /> HistoPathLow
< / S amp le> HistoNameLow
<!-- This bkg is estimated from MC (eg. mu_A"K) -->
<Sample Name="A_backgroundMC" HistoPath="" NormalizeByTheory="True" HistoName="unit_histogram" >
<NormFactor Name="mu_K_A" Val="100" Low="0" High="200" />
</Sample>
<!-- Background 2 is completely Data-Driven -->
<Sample Name="A_backgroundDD" HistoPath="" NormalizeByTheory="False" HistoName="unit_histogram" >
<NormFactor Name="mu_D_U" Val="100" Low="24500" High="26000" />
<NormFactor Name="etaB" Val="1" Low="0." High="0.02" Const="False" />
<NormFactor Name="etaC" Val="1" Low="0." High="0.3" Const="False" />
<!-- NormFactor and ShapeFactor same for a 1-bin histogram. But we can name NormFactor-->
</Sample>
</Channel>

Kyle Cranmer (NYU) Tools, Stockholm, June 18, 2012


http://cds.cern.ch/record/1456844

ML SPECIFICATION

o o
. Ensemble Provides machine-readable
I tics for hist d
B . g
Experiment
o o o
=N
! ~ O bulia statistical moaeis
\\
C N\
L d Channel Constraint Term . . .
g Declarative specificatio
A"has many" Bs. ¢ € channels fp(ap|ap) 4 r 1V ITl | n
B "has a" C. f (xla) : ~ "
Dashed s optiona. ‘ P € pammeters Wit consrsins defines model exactly
S ——
- CERN-OPEN-2012-016
Event Sample
global observable
e € events s € samples
a
l...n
(1.n )
<!DOCTYPE Channel SYSTEM ’HistFactorySchema.dtd’>
<Channel Name="A" InputFile="./data/ABCD.root" >
<Data HistoName="A_data" HistoPath="" />
<!-- This is the signal (eg. mu)-->
<Sample Name="A_signal" HistoPath="" HistoName="unit_histogram">
Observable(s) Distribution Expected Number of Events <!-- now mu is number of events-->
<NormFactor Name="mu" Val="1" Low="0" High="200" />
X f (xla) v <0verallSys Name="systl" High="1.01" Low="0.99" />
ec N& N ¥ v <
</Sample>
? <!-- This bkg is estimated from MC (eg. mu_A"K) -->
<Sample Name="A_backgroundMC" HistoPath="" NormalizeByTheory="True" HistoName="unit_histogram" >
+ <NormFactor Name="mu_K_A" Val="100" Low="0" High="200" />
</Sample>
Shape Variation Parameter <!-- Background 2 is completely Data-Driven -->
f (xla =X) <Sample Name="A_backgroundDD" HistoPath="" NormalizeByTheory="False" HistoName="unit_histogram" >
scp P_ a, 9,/4 <NormFactor Name="mu_D_U" Val="100" Low="24500" High="26000" />
<NormFactor Name="etaB" Val="1" Low="0." High="0.02" Const="False" />
<NormFactor Name="etaC" Val="1" Low="0." High="0.3" Const="False" />
<!-- NormFactor and ShapeFactor same for a 1-bin histogram. But we can name NormFactor-->
</Sample>
</Channel>
Nc
fiot (De; Q) = P Q | | a)l - | |
tot (Dsim, G| ) ois(nc|ve(ar)) fe(Tee|o¥) fp(ap|ap)
cEchannels e=1 PES
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A Reinterpretation Roadmap

Parameters modify
rates only?

yes

Analysis is number
counting?

yes no

e \

HEPData: Shapes based on
Tables of rates, binned
acceptances, and Templates?

systematic variations

¥

HistFactory XML
for signal and
bacckground

(stored in HEPData?)

T—a

no

RooFit/RooStats
workspace

CENTER FOR
COSMOLOGY AND
PARTICLE PHYSICS

Kyle Cranmer (NYU) Tools, Stockholm, June 18, 2012



CYBERINFRASTRUCTURE
AAHEP7 Information Provider Summit

1-3 April 2014
Stony Brook University

US/Eastern timezone

Search... ,O

Overview The 7th Summit of Information Providers in Astronomy, Astrophysics and High Energy Physics will
Timetable be hosted by APS and held at Stony Brook University. Attendees will include representatives of
o INSPIRE, ADS, arXiv, journal publishers, and others involved in providing access to information in
Participants
these fields.
Slides

This meeting follows on from 6 previous meetings in the series:
Meeting Location
2012, CERN: http://indico.cern.ch/conferenceDisplay.py?confld=209651
2011, Cornell: https://indico.cern.ch/conferenceDisplay.py?confld=128826
2010, Harvard: http://conf.adsabs.harvard.edu/AAHEP4/
2009, Fermilab: http://indico.fnal.gov/conferenceProgram.py?confld=2473
2008, DESY: https://indico.desy.de/conferenceDisplay.py?confld=800
2007, SLAC: https://indico.cern.ch/conferenceDisplay.py?confld=11611

Accommodations

Travel Information

41 Annette.Holtkamp@cer...
™M Thorsten.Schwander@c. ..
M bhecker@slac.stanford....

By Invitation Only

Starts 1 Apr 2014, 09:00 Stony Brook University
Ends 3 Apr 2014, 17:00 Wang Center, Lecture Hall and Chapel

Stony Brook, New York, US

Annette Holtkamp B notes
Bernard Louis Hecker
Hans-Thorsten Schwander

Mark Doyle https://indico.cern.ch/event/262430/overview

[2) test_document.txt
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Search for New Physics in the Paired Dijet Mass Spectrum

INVENIO

Powering Open\Science

We report on a search for pair-produced particles both decaying into two jets, based on a data sample of 2.2/fb of proton-proton
collisions collected at v/s=7 TeV with the CMS detector at the LHC. We select events with at least four jets, require pairs of dijets with

p p Ils equal mass, and search for pair production of new particles. We set upper limits on the product of the resonance cross section, branching
fraction into dijets, and acceptance. The cross section limit is compared with the predictions of a model of pair-produced colorons in . ]

Open Source framework for Turn-key Research Data Management repository Integrated Library System which each coloron decays to qg~. We exclude pair production of colorons with mass between 320 and 580 GeV at 95% confidence level.

large-scale digital repositories

L §

Search for massive supersymmetric particles decaying to many jets using the ATLAS detector in pp collisions at Vs = 8 N

Tev [

Results of a search for decays of massive particles to fully hadronic final states are presented. This search uses 20.3 fb-1 of data collected

by the ATLAS detector in v/s = 8 TeV/ prot llisions at the LHC. Signatures based on high jet multiplicities without
requirements on the missing transverse momentum are used to search for R-parity-violati ic gluino pair fon with
New 0" the hlog 1 subsequent decays to quarks. The analysis is performed using a requirement on the number of jets, in combination with separate
Display amenu

Display a menu requirements on the number of b-tagged jets, as well as a topological observable formed from the scalar sum of the mass values of large- Display a menu

Tibor Simko Sdnje Dallmeier-Tiessen



INTEGRATION INTO HEPDATA

HEPData: a repository for high energy physics data

Eamonn Maguire', Lukas Heinrich? and Graeme Watt?

! CERN, Geneva, Switzerland
? Department of Physics, New York University, New York, USA
3 IPPP, Department of Physics, Durham University, Durham, UK

In future we plan to support a mixed YAML /ROOT input format where metadata is provided
in YAML files (as before), but numerical values are extracted from ROOT objects and converted
to the standard YAML format. HistFactory [7] is a framework used in many ATLAS studies
for statistical analysis (such as determining exclusion contours). It encodes the full likelihood
(including systematic uncertainties) of a measurement using semantic XML and hmraurrzg
stored in ROQOT files. Some preliminary work has been done to extract HEPData tables in
the standard YAML format directly from a HistFactory configuration. Furthermore, work has
begun on expanding the set of natively supported data types beyond a simple table to allow for
richer datasets such as HistFactory configurations or simplified likelihoods [8]. The archival of
such likelihood data in a lossless format could then be used by various reinterpretation packages.

CHEP 2016: 10.1088/1742-6596/898/10/102006

H HEPData / hepdata ®Watch + 6 Y7 star 23

Code Q@ Issues 73 Pull requests 3 Actions Wiki Security Insights

submission: provide native support for individual "pyhf" JSON files #164

Alison Clarke Sinclert Pérez



REIMPLEMENTING HISTFACTORY

Around 2016 we realized that there was a ‘ “.
huge opportunity to leverage machine

learning frameworks like TensorFlow for |
probability models.

e GPUs and automatic differentiation! )@
Scikit f
HEP

alfferentlable
Yikelihoods

www.scikit-hep.org/pyhf

In 2017 we began porting HistFactory to

h hf
pure python: py

See Matthew Feickert’s SciPy 2020 talk

Probabilistic programming frameworks

RooFit serves us well, but shows limits in terms of scalability.

Using a data flow graph framework, RooFit would be distributed, GPU-enabled
and automatically differentiable.

