Teaching Module Working Group
Teaching Module Working Group

OVERALL AIMS:
Teaching Module Working Group

OVERALL AIMS:

1. To develop a method for the implementation of a lesson(s) from the Antimatter Teaching Module (ATM).
Teaching Module Working Group

OVERALL AIMS:

1. To develop a method for the implementation of a lesson(s) from the Antimatter Teaching Module (ATM).

2. To contribute to the development of a new teaching module on the theme of “Medical Applications of Particle Physics”.
AIM 1

Imagine that you would like to teach a lesson (or lessons) on the topic of antimatter to your students next week.
Imagine that you would like to teach a lesson (or lessons) on the topic of antimatter to your students next week.

• How can you practically use the ATM resource with your students?
AIM 1

Imagine that you would like to teach a lesson (or lessons) on the topic of antimatter to your students next week.

• *How can you practically use the ATM resource with your students?*

• *At what point in your syllabus and at which grade level would it be useful to use the lesson?*
Imagine that you would like to teach a lesson (or lessons) on the topic of antimatter to your students next week.

• *How can you practically use the ATM resource with your students?*

• *At what point in your syllabus and at which grade level would it be useful to use the lesson?*

• *How much time would you use?*
AIM 1

Imagine that you would like to teach a lesson (or lessons) on the topic of antimatter to your students next week.

• How can you practically use the ATM resource with your students?

• At what point in your syllabus and at which grade level would it be useful to use the lesson?

• How much time would you use?

• What kinds of peripheral materials would you require? (for example, background info, handouts, homework exercises, ideas for activity-based exercises related to the lesson, etc.)
AIM 2
AIM 2

To create a framework (outline/skeleton) for a teaching module on the Medical Applications of Particle Physics.
Use of Accelerators Today

- **General industrial use:**
 - Sterilisation, imaging

- **Research accelerators:**
 - Particles, synchrotron light used in biomedical, physics, chemistry, biology, material research

- **Radiotherapy:**
 - Cancer treatment with X-rays, protons and other particles

- **Ion implantation, surface modifications:**
 - Controlled semiconductor doping; Changing properties of surfaces

- **Radioisotope production:**
 - Cancer treatment; imaging organs for medical use
Linacs used in radiotherapy represent 40% of all running accelerators:
France, Germany, Italy: 4 units per million inhabitants
Switzerland: 11 units per million inhabitants
Finland: 14 units per million inhabitants
Keep in mind that...

...we are designing Teaching Modules that target students aged 14-15 years.
...and that use topics that are related to the experiments being done at CERN.
The Teaching Module Working Group...
The Teaching Module Working Group...

...will give you an opportunity to contribute directly to an educational resource that you can use immediately in your classroom.
The Teaching Module Working Group...

...will give you an opportunity to contribute directly to an educational resource that you can use immediately in your classroom.

...allow you to have direct input into a CERN educational resource that will be made available on our education website.
The Teaching Module Working Group...

...will give you an opportunity to contribute directly to an educational resource that you can use immediately in your classroom.

...allow you to have direct input into a CERN educational resource that will be made available on our education website.

...take what you have learned at CERN and channel it for the benefit of physics teachers and their students worldwide.