Feasibility? Certainly within reach! As illustrated by our tentative
proof-of-concepts carl.distributions and tensorprob
. See also Edward.

pyht team decided to use the

: widely-used JSON format to store
) o T Mot o] the mOdels
o0 o0 2 istributions tensorprob

L]
Edward  Alibrary for probabilistic modeling, inference, Dustin Tran | I I d e p e n d e n Ce fro I I I b I n a ry
and criticism. '
Edw rd is Pyth n libras ryf p robabilistic modeling, inference, and criticism. It i 2 Matthew L4
bedf fast experimentation and researc hwnhp -obabilistic models, ggfm g .
1 cal hie m lmodlnmalldta s to c mp]dpp obabiisic models D, ‘. Feickert Orl I la S al I e el . el I‘ IeS
lgdzta s. Edward fuses three fields: Bayesian statistics and machin lamg ClmbU rsity
decp learning, i probabilistic programming. lumbinedu
hitp://dustintran.com
It supports modeling with Candid
rsity
ratthow.fei h or meigkert
GitHub: matihewleickert @HEPfeickert
T —

https://indico.cern.ch/event/622920/timetable/


https://github.com/diana-hep/carl/issues/12
https://indico.cern.ch/event/622920/contributions/2544089/subcontributions/226587/attachments/1454349/2243960/ML-flash-S2I2.pdf
https://matthewfeickert.github.io/talk-SciPy-2020/index.html

ABOUT NEWS SCIENCE RESOURCES Q SEARCH | EN ~

MAKING IT STANDARD

) CERN Council appoints
Fabiola Gianotti for second
term of office as CERN

Director General

20 years later: community embraces
oublishing likelihoods as a standard

Press release | 6 November, 2019

e Moved to JSON format

- iele f"Ysicists formulate Newopen release.allows
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New open release allows

theorists to explore LHC data Mbata: ™.

. ushing backthe™
in a new way S

Viggfall news )

togethe:..
Knowledge sharing 7|
News | 22 October, 2018

The ATLAS collaboration releases full analysis likelihoods, a first for an
LHC experiment

9 JANUARY, 2020 | By Katarina Anthony

_ stiucture NIt ¢
providing'Open
Acces... 7

Knowledge sharing |
News | 30July,2018

What if you could test a new theory against LHC data? Better yet, what if the expert View all news )

— ‘-“ £ i3 L. g 1 ;
=3 % 2
SEEcganu Ly ; ,
; A W = N 4
e 5 ) S|4t down for - V,
coffee with the P
Standard Model /
AECERN | News| | 4
' el 7 April, 2017 p
Explore ATLAS open likelihoods on the HEPData platform (Image: CERN) y v

ifferentiable
knowledge needed to do this was captured in a convenient format? This tall order is now on

 Display amenu y from the ATLAS collaboration, with the first open release of full analysis likelihoods ) https//SCIklt—heporg/pyhf/ gikelihOOdS



https://home.cern/news/news/knowledge-sharing/new-open-release-allows-theorists-explore-lhc-data-new-way

THEORIST REJOICE

Now: full likelihoods !!

ATL-PHYS-PUB-2019-029 (05 Aug 2019)

» Plain-text serialisation of HistFactory workspaces, JSON format

- Provides background estimates, changes under systematic
variations, and observed data counts at the same fidelity as
used in the experiment.

| Description Modification Constraint Term ¢, Input
< Uncorrelated Shape Kseb(Yb) = Vb [1 Pois (rb = a';2| Pb = o-;zyb) op
§ Correlated Shape Asen(@) = fp (a'Ascb,(ﬁ_l,Ascb,a:l) Gaus (a =0|a, 00 =1) Ascb,a=+1
E Normalisation Unc. Kseb(@) = gp (a| Kscb,a=—1> Ksch,a=1 Gaus (@ =0| o, 0 =1) Ksch,a=+1
8 | MC Stat. Uncertainty  kscp (¥p) = V5 [Ty Gaus (ay, = 1|5, ) 82 =306,

Luminosity Ksep(A) =2 Gaus (I = 29| 4,02) 0,02

g Normalisation Kseb(Up) = Up
& | Data-driven Shape Kseb (Yb) = Vb

Rate modifications defined in HistFactory for bin b, sample s, channel c.

- Usage: RooFit, pyhf

X HEPData

Resources

Ei

gz File

Archive of full likelihoods in the HistFactory JSON
format described in ATL-PHYS-PUB-2019-029
Provided are 3 statiscal models labeled RegionA
RegionB and RegionC respectively each in their
own sub-directory. For each model the
background-only model is found i the file named
'BkgOnly.json' For each model a set of patches for
various signal points is provided

Download

So far available for 4/12 SUSY analyses with 139 fb-1

SUSY-2018-31 (1908.03122)

multi-b sbottom: 2b+2H(bb)

- Target: long-term data/analysis preservation
9 9 a/ ysIs p ’ SUSY-2018-04 (1911.06660 )

stau search, 2 hadr. taus

reinterpretation purposes
SUSY-2019-08 (1909.09226)

1 lept. + H(bb), EW-ino

SUSY-2018-06 (1912.08479 )

3 lept. EW-ino

S. Kraml - Feedback on use of public likelihoods - 24 Sep 2020

https://indico.cern.ch/event/957797/contributions/4026032/




THEORIST REJOICE

Reinterpretation Forum Report 2020

“.... In fact, many of the data products discussed here, such as signal/background
yields and correlations, are used by the various external reinterpretation packages to
construct likelihoods. Whilst extremely useful, the likelihoods constructed from these
products are however always only an approximation to the true underlying experimental
likelihood. The reinterpretation workflow can be greatly facilitated and rendered much
more precise if the original likelihood of the analysis is published in full. We strongly
encourage the movement towards the publication of full experimental likelihoods
wherever possible.”

“ATLAS has recently started to do this using a JSON serialisation of the likelihood [...]
The provision of this full likelihood information is much appreciated and we hope that
it will become a standard, as it greatly improves the quality of any reinterpretation.”

Reinterpretation of LHC Results for New Physics: Status and Recommendations after Run 2
arXiv:2003.07868, SciPost Phys. 9, 022 (2020)

S. Kraml - Feedback on use of public likelihoods - 24 Sep 2020 7

https://indico.cern.ch/event/957797/contributions/4026032/
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THUMBNAIL SKETCH OF ANALYSIS

We select a small subset of the collision events relevant for
testing the hypotheses we are considering.

And we design a summary statistic s that can distinguish

between different hypotheses we are considering.
e We build a statistical model p(s|Model A, 8,)

e Then we test the hypothesis and write a paper

A

. Model A Rejected
S

observed data + predicted distribution for the alternate in Model A




THUMBNAIL SKETCH OF ANALYSIS

We select a small subset of the collision events relevant for
testing the hypotheses we are considering.

And we design a summary statistic s that can distinguish

between different hypotheses we are considering.
e We build a statistical model p(s|Model A, 8,)

e Then we test the hypothesis and write a paper
R ... and publish p(s|Model A, 0,)!

. Model A Rejected
S

observed data + predicted distribution for the alternate in Model A




THUMBNAIL SKETCH OF HEP ANALYSIS

We select a small subset of the collision events relevant for
testing the hypotheses we are considering.

And we design a summary statistic s that can distinguish

between different hypotheses we are considering.

e ... and graduate students graduate, analysis code rots,
and it would be difficult to reproduce or reuse this work

A

. Model A Rejected
S

observed data + predicted distribution for the alternate in Model A




REINTERPRETATION

The statistical model p(s|Model A, 8,) is great for
combinations and studies within Model A

But isn’t useful for answering questions about Model B

e the efficiency, acceptance, and distribution
p(s|Model B, 8;) for the new signal will be different

Model B rejected ?

observed data + predicted distribution for the alternate in Model B



REINTERPRETATION

Typically HEP experiments feel compelled to design an

entirely new analysis pipeline targeting Model B, but

e thatis very time consuming and labor intensive, and

e sometimes Moc

and the origina

analysis will a

Model B rejected ?

el A and Mode.

B have a lot in common,
so be sensitive to Model B

observed data + predicted distribution for the alternate in Model B



RECASTING

It we can capture the definition of the summary s(x) and the
event selection, then we can reuse the existing analysis
(orediction for the null and observation in the data)

e \We just need to run simulated events for Model B
through the pipeline and test the new
signal+background alternate hypothesis

A A

. Model A Rejected *
S —

observed data + predicted distribution for the alternate in Model A -+ Model B

Model B rejected




THEORY

1 v ]' v 1 a v
Loy = ZW}W - WH — ZBMVBﬂ - ZG#VGZ

kinetic energies and self-interactions of the gauge bosons

= 1 1 _ 1
+ Ly*(i0, — 397 W, — Eg’YBM)L + Ry"(id, — §QIYBM)R

kinetic energies and electroweak interactions of fermions

1, 1 1,
+ 5‘(Zau*§gT'Wu*§9YBu>¢‘2 - V(o)

W=,Z,~,and Higgs masses and couplings

+ 9" ("' Taq) G, + (GiLéR + GyL¢ R + h.c.)
—_———

interactions between quarks and gluons fermion masses and couplings to Higgs

SERVICE

Model B rejected?

DU
AT .

e
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RECAST
We proposed RECAST framework in Oct 2010

e People said it couldnt be done, our workflows are too complicated

RECAST

Extending the Impact of Existing Analyses

Kyle Cranmer and ltay Yavin

Center for Cosmology and Particle Physics, Department of Physics, New York
University, New York, NY 10003

I e C a S t ABSTRACT: Searches for new physics by experimental collaborations represent a significant

investment in time and resources. Often these searches are sensitive to a broader class of

models than they were originally designed to test. We aim to extend the impact of existing
searches through a technique we call recasting. After considering several examples, which
illustrate the issues and subtleties involved, we present RECAST, a framework designed
to facilitate the usage of this technique.

Orig Proposal in 2010: [arXiv.org:1010.2506]


https://arxiv.org/abs/1010.2506

Roadmap (2012)

Parameters modify
rates only?

no

Grid for signal is
available?

CENTER FOR
COSMOLOGY AND
PARTICLE PHYSICS

no

AN

RECAST and/or
fast simulation to
create grid points

Searches for new physics: Les Houches
recommendations for the presentation of LHC results

We also note at this point that the RECAST [35] project
would allow one to obtain the signal contribution to the
likelihood for an arbitrary theoretical model, thus allow-
ing one to build a higher-level framework for analysis re-

interpretation.

Kyle Cranmer (NYU)

Tools, Stockholm, June 18, 2012
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Roadmap (2012)

Analysis is number

HEPData:

Tables of rates,
acceptances, and
systematic variations

yes

counting?

Shapes based on
binned
Templates?

4

HistFactory XML
for signal and
bacckground

(stored in HEPData?)

no

Parameters modify
rates only?

no

available?

yes

Need continuous
parametrization?

Interpolation of signal

Grid for signal is

no

CENTER FOR
COSMOLOGY AND
PARTICLE PHYSICS

no

W

RECAST and/or
fast simulation to
create grid points

Replace original

signal with new signal

RooFit/RooStats
workspace

in following

Kyle Cranmer (NYU)

Tools, Stockholm, June 18, 2012



Roadmap (2012)

Analysis is number

HEPData:

Tables of rates,
acceptances, and
systematic variations

yes

counting?

Shapes based on
binned
Templates?

4

HistFactory XML
for signal and
bacckground

(stored in HEPData?)

no

Parameters modify
rates only?

no

available?

yes

Need continuous
parametrization?

Interpolation of signal

Grid for signal is

no

CENTER FOR
COSMOLOGY AND
PARTICLE PHYSICS

no

W

RECAST and/or
fast simulation to
create grid points

Replace original

signal with new signal

RooFit/RooStats
workspace

in following

Kyle Cranmer (NYU)

Cl'ools, Stockholm, June 18, 2012)







2015: STATISTICS = DATA SCIENCE

==

Data Science (@ LHC 2015 Workshop

9-13 November 2015 jo
CERN

Europe/Zurich timezone

There is a live webcast for this event.

Overview

Program

Reading materials
Speaker List
Registration

Participant List
Videoconference Rooms
Poster

Network Connection
Request Forms

CERN ACCESS INFO

Orientation

https://indico.cern.ch/event/395374/

The LHC experiments have been producing the largest amount of complex data. 100TB/s of real-time
data analyses and analyses of 100 EB of data are anticipated and planned for. The field of data
science beyond statistical methods has been producing advanced, intelligent methods for data
analysis, pattern recognition and model inference. This workshop will engage the two communities
towards cross exchanges and applications that can forge accelerated progress in big basic science
questions.

Some of the topics that will be addressed include cutting edge pattern recognition methods for
elementary particle identification; intelligent detectors that learn from their failures and self-adjust to
increase their performance efficiency; fast reconstruction of charged particle tracks; high-rate event
selection algorithms that learn to select rare physics processes; advanced data techniques that can
guide discovery and other challenges that can profit from advanced computational methods and
resources.

The workshop includes plenary presentations, tutorials and hands-on hackathon-type of ML exercises
as well as directed and undirected discussion and brainstorming time.

Subscribe to the participants mailing list for discussions on the topic and announcements before and
during the workshop by sending email to: HEP-data-science+subscribe@googlegroups.com

Follow the workshop official account @DataScienceLHC . Feel free to tweet using the recommended
hash tag #DSLHC15

Misc note: TensorFlow was released this week



2015: FROM METADATA TO WORKFLOWS

CERN Analysis Preservation

Open Data @CERN

AAAAAAAAAAAAAAAAAA

Siinje Dallmeier-Tiessen

for many others in GS-SIS and IT-CIS P re S e rve a n a n a |yS i S

opendata

* “closed counterpart” to CERN Open Data that

captures the complexity of

— The data

— The processing steps

— Code involved

— Documentation, Physics information
— Peer review, QA

i.e. all the information contributing to the
research claim/presentation/publication to

enable future reuse

CERN
ANALYSIS PRESERVATION

Lukas and | began
working on tools to
oreserve HEP workflows

https://indico.cern.ch/event/395374/

Lukas Heinrich

—

calibration

data intake ——3
SWRELEASE
HEP Data Analysis

filtering
CONF REPORT
- PLOTS N TUPLES

I INTERNAL NOTE I d/\ NOTE | | DOCUMENTATION |

review review

-—
CERN
ANALYSIS PRESERVATION

Yadage and Packtivity — analysis preservation using

parametrized workflows

Kyle Cranmer' and Lukas Heinrich!
! Department of Physics, New York University, New York, USA

E-mail: lukas.heinrich@cern.ch

Abstract. Preserving data analyses produced by the collaborations at LHC in a parametrized

fashion is crucial in order to maintain reproducibility and re-usability. We argue for a declarative
description in terms of individual processing steps — “packtivities” — linked through a dynamic
directed acyclic graph (DAG) and present an initial set of JSON schemas for such a description
and an implementation — “yadage” — capable of executing workflows of analysis preserved via
Linux containers.

CHEP 2016 : [arXiv:1706.01878 |



https://arxiv.org/abs/1706.01878

f\ﬁlaalt;sis Preservation & sunje@cernch (1)

A | Collaboration | Analyses | Analysis 1

COLLABORATION WANSENNYILR!

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Integer nec odio. Praesent libero. Sed cursus ante dapibus diam. Sed nisi. Nulla quis sem at nibh
elementum imperdiet. Duis sagittis ipsum. Praesent mauris. Fusce nec tellus sed augue semper porta. Mauris massa. Vestibulum lacinia arcu eget nulla. Class
aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. Curabitur sodales ligula in libero. Sed dignissim lacinia nunc.

Overview Publications Files Workflow Measurements Contributers ReCASTs

1 Publication > 23 Files > 2 Contributors >
Lorem ipsum dolor sit amet, consectetur adipiscing $ Model 1 3.24MB & John Doe

elit. Integer nec odio. Praesent libero. <P ode ' cMs |
Eur.Phys.J. C76 (2016) 451, 2016 =" P.D.F. 3.24MB Q Mary Smith =3
DOI 10.1140/epjc/s10052-016-4286-3

Figure 1 Plot 3.24MB
Workflow > Measurements >

Lorem ipsum dolor sit amet, consectetur
adipiscing elit. Integer nec odio.
Praesent libero.

Vestibulum lacinia arcu eget nulla. Class
aptent taciti sociosq.

CERN
Analysis Preservation



http://reanahub.io

reana

Reproducible research data analysis platform

Flexible Scalable Reusable Free
Run many computational Support for remote compute Containerise once, reuse Free Software. MIT licence.
workflow engines. clouds. elsewhere. Cloud-native. Made with € at CERN.

COMMON _@ (&~ CERN

WORKFLOW \

LANGUAGE ’ \J NS
kubernetes

: | The SCAILFIN Project §
® diana @ IKE% scailfin.github.io n

Institute for Research and Innovation
in Software for High Energy Physics

https://doi.org/10.1051/epjconf/201921406034



http://reanahub.io
https://doi.org/10.1051/epjconf/201921406034

SHIFTING FROM REPRODUCIBILITY TO REUSE

nature

physics

Corrected: Publisher Correction

PERSPECTIVE

https://doi.org/10.1038/541567-018-0342-2

OPEN

Open is not enough

Xiaoli Chen'?, Siinje Dallmeier-Tiessen™, Robin Dasler'", Sebastian Feger'3, Pamfilos Fokianos',
JoseBenito Gonzalez', HarriHirvonsalo*'?, Dinos Kousidis', Artemis Lavasa', Salvatore Mele',
Diego Rodriguez Rodriguez', Tibor Simko™, Tim Smith', Ana Trisovic>*, Anna Trzcinska',
loannis Tsanaktsidis', Markus Zimmermann', Kyle Cranmer®, Lukas Heinrich®, Gordon Watts’,
Michael Hildreth8, LaraLloret Iglesias®, KatiLassila-Perini* and Sebastian Neubert™

The solutions adopted by the high-energy physics community to foster reproducible research are examples of best practices
that could be embraced more widely. This first experience suggests that reproducibility requires going beyond openness.

e Reuse provides a forward-looking
narrative, while reproducibility often
perceived as backward-looking

e Reproducibility is a byproduct!

e Analysis Preservation distinct from
reproducibility

e Helps with onboarding

e Empowers reuse, remixing,
reproducibility

e |Improves efficiency & equity

Schematic view
% Generate
simulated data
. £
Event selection </> Q
12

| Merge

v

Fit model to data

Physics results

b
5007 ¢ pata 5007 o pata
m Signal = Signal
400 400
300 300
200 200
100 100
0 0
-5 -5

Fig. 2 | Example of a complex computational workflow on REANA mimicking a beyond the standard model (BSM) analysis . This figure shows an
example where the experimental data is compared to the predictions of the standard model with an additional hypothesized signal component. The
example permits one to study the complex computational workflows used in typical particle physics analyses. a-¢, The computational workflow (a) may
consist of several tens of thousands of computational steps that are massively parallelizable and run in a cascading ‘map-reduce’ style of computations
on distributed compute clusters. The workflow definition is modelled using the Yadage workflow specification and produces an upper limit on the
signal strength of the BSM process. A typical search for BSM physics consists of simulating a hypothetical signal process (¢), as well as the background
processes predicted by the standard model with properties consistent with the hypothetical signal (marked dark green in (b)). The background often
consists of simulated background estimates (dark blue and light green histograms) and data-driven background estimates (light blue histogram).

A statistical model involving both signal (dark green histogram) and background components is built and fit to the observed experimental data (black
markers). b, Results of the model in its pre-fit configuration at nominal signal strength. We can see the excess of the signal over data, meaning that the
nominal setting does not describe the data well. The post-fit distribution would scale down the signal in order to fit the data. This REANA example is
publicly available at ref. *>. For icon credits, see Fig. 1.

https://doi.org/10.1038/s41567-018-0342-2


https://doi.org/10.1038/s41567-018-0342-2

RECAST IN ACTION

ATLAS has started using RECAST to reinterpret
SUSY and exotics searches recast

Lukas Heinrich

e Exotic signals that require the full simulation

ATLAS PUB Note

ATLAS PUB Note
ATLAS ATL-PHYS-PUB-2020-007 ~7_

ATL-PHYS-PUB-2019-032 7
ﬁ:[ I!TI\ﬁNST ) FHPERIMENT 27th March 2020

11th August 2019

Reinterpretation of the ATLAS Search for
Displaced Hadronic Jets with the RECAST
Framework

RECAST framework reinterpretation of an ATLAS
Dark Matter Search constraining a model of a dark
Higgs boson decaying to two b-quarks

The ATLAS Collaboration The ATLAS Collaboration

A recent ATLAS search for displaced jets in the hadronic calorimeter is preserved in RECAST
- ] ] o and thereafter used to constrain three new physics models not studied in the original work.
decay}ng o b—ql}arks performed with RECAST, a softwgre framework d?SIgned to .faCIht?te A Stealth SUSY model and a Higgs-portal baryogenesis model, both predicting long-lived
the reinterpretation of existing searches for new physics, is presented. Reinterpretation using . .

; . . o . particles and therefore displaced decays, are probed for proper decay lengths between a few
RECAST is enabled through the sustainable preservation of the original data analysis as cm and 500 m. A dark sector model predicting Higgs and heavy boson decays to collimated

The reinterpretation of a search for dark matter produced in association with a Higgs boson

re-executable declarative workflows using modern cloud technologies and integrated with the 5N . . . R . .
~ . . ) . ; o =] hadrons via long-lived dark photons is also probed. The cross-section times branching ratio
jas} wider CERN Analysis Preservation efforts. The reinterpretation targets a model predicting < - - - I -
=] =) for the Higgs channel is constrained between a few millimetres and a few metres, while for
N dark matter production in association with a hypothetical dark Higgs boson decaying into g . . S
b= . i e < a heavier 800 GeV boson the constraints extend from tenths of a millimetre to a few tens of
al b-quarks where the mass of the dark Higgs boson m, is a free parameter, necessitating a g metres. The original data analysis workflow was completely captured using virtualisation
= faithful reinterpretation of the analysis. The dataset has an integrated luminosity of 79.8 b 2 .' . . . . . .
2 o . . A techniques, allowing for an accurate and efficient reinterpretation of the published result in
g and was recorded with the ATLAS detector at the Large Hadron Collider at a centre-of-mass ho . R
XS . . PORS terms of new signal models following the REcasT protocol.

] energy of v/s = 13 TeV. Constraints on the parameter space of the dark Higgs model for a TS
E 5y fixed choice of dark matter mass m,, = 200 GeV exclude model configurations with a mediator E g
- 2 mass up to 3.2 TeV. =%
z « <&
—
—
(< )
@) @

© 2020 CERN for the benefit of the ATLAS Collaboration.

© 2019 CERN for the benefit of the ATLAS Collaboration.
Reproduction of this article or parts of it is allowed as specified in the CC-BY-4.0 license.

Reproduction of this article or parts of it is allowed as specified in the CC-BY-4.0 license.

N L — T



TRAINING

Encouraging response by

the community

Instructors Danika MacDonnel and Giordon Stark working with
participants. Photo Credit: Samuel Meehan.

-
1111111111
-y P L L T

Participants in Analysis Preservation Bootcamp showing off their ability to

reproduce an LHC analysis. Photo Credit: Samuel Meehan | eonora Veste I’b 3 C|<a



/TWO GREAT
TASTES THAT

Likelihood Publishing + RECAST = TASTE GREAT

\ TOGETHER.




Reinterpretation Roadmap

CENTER FOR
COSMOLOGY AND
PARTICLE PHYSICS

L

Replace original
signal with new signal
in following

Kyle Cranmer (NYU)

Tools, Stockholm, June 18, 2012
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PYHF + RECAST

Matthew Feickert Giordon Stark

CERN University of lllinois UCSC SCIPP
Urbana-Champaign

Can think of reinterpretation as a "patching operation™

e take base likelihood model

e (remove signal if necessary)
e add new signal

run inference

Ny
Signal Likelihood
Patch

Background-Only Model

S+B Model Limit




PYHF + RECAST

Lukas Heinrich Matthew Feickert Giordon Stark

Reinterpretation with Likelihood Preservation e
Idea: upload to hepdata:

e base likelihood JSON (no signal)
e original signal patches

Reinterpreters can generate new patches (according to a new
signhal) and combine with the published base likelihood

Additional Publication Resources |._ README . md

— RegionA
— BkgOnly. json
— patch.sbottom_1000_131_1. json
— patch.sbottom_1000_205_60. json
— patch.sbottom_1000_230_100. json

<> B |
|
|
|

3 | — patch.sbottom_1000_250_60. json
|
|
I

Common Resources (4] External Link C++ File

Web page with auxiliary material Truth code to compute acceptance for all signal

Missing Transverse Energy 2 i ) ; -
regions using the SimpleAnalysis framework

Effective Mass 2
Download

Object Based Missing
Transverse Energy significance

MaxMin alternative
algorithm average Mpcand

Leading jet pT

— patch.sbottom_1000_330_200. json
— patch.sbottom_1000_350_60. json
— patch.sbottom_1000_430_300. json

gz File

MaxMin algorithm mpcana slha files for the 3 baseline signal points used in

Efficiency_SRA_M_m60
Download
Acceptance_SRC_28
Acceptance_SRC_26
Acceptance_SRC_24
Acceptance_SRA_M_dm130

Acceptance_SRB

Acceptance_SRA_L_dm130

2
2
2
2
2
2
2
2
2
2
2
2

Acceptance_SRC_incl




USAGE IN PHONO RECASTING TOOLS

G. Alguero, J. Araz, B. Fuks, SK, W. Waltenberger
Contr. 15, LH 2019 BSM WG report, arXiv:2002.12220

Usage in MadAnalysis 5

MAS-pyhf interface established within the LH PhysTeV 2019 workshop

- the relevant JSON files must be located in the same analysis folder as the recast code
(done automatically at the time of the PAD installation).

- The analysis.info file must include new <pyhf> elements specifying the names of
the JSON files together with the corresponding channels (ensembles of SRs) and the
regions they include, as defined in the JSON files.

<pyhf id="RegionA">
<name>atlas_susy_2018_031_SRA. json</name>
<regions>
<channel name="SR_meff">SRA_L SRA_M SRA_H</channel>
<channel name="VRtt_meff"> </channel>
<channel name="CRtt_meff"> </channel>
</regions>
</pyhf>

SModelS-pyhf interface e R va000.0100%

* Available from SModelS v1.2.4 onward (released Sep. 3rd, 2020)

S. Kraml - Feedback on use of public likelihoods - 24 Sep 2020

* The interfacing of pyhf to SModelS consists of two parts:

- addition of an independent module tools/pyhfInterface.py

- changes brought to experiment/datasetObj.py N\
PyhfData class:
: Storing and handling of the information related to
[ ]
Can be turned On/Oﬂ: by Settlng the JSON files and input signal predictions.
. _ Collects information in the workspaces such as the
combineSR = True/False number of SRs, and the paths to the SR samples
where the BSM predictions are to be written.
in the parameters.ini file " The VRs and CRs are assumed not to contribute

and removed from the workspaces.

PyhfUpperLimitComputer class:

For inferring the upper limits given the PyhfData
information

*) The same flag also turns on the SR combination in the simplified likelihood approach for CMS efficiency map results, for which a covariance matrix is available.

S. Kraml - Feedback on use of public likelihoods - 24 Sep 2020 13




THEORISTS REJOICE

Going further

Besides allowing us to better reproduce the official limits of each analysis,
the full likelihoods

« will greatly improve global fits

VS.

 offer interesting possibilities
to explore cross-analysis correlations

- Systematic naming of nuisances?

* Both is also very useful for projects like the Protomodel Builder
(cf talk by W. Waltenberger on June 4)

 Differentiability will allow for gradient-based methods in the future

* Lots to do on the pheno side, we are not yet using the full potential of full likelihoods.

S. Kraml - Feedback on use of public likelihoods - 24 Sep 2020 25

https://indico.cern.ch/event/957797/contributions/4026032/
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STATISTICAL FRAMING

0

parameters of interest

\Y
nuisance parameters

forward modeling
generation

simulation

p(x,z]|0,V)

Z
latent variables
Monte Carlo truth

inverse problem
measurement
parameter estimation

X
observed data
simulated data

s(x)
summary statistic



PARTICLE PHYSICS

Theory
parameters

0

O ————
Evolution



PARTICLE PHYSICS

Parton-level Theory
momenta parameters
Zp < Y,

Evolution



PARTICLE PHYSICS
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PARTICLE PHYSICS

Detector Shower Parton-level
interactions splittings momenta
Zd € Lg €
Key: o

Transverse slice
through CMS ¢
0

Latent variables

Charged Hadron {e.g.Pion)

— — — = Neutral Hadron (e.g. Neutron)

Iron return yoke interspersed
with Muon chambers

[Source: CMS]
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PARTICLE PHYSICS

eatures Latent variables rarameters
of interest
servables Detector Shower Parton-level Theory
interactions splittings momenta parameters
L < Zd < Zs Zp <
p, [GeV] antik, R=T__|

L
““n“n\““

“““‘\‘
O A
e
L

[Source: M. Cacciari,
G. Salam, G. Soyez 0802.1189]

Evolution



PARTICLE PHYSICS

Features

Observables
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Sample from

. Parameters
Latent variables .
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Detector Shower Parton-level Theory
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Prediction (simulation)



PARTICLE PHYSICS
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PARTICLE PHYSICS

. Parameters
Features Latent variables .
of interest
Detector Shower Parton-level Theory
Observables . . L
Interactions splittings momenta parameters
T_< Zd Zg Zp < 0

p(ﬂ?Zd) p(zd|zs) p(2s|2p) p(2p|0)

Infeasible to calculate
the integral over this
enormous space

Inference



DETECTOR SIMULATION

Conceptually: Prob(detector response | particles )
Implementation: Monte Carlo integration over micro-physics

Consequence: evaluation of the likelihood is intractable

| | | | 1 | | |
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DETECTOR SIMULATION

Conceptually: Prob(detector response | particles )
Implementation: Monte Carlo integration over micro-physics

Consequence: evaluation of the likelihood is intractable

This motivates a new class of algorithms for what is called
likelihood-free inference (or simulation-based inference),
which only require ability to generate samples from the
simulation in the “"forward mode”



10° SENSORS — 1 REAL-VALUED QUANTITY

Most measurements and searches for new particles at the LHC are based on the
distribution of a single variable / observable / feature / summary statistic s(x)

e designing a good observable / summary statistic s(x) is a task for a skilled
physicist and tailored to the goal of measurement or new particle search

e likelihood p(s|0) approximated using histograms (univariate density estimation)
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THE CRUX, AN INTRACTABLE INTEGRAL
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A COMMON THEME, A COMMON LANGUAGE

ABC

Home
resources on approximate
Bayesian computational This website keeps track of developments in approximate Bayesian computation (ABC) (a.k.a.
methods likelihood-free), a class of computational statistical methods for Bayesian inference under

b e s PRI G RIS giasoa o s oo

intractable Ilkehhoods The site is meant to be a resource both for blologlsts and statisticians who

want to learn more about ABC and related methods. Recent publications are under Publications

2012. A comprehensive list of publications can be found under Literature. If you are unfamiliar
Home with ABC methods see the Introduction. Navigate using the menu to learn more.

ABC in Montreal ABC in Montreal (2014)

ABC in Montreal

Approximate Bayesian computation (ABC) or likelihood-free (LF) methods have developed mostly beyond the

radar of the machine learning community, but are lmpo'nt tools for 'a large and diverse se ment of the

sc1nt1ccommumtx “This is particularly true forsxstem and pe Eulgp_ggmglologx comEutatlonal

neuroscience, computer vision, healthcare sciences, but also many others.

Interaction between the ABC and machine learning community has recently started and contributed to
important advances. In general, however, there is still significant room for more intense interaction and
collaboration. Our workshop aims at being a place for this to happen.




TRADITIONAL LIKELIHOOD-FREE METHOD (ABC)

Markov chain Monte Carlo without likelihoods

Paul Marjoram*, John Molitor*, Vincent Plagnol’, and Simon Tavare'*

*Biostatistics Division, Department of Preventive Medicine, Keck School of Medicine, and TMolecular and Computational Biology, Department of Biological

Sciences, University of Southern California, Los Angeles, CA 90089

Communicated by Michael S. Waterman, University of Southern California, Los Angeles, CA, October 24, 2003 (received for review June 20, 2003)

Many stochastic simulation approaches for generating observa-
tions from a posterior distribution depend on knowing a likelihood
function. However, for many complex probability models, such
likelihoods are either impossible or computationally prohibitive to
obtain. Here we present a Markov chain Monte Carlo method for
generating observations from a posterior distribution without the
use of likelihoods. It can also be used in frequentist applications, in
particular for maximume-likelihood estimation. The approach is
illustrated by an example of ancestral inference in population
genetics. A number of open problems are highlighted in the
discussion.

One of the basic problems in Bayesian statistics is the
computation of posterior distributions. We imagine data D
generated from a model M determined by parameters 6, the
prior density of which is denoted by m(6). We assume unless
otherwise stated that the data are discrete. The posterior
distribution of interest is f( 6| D), which is given by

f(6|D) = P(D]6)m(6)/P(D), (1]

where P(D) = [ P(D|6)m(0)d is the normalizing constant.

In most scientific contexts, explicit formulae for such posterior
densities are few and far between, and we usually resort to
stochastic simulation to generate observations from f. Perhaps
the simplest approach for this is the rejection method:

Al. Generate 6 from (+).
A2. Accept 6 with probability # = P(D|6); return to A1

of ¢ therefore reflects a tension between computability and
accuracy. The method is still honest in that, for a given p and e,
we are generating independent and identically distributed ob-
servations from f(6|p(D, D) = &).

When D is high-dimensional or continuous, this approach can
be impractical as well, and then the comparison of D’ with D can
be made by using lower-dimensional summaries of the data. The
motivation for this approach is that if the set of statistics § = (S1,
..., Sp) is sufficient for 6, in that P(D|S, 6) is independent of
6, then f(6|D) = f(60|S). The normalizing constant P(S) is
typically larger than P(D), resulting in more acceptances. In
practice it will be hard, if not impossible, to identity a suitable
set of sufficient statistics, and we then might resort to a more
heuristic approach. Thus we seek to use knowledge of the
particular problem at hand to suggest summary statistics that
capture information about 6. With these statistics in hand, we
have the following approximate Bayesian computation scheme
for data O summarized by S:

D1. Generate 6 from ().

D2. Simulate D’ from stochastic model M with parameter 6, and
compute the corresponding statistics S'.

D3. Calculate the distance p(S, S') between S and §'.

D4. Accept 0 if p = &, and return to D1.

There are several advantages to these rejection methods,
among them the fact that they are usually easy to code, they
generate independent observations (and thus can use embar-
rassingly parallel computation), and they readily provide
estimates of Baves factors that can be used for model com-
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ImageNet Classification with Deep Convolutional
Neural Networks

Alex Krizhevsky
University of Toronto
kriz@cs.utoronto.ca

Ilya Sutskever
University of Toronto
ilya@cs.utoronto.ca

Geoffrey E. Hinton
University of Toronto
hinton@cs.utoronto.ca

Abstract

We trained a large, deep convolutional neural network to classify the 1.2 million
high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 dif-
ferent classes. On the test data, we achieved top-1 and top-5 error rates of 37.5%
and 17.0% which is considerably better than the previous state-of-the-art. The
neural network, which has 60 million parameters and 650,000 neurons, consists
of five convolutional layers, some of which are followed by max-pooling layers,
and three fully-connected layers with a final 1000-way softmax. To make train-
ing faster, we used non-saturating neurons and a very efficient GPU implemen-
tation of the convolution operation. To reduce overfitting in the fully-connected
layers we employed a recently-developed regularization method called “dropout”
that proved to be very effective. We also entered a variant of this model in the
ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%,
compared to 26.2% achieved by the second-best entry.
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ICML 2017 Workshop on Implicit

Models

Workshop Aims

Probabilistic models are an important tool in machine learning. They form the basis for models that generate realistic data, uncover hidden
structure, and make predictions. Traditionally, probabilistic models in machine learning have focused on prescribed models. Prescribed models
specify a joint density over observed and hidden variables that can be easily evaluated. The requirement of a tractable density simplifies their
learning but limits their flexibility --- several real world phenomena are better described by simulators that do not admit a tractable density.
Probabilistic models defined only via the simulations they produce are called implicit models.

Arguably starting with generative adversarial networks, research on implicit models in machine learning has exploded in recent years. This
workshop's aim is to foster a discussion around the recent developments and future directions of implicit models.

Implicit models have many applications. They are used in ecology where models simulate animal populations over time; they are used in phylogeny,
where simulations produce hypothetical ancestry trees; they are used in physics to generate particle simulations for high energy processes.
Recently, implicit models have been used to improve the state-of-the-art in image and content generation. Part of the workshop's focus is to discuss
the commonalities among applications of implicit models.

Of particular interest at this workshop is to unite fields that work on implicit models. For example:

= Generative adversarial networks (a NIPS 2016 workshop) are implicit models with an adversarial training scheme.

= Recent advances in variational inference (a NIPS 2015 and 2016 workshop) have leveraged implicit models for more accurate approximations.
= Approximate Bayesian computation (a NIPS 2015 workshop) focuses on posterior inference for models with implicit likelihoods.

= Learning implicit models is deeply connected to two sample testing, density ratio and density difference estimation.

We hope to bring together these different views on implicit models, identifying their core challenges and combining their innovations.



GENERATIVE MODEL FOR IMAGES

How an A.l. ‘Cat-and-Mouse Game’
Generates Believable Fake Photos

By CADE METZ and KEITH COLLINS JAN. 2, 2018
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This one is computer-generated This one is also computer-generated




TWO REVIEWS

We have written two reviews:

Gilles Louppe Johann Brehmer

e One focuses on particle physics, one is abstracted

The frontier of simulation-based inference

Kyle Cranmer®":!, Johann Brehmer®", and Gilles Louppe®

2Center for Cosmology and Particle Physics, New York University, USA; b Center for Data Science, New York University, USA; “Montefiore Institute, University of Liége, Belgium

April 3, 2020
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Published in Proceedings of the National Academy of Sciences

[PNAS (2020), arXiv:1211.01429 ]

Simulation-based inference methods for particle physics

Johann Brehmer and Kyle Cranmer

New York University, New York, NY, 10003

Our predictions for particle physics processes are realized in a chain of
complex simulators. They allow us to generate high-fidelty simulated
data, but they are not well-suited for inference on the theory param-
eters with observed data. We explain why the likelihood function of
high-dimensional LHC data cannot be explicitly evaluated, why this
matters for data analysis, and reframe what the field has traditionally
done to circumvent this problem. We then review new simulation-based
inference methods that let us directly analyze high-dimensional data by
combining machine learning techniques and information from the sim-
ulator. Initial studies indicate that these techniques have the potential
to substantially improve the precision of LHC measurements. Finally,
we discuss probabilistic programming, an emerging paradigm that lets
us extend inference to the latent process of the simulator.

L Te— T

This morning!
https://arxiv.org/albs/2010.06439


https://arxiv.org/abs/1911.01429

TWO APPROACHES TO SIMULATION-BASED INFERENCE

Learn simulator
(with deep learning)

conv (180w + 5b)

o non-linear

maxpool conv (450w + 10b) . \% 0
non- Imear' ¢ = 0

® v
4 \ # ‘:'

maxpool O—%—a

fully- connecTed ¢ = ©
(1600w + 10b)

nhon- Imear'

o e (Generative Adversarial Networks (GANSs),
Variational Auto-Encoders (VAE)

o o |ikelihood ratio from classifiers (CARL)

° e Autogregressive models,
Normalizing Flows

[image credit: A.P. Goucher] /4


https://cp4space.wordpress.com/2016/02/06/deep-learning-with-the-analytical-engine/

SIMULATION-BASED INFERENCE
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arXiv:1805.12244

PRL, arXiv:1805.00013

PRD, arXiv:1805.00020
arXiv:1808.00973
physics.aps.org/articles/v11/90
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Inference

The surrogate for the likelihood (ratio) used for inference

A 2-stage process:
1. learning surrogate (amortized)
2. Inference on parameters of simulator


https://physics.aps.org/articles/v11/90

N O R M A L | Z | N G I: L O W S K.C. & G. Louppe: http://beta.briefideas.org/ideas/5c2f/4aedbf3618ca180382e393c/617

Using a change-of-variables, produce a

distribution approximating what you want.
[Rezende & Mohamed 1505.05770] + early work by Estaban Tabak, Cristina Turner, Eric Vanden-Eijnden [2010, 2013]
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Slides from Michael Albergo, NYU


http://beta.briefideas.org/ideas/5c2f74aedbf3618ca180382e393c7617

N O R M A L | Z | N G I: L O W S K.C. & G. Louppe: http://beta.briefideas.org/ideas/5c2f/4aedbf3618ca180382e393c/617

+ early work by Estaban Tabak, Cristina Turner, Eric Vanden-Eijnden [2010, 2013]

( 1 )
Using a change-of-variables, produce a N 1 Of 1z
distribution approximating what you want. pf(qb) = |det Oz T(Z)
[Rezende & Mohamed 1505.05770] \_ Y,
=1 Invertible
b f (Z) ) & v
7 Tractable ! ¢ ,
4 Jacobian
- y _——

- e

Approximates

Easily sampled : :
desired dist.
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N O R M A L | Z | N G I: L O W S K.C. & G. Louppe: http://beta.briefideas.org/ideas/5c2{7/4aedbf3618ca180382e393c/617

4 1 )
. . —1
Construct complex functions via 5 () = |det f (2 r(2)
composition of simple functions Pr®) = 02
[Dinh et al. 1605.08803] \_ Y,
=1 Invertible
. .f (Z) ‘\ & ,"
7 Tractable ! ¢
d Jacobian k
. y,
r(z) Pr(P)
-, - I e A
1 i i+1 it
- — =
A\ J
Y

Many simple layers
composed to produce f

Approximates

Easily sampled : :
desired dist.
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LIKELIHOOD RATIO TRICK

RBF SVM

e binary classifier: find function
s(x) that minimizes loss:

Lis| = / pl(| Ho) (0 — s(x))? da
" / p(e|Hy) (1 — s(x))2da

RBF SVM
% ..q':‘o:; o ':. . . .
Lo o5 e |.e. approximate the optimal
‘.'.’:.','-’f..-"z classitier
H
3(513) _ p(gj‘ 1)
I p(x|Ho) + p(z|H1)

e which is 1-to-1 with the
likelihood ratio

p(z|Hq)
p(z|Hp)

-flow (S,B): (0.0, 0.0)% / (0.0, 0.0)%




LIKELIHOOD RATIO TRICK

RBF SVM

RBF SVM

® [ Signal [T

= 1.8

-flow (S,B): (0.0, 0.0)% / (0.0, 0.0)%

e binary classifier: find function
s(x) that minimizes loss:

Lis| = / pl(| Ho) (0 — s(x))? da
" / p(e|Hy) (1 — s(x))2da

1 N

~ N Z(yi — s(z4))°

1=1

e j.e. approximate the optimal
classitier
H
p(x|Ho) + p(x|H;)

e which is 1-to-1 with the
likelihood ratio

p(z|Hq)
p(z|Hp)




NN = A HIGHLY FLEXIBLE FAMILY OF FUNCTIONS

A

In calculus of variations, the optimization is over all functions: § = argmin L|s]
S

e |n applied calculus of variations, we consider a highly flexible family of
functions sy and optimize

e Think of neural networks as a highly flexible family of functions

e Machine learning also includes non-convex optimization algorithms that
are affective even with millions of parameters!

'Shallow neural network Deep neural network

hidden layer . hidden layer 1 hidden layer 2 hidden layer 3
input layer

input layer

output layer output layer

image credit: Michael Nielsen
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LEARNING THE LIKELIHOOD RATIO PRL, arXiv:1805.00013

PRD, arXiv:1805.00020
physics.aps.org/articles/v11/90

parameter 0

l

0,

likelihood
arg min L[g] — 7(x|0) —>
g ““’u........-.‘.'«‘“‘.“

Simulation Machine Learning Inference

augmented data

0;

Recently, we realized we can extract more from the simulator.
We can use augmented data to improve training

(connections to reinforcement learning)
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parameter 0 >

l

latent 2

0
approximate
s likelihood
L ratio

arg min L[g] — 7(z|0) —>
g

augmented data

0;
Simulation Machine Learning Inference
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MADMINER

https://cranmer.github.io/madminer-tutorial/

MadMiner is a tool that = ¢
streamlines these simulation- - Introduction
based interence techniques

MadMiner Tutorial MadMiner tutorial

Introduction This is a tutorial on MadMiner developed by Johann Brehmer, Felix Kling, Irina Espejo,
and Kyle Cranmer. It is built using Jupyter Book.

MadMiner Tutorial

e Works with any MadGraph

Overview ’
' I | O d e | fl | e Define process to study * 0
Simulation Machine Learning Inference
Morphing
Interactive Morphing Demo Introduction to MadMiner
Create training data Particle physics processes are usually modelled with complex Monte-Carlo

11
® A u t O m a t e S t h e 9 O | d simulations of the hard process, parton shower, and detector interactions. These

Set MadGraph Directory simulators typically do not admit a tractable likelihood function: given a (potentially
° ° 1 Parton Level * high-dimensional) set of observables, it is usually not possible to calculate the
m | n I n 9 p rO C e S S t h a t m a ke S ) probability of these observables for some model parameters. Particle physicisists
With Delphes usually tackle this problem of “likelihood-free inference” by hand-picking a few
Train model "good” observables or summary statistics and filling histograms of them. But this

tra I n | n g m u C h m O re S a m p | e conventional approach discards the information in all other observables and often

Likelihood Ratio * does not scale well to high-dimensional problems.

. : Score *
e -F-Fl C I e n t In the three publications “Constraining Effective Field Theories With Machine
Likelihood Learning”, “A Guide to Constraining Effective Field Theories With Machine Learning”,

and “Mining gold from implicit models to improve likelihood-free inference”, a new
approach has been developed. In a nut shell, additional information is extracted from

Statistical Analysis

Limits on EFT parameters * the simulations that is closely related to the matrix elements that determine the hard
X . This "augmented data” can be used to train neural networks to efficiently
. U f | -F I I l t | |< Fisher Information process
S e u O r ex e r | e n a W O r approximate arbitrary likelihood ratios. We playfully call this process “mining gold”
Information Geometry from the simulator, since this information may be hard to get, but turns out to be very

O r p h e n O m e n O | O gy S.tu d i eS Congratulations valuable for inference.

. Irina Espejo Sinclert Pérez
Gilles Louppe Johann Brehmer Felix Kling pel
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EFFECTIVE FIELD THEORY

[STFC / Ben Gililand, Sean Carroll, Friedrich Justin Bertuch 1806, symmetry]
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IMPACT ON STUDIES OF THE HIGGS BOSON

16-Dim phase space,
but we will use a
42-Dim observable x
with redundant
information

Exciting new physics might hide herel!
We parameterize it with two EFT coefficients:

L _L fW lg D,u, 'l' a,DI/ Wa fWW 92 ‘i‘ Wa, W,uya,
— SM+A2 E( ¢)O- ¢ 72 A2 4(¢¢) v

Ow Oww

J Brehmer, J Pavez, G Louppe, K.C. PRL & PRD 2018 [arXiv:1805.00013 & arXiv:1805.00020]
“Better Higgs Measurements Through Information Geometry” [arXiv:1612.05261] & CARL [arxiv:1506.02169]



http://arxiv.org/abs/1506.02169

IMPACT ON STUDIES OF THE HIGGS BOSON

(based on a 42-Dim observation X)
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J Brehmer, J Pavez, G Louppe, K.C. PRL & PRD 2018 [arXiv:1805.00013 & arXiv:1805.00020]
“Better Higgs Measurements Through Information Geometry” [arXiv:1612.05261] & CARL [arxiv:1506.02169]
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MORE COMPARISONS TO BASELINE APPROACH @ LHC

e Baseline: Simplified Template Cross-Sections (STXS)
define observable regions that try to capture as much

information on new physics as possible
[N. Berger et al. 1906.02754; HXSWG YR4]

Stage 1.1 VH = V(— leptons) H

0-jet . 1-jet .2 2-jet 0-jet I 1-jet Iz 2-jet O-jet  1-jet > 2-jet
e Let’s check! How much information on

Oup = Ono — % = (¢'¢)0(e'9) — i
Opw = ¢'oW g, WHe

O = (61iD 6)(@Lo"1"Q1) |

(6" D ¢)*(¢' D)

can we extract from. pp — WH — (v bb

[J. Brehmer, S. Dawson, S. Homiller, F. Kling, T. Plehn 1908.06980]



MORE COMPARISONS TO BASELINE APPROACH @ LHC

e Baseline: Simplified Template Cross-Sections (STXS) e Results: STXS are sensitive to operators,
define observable regions that try to capture as much adding a few more regions improve them,

information on new physics as possible but a multivariate analysis is much stronger!
[N. Berger et al. 1906.02754; HXSWG YR4]
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e Baseline: Simplified Template Cross-Sections (STXS) e Results: STXS are sensitive to operators,
define observable regions that try to capture as much adding a few more regions improve them,

information on new physics as possible but a multivariate analysis is much stronger!
[N. Berger et al. 1906.02754; HXSWG YR4]
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Chen, Glioti, Panico, Wulzer [arXiv:2007.10356v2 |

FULLY LEPTONIC W/Z

Recently, a variant of these models

oroposed by Chen, Glioti, Panico, Wulzer N, s
AL : I//\'@V= 1
and applied to fully leptonic WZ £ f\/ /.

/y
o ! Q u a d ra ti C C | a SS ifi e r " (QC) O u t p e rfO r m S Figure 1: The kinematical variables in the “special’ coordinate frame [28].

binned analysis and approaches exact
matrix element information
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TWO APPROACHES TO SIMULATION-BASED INFERENCE

Use simulator Learn simulator
(much more efficiently) (with deep learning)

B - conv (180w + 5b) non-linear
f— ';32‘375.9 mGXPOOI COHV (450w + 10b) G @
( - non- Imear' ¢ = 0
) ‘ O =6
O 7,
S hon- Imear maxpool O 8]
e fully-connected F%@
TN (1600w + 10b)
e Approximate Bayesian e Generative Adversarial Networks (GANs),
Computation (ABC) Variational Auto-Encoders (VAE)
e Probabilistic Programming o Likelihood ratio from classifiers (CARL)
e Adversarial Variational e Autogregressive models,

Optimization (AVO) Normalizing Flows


https://cp4space.wordpress.com/2016/02/06/deep-learning-with-the-analytical-engine/

TWO APPROACHES TO SIMULATION-BASED INFERENCE

Use simulator
(much more efficiently)

I I I 1 1 1 1 I
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e Probabilistic Programming °

e Adversarial Variational °
Optimization (AVO)

[image credit: A.P. Goucher] 88
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PROBABILISTIC PROGRAMMING EXAMPLE

(let [number-of-bumpers (sample (poisson 20))
bumpydist (uniform-continuous 0 10)
bumpxdist (uniform-continuous -5 14)
bumper-positions (repeatedly
number-of-bumpers
#( (sample bumpxdist)
(sample bumpydist))

3 examples generated from simulator



PROBABILISTIC PROGRAMMING EXAMPLE

(let [number-of-bumpers (sample (poisson 20))
bumpydist (uniform-continuous 0 10)
bumpxdist (uniform-continuous -5 14)
bumper-positions (repeatedly
number-of-bumpers
#( (sample bumpxdist)
(sample bumpydist))

3 examples generated from simulator



PROBABILISTIC PROGRAMMING EXAMPLE

obs-dist (normal 4 0.1)]

(observe obs-dist num-balls-in-box)

3 examples generated from simulator
conditioned on ~20% of balls land in box



PROBABILISTIC PROGRAMMING EXAMPLE

obs-dist (normal 4 0.1)]

(observe obs-dist num-balls-in-box)

3 examples generated from simulator
conditioned on ~20% of balls land in box



PROBABILISTIC PROGRAMING

ldea: hijack the random number generators and perform a
very fancy type ot importance sampling or MCMC

probprog/pyprob

NN e Augment real-world

scientific simulator c++)

e Use ML-powered

simulator C++ inference engine

Pythia / Sherpa / GEANT / ...

Observation Mean Simulated Observation

craxy | crAY

1 |

NERSC, Lawrence Berkeley National Lab

o N B O

G. Baydin, et al SC19 arXiv:1907.03382
G. Baydin, et al. NeurIPS 2019 arXiv:1807.07706



https://github.com/probprog
https://github.com/probprog/pyprob

A PROBABILISTIC MODEL FOR JETS

p(QZ‘, Z|(9) — Hp(ﬂfj |Zparent(:1cj)7 9) Hp(zi|zparent(zi)a 6)



A PROBABILISTIC MODEL FOR JETS

p<337 Z|‘9) — Hp<ajj |Zparent(:1cj)7 9) Hp(zi|zparent(zi)a 9)

J



A PROBABILISTIC MODEL FOR JETS

p<337 Zl@) — Hp<33j |Zparent(:nj)7 9) Hp(zi|zparent(zi)a 9)

J



A PROBABILISTIC MODEL FOR JETS

Hp<$j |Zparent(:nj)7 9) Hp(zz |Zparent(zi)7 0)

p(z, 2|0)



A PROBABILISTIC MODEL FOR JETS

Evolution of the tree is latent z

p(m, Zl@) — Hp(ﬂfj |Zparent(:nj)7 9) Hp(zilzparent(zi)a 0)

7 7



A PROBABILISTIC MODEL FOR JETS

Evolution of the tree is latent z We only observe the leaves x

p(m, Zl@) — Hp(ﬂfj |Zparent(:nj)7 9) Hp(zilzparent(zi)a 0)

7 7



PROB. PROG. APPLIED TO JETS

Reconstruction

Generative process

Matt Drnevich Sebastian Macaluso
.
o ® b
y=0, y_pred=0.1529
p(CU, 2‘9) — | | p(CUj |Zparent(acj)7 '9) | | p<zi‘zparent(zi)7 ‘9)
J i
A # of Approx. #
leaves R CER Ginkgo + PyProb Test
10 4 e prior _
posterior
=== condition bound
=== condition bound
5
S 06 -
A £
X :
N
2
£
= 04 -
Z
0.2 -
The fifteen different rooted binary trees (with & .
unordered children) on a set of four labeled leaves, ' 15 20 % 35 40
illustrating 15 = (2 x 4 — 3)!! (see article text). Number of Leaves

https://en.wikipedia.org/wiki/Double_factorial
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Simulation-Based Inference for Global Health Decisions

Christian Schroeder de Witt' Bradley Gram-Hansen' Nantas Nardelli '
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Abstract

The COVID-19 pandemic has highlighted the impor-
tance of in-silico epidemiological modelling in pre-
dicting the dynamics of infectious diseases to inform
health policy and decision makers about suitable pre-
vention and containment strategies. Work in this set-
ting involves solving challenging inference and control
problems in individual-based models of ever increas-
ing complexity. Here we discuss recent breakthroughs
in machine learning, specifically in simulation-based
inference, and explore its potential as a novel venue
for model calibration to support the design and evalua-
tion of public health interventions. To further stimulate
research, we are developing software interfaces that
turn two cornerstone COVID-19 and malaria epidemi-
ology models (Covidsim' and OpenMalaria®) into
probabilistic programs, enabling efficient interpretable
Bayesian inference within those simulators.

1 Introduction

Machine learning has a growing role in increasing health
service access and efficiency, particularly in resource-
constrained settings, making it a valuable tool for the global
health community [39, 54]. Moreover, the COVID-19 pan-
demic [55] has underlined the importance of epidemiolog-
ical modelling and computer simulation in informing the
design and implementation of public health interventions at
an unprecedented scale [18]. For many endemic diseases
(e.g., malaria), in-silico optimisation of multi-modal inter-
vention portfolios—from mass vaccination to bed nets—is
well established [47]. Analogous modelling for COVID-19
interventions, including social distancing [20], is mostly
unexplored, yet subject to intense public interest [32].

The adoption of health informatics in worldwide health sys-
tems (e.g., OpenMRS [33], mHealth [1]) enables access to

"Department of Engineering Science, University of Oxford,
UK 2Department of Surgery and Cancer, Imperial College Lon-
don, UK. Correspondence to: Christian Schroeder de Witt
<cs@robots.ox.ac.uk>.

"https://github.com/mre-ide/covid-sim/
2https://github.com/SwissTPH/openmalaria

2 Philip Torr! Atiim Giines Baydin !

abundant patient-level and aggregated health data [54]. This
is fomenting the development of comprehensive modelling
and simulation to support the design of health interventions
and policies, and to guide decision-making in a variety of
health system domains [22, 49]. For example, simulations
have provided valuable insight to deal with public health
problems such as tobacco consumption in New Zealand [50],
and diabetes and obesity in the US [58]. They have been
used to explore policy options such as those in maternal and
antenatal care in Uganda [44], and applied to evaluate health
reform scenarios such as predicting changes in access to
primary care services in Portugal [21]. Their applicability
in informing the design of cancer screening programmes
has been also discussed [42, 23]. Recently, simulations have
informed the response to the COVID-19 outbreak [19].

The process of informing health interventions and policies
through simulations generally involves two steps:

Model calibration The extent to which a simulator can
reliably inform real-world prediction and planning is
bounded by both model discrepancy [13] and how well
the model has been calibrated to empirical data [3].

Optimising decision-making Identifying optimal multi-
modal intervention strategies and corresponding risks and
uncertainties requires searching through potentially vast
parameter spaces, which, due to the computational cost of
running large simulators (e.g., in some epidemiological
studies), usually cannot be exhaustively evaluated [46].

Despite their fundamental importance, model discrepancy
and calibration of public-health simulators are frequently
only informally addressed, or left undocumented [48, 40].
This may be partially explained by the fact that, while numer-
ous methods for formal sensitivity and uncertainty analysis
exist [28], they in general do not scale to complex simula-
tors with more than a few dozen parameters [38]. Similarly,
evidence-based decision-making is usually optimised by
comparing outcomes on a small number of hand-crafted
scenarios and intervention strategies [46].

2 Epidemiology simulations and inference

Among the simplest mathematical epidemiology models are
deterministic compartmental models that partition individu-

1905.12432v1 [stat.ML] 29 May 2019
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Hijacking Malaria Simulators with Probabilistic Programming

Bradley J. Gram-Hansen *! Christian Schroder de Witt ™!
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Abstract

Epidemiology simulations have become a funda-
mental tool in the fight against the epidemics of
various infectious diseases like AIDS and malaria.
However, the complicated and stochastic nature of
these simulators can mean their output is difficult
to interpret, which reduces their usefulness to poli-
cymakers. In this paper, we introduce an approach
that allows one to treat a large class of population-
based epidemiology simulators as probabilistic
generative models. This is achieved by hijack-
ing the internal random number generator calls,
through the use of an universal probabilistic pro-
gramming system (PPS). In contrast to other meth-
ods, our approach can be easily retrofitted to sim-
ulators written in popular industrial programming
frameworks. We demonstrate that our method
can be used for interpretable introspection and
inference, thus shedding light on black-box simu-
lators. This reinstates much needed trust between
policymakers and evidence-based methods.

1. Introduction

Ending the epidemics of AIDS, tuberculosis, malaria and
other infectious diseases by 2030 is a key target within the
Good Health & Well-Being section of the UN Sustainable
Development Goals (UN, 2017; 2018). However, despite
decades of substantial international efforts, these diseases
kill hundreds of million people a year. For example, malaria
still annually kills about a quarter of a million children under
the age of 5 in Africa alone.

To reach the WHO’s target of reducing malaria incidence
and mortality rates by at least 90% by 2030, policymakers
are increasingly turning to evidence-based methods, thus
oftentimes relying on computational simulations (WHO,

“Equal contribution 'Department of Engineering Science,
University of Oxford, UK *Department of Statistics, University
of Oxford, UK. Correspondence to: Bradley J. Gram-Hansen
<bradley @robots.ox.ac.uk>.

Appearing at the International Conference on Machine Learning
Al for Social Good Workshop, Long Beach, United States, 2019.

2015). These simulations allow policymakers to infer criti-
cal information on disease dynamics and make predictions
about the impacts of policies before they are rolled out. This
frequently increases the effectiveness of interventions and
thus ultimately saves resources, or even lives. For example,
it has been shown that mass vaccination may be largely
ineffective in regions of large transmission rates, but may
play a crucial role in areas of low transmission (Cameron
et al., 2015).

Malaria epidemiology is governed by a complex set of
drivers, few of which can be understood in isolation
(Cameron et al., 2015; Autino et al.; Smith et al., 2008;
Bershteyn et al., 2018). These include within-host dynamics,
population-specific traits and even local geography. Com-
prehensive modeling of all of these components remains
challenging, particularly in a region-specific context. Com-
putational epidemiology simulators have to reflect these
complexities and are usually stochastic in nature. This can
make simulation output highly non-trivial to interpret, par-
ticularly when trying to draw desired inferences coupled
with observed data (Mwendera et al.; Ferris et al.).

In this paper, we introduce a novel method that allows
one to shed light on the inner workings of a large class
of population-based stochastic simulators. We achieve this
by extending the work of Baydin et al. (2018) by inter-
preting such population-based simulators as probabilistic
generative models within the framework of universal proba-
bilistic programming (UPP) (Le et al., 2017). To this end,
we hijack existing simulators by overriding their internal
random number generators. Specifically, by replacing the
existing low-level random number generator in a simulator
with a call to a purpose-built UPP “controller”, which can
thus control, track and manipulate the stochasticity of the
simulator.

This allows for a variety of tasks to be performed on the
hijacked simulator, such as running inference (by condition-
ing the values of certain draws and manipulating others),
uncovering stochastic structure, and automatically produc-
ing result summaries, such as establishing the probability of
different program paths/traces. By providing a common ab-
straction framework for different simulators, our approach
further allows for easy and direct comparison between re-




DISCUSSION

Inference is always done within the context of a model
e |f the model is mis-specitfied it will affect inference
e Here the model is the simulator, or the surrogate for the simulator

e One hand: simulators usually include more effects than traditional
approaches

e Other hand: more chances for method to focus on aspects that are
poorly modeled

Humans are good at designing robust summary statistics that are not sensitive
to mis-modeled features in the data

e Now there are numerous approaches to build this into the training of ML
models (related to domain adaptation, algorithmic tairness, pivotal
quaﬂtities, profi“ng, etC.) eg. uBoost by J. Stevens, M. Williams, “learning to pivot” by KC, Louppe, Kagan

These methods do not address hypothesis generation.

e They are not designed to discover new laws of nature.



CONCLUSIONS

Machine Learning can help us get more out of our simulators

it can provide effective statistical models for emergent phenomena
that are tied back to the low-level microscopic reductionist model

Our understanding of how to leverage our prior physics knowledge
while letting machine learning do what it's good at is maturing.

e build in robustness to systematic uncertainties
e ability to inject and extract physics knowledge from models
e exploit symmetries, hierarchical structure of data

Harnessing the full potential of these techniques requires augmenting
existing simulators.
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Dark Matter Examples



SMALL-SCALE STRUCTURE: A PROBE OF DM PARTICLE PROPERTIES

Abundance of DM subhalos vs mass:
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SCALABLE INFERENCE FOR SMALL SUBHALOS

Future surveys (LSST, Euclid) are expected to deliver large samples of galaxy-galaxy
strong lenses (collett et al 1507.02657]




SIMULATION-BASED INFERENCE FOR STRONG LENSING

2 parameters 0 = (53, fsub)

A

dn f

dmgy, &




SIMULATION-BASED INFERENCE FOR STRONG LENSING

2 parameters 6 = (83, fsup) Simulator
A
dn p
dmgy, R m...}
N
> Latent 2 :
Mgup source / lens properties,

subhalo masses / positions, ...




SIMULATION-BASED INFERENCE FOR STRONG LENSING

642 observables x

2 parameters 6 = (83, fsup) Simulator
A
dn p \
dmgy, & ,,.g....} _.,.,.@b ‘
N
> Latent 2 :
Mgup source / lens properties,

subhalo masses / positions, ...




SIMULATION-BASED INFERENCE FOR STRONG LENSING

642 observables x

2 parameters 6 = (83, fsup) Simulator
A
dn p \
dmgy, & ,,.g....} _.,.,.@b ‘
N
> Latent 2 :
Mgup source / lens properties,

subhalo masses / positions, ...

>

Prediction: We construct a simulator that can sample x ~ p(z|6)



SIMULATION-BASED INFERENCE FOR STRONG LENSING

642 observables x

2 parameters 6 = (83, fsup) Simulator
A
dn p \
dmgy, R ,s._...} _.,.,.@b ‘
N
> Latent 2 :
Mgup source / lens properties,

subhalo masses / positions, ...

>

Prediction: We construct a simulator that can sample x ~ p(z|6)
<

Inference:  We train neural likelihood ratio estimators #(x|0)



SIMULATION-BASED INFERENCE FOR STRONG LENSING

642 observables x

2 parameters 6 = (83, fsup) Simulator
A
dn p \
dmgy, R ,,.g....} _.,.,.@b \
N
> Latent 2 :
Mgup source / lens properties,

subhalo masses / positions, ...

= Need inference technique that
e scalesto many lenses

e captures subtle effects in high-
dimensional image data

e can deal with a large number of subhalos



[following T. Collett 1507.02657]

PROOF-OF-PRINCIPLE SIMULATOR




[following T. Collett 1507.02657]

PROOF-OF-PRINCIPLE SIMULATOR

Spherical lensing host
galaxies at redshift ~0.5...1

Extended galaxy sources
at redshift 1.5
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galaxies at redshift ~0.5...1

Subhalos follow
mass distribution

with two
Extended galaxy sources .
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Euclid detector model
(single optical band,
642 pixel, Gaussian PSF)



P R O O I: ~ O F _ P R | N C | P I_ E S | M U I_ATO R [following T. Collett 1507.02657]

Spherical lensing host

galaxies at redshift ~0.5...1 Poisson fluctuations

Subhalos follow
mass distribution

with two
Extended galaxy sources .
at redshift 1.5 parameters
dn A
dmgy, Y<
AN
m’

Euclid detector model
(single optical band,
642 pixel, Gaussian PSF)



DARK MATTER

8 BREHMER AND MISHRA-SHARMA ET AL.

Latent space Z:
Number of dark matter
sub halos and their mass
and location lead to
complex latent space for
each image.

Goal is inference on O at
the population-level

sub



RESULTS! dn 4
dmsub iB

Watch how knowledge of the subhalos mass distribution
improves as data comes in. See posterior for two parameters
concentrate around true value used to generate mock data.

(plotted slightly differently in middle panel) / mS:b
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e fsub, defined as the fraction of the total dark matter halo mass contained in bound substructure
In a given mass range

e The halo virial mass M200 describes the total mass contained with the virial radius r200, defined
as the radius within which the mean density is 200 times the critical density of the universe
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PROBABILISTIC PROGRAMMING FOR LENSING
PRELIMINARY!

Mean image: Prior, traces: 2,500 Mean image: Posterior, IS, traces: 10,000, ESS: 100.39
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