
bamboo: an RDataFrame-based analysis framework
Feedback from the implementation experience

Pieter David

Université catholique de Louvain

84rd ROOT Parallelism, Performance and Programming Model Meeting
8 October 2020

mailto:pieter.david@cern.ch

bamboo: a bit of context

• started (early 2019) as a rewrite of my histogram-filling code for
NanoAOD, which required more flexibility than analysis-specific trees

• NanoAOD samples are centrally produced flat trees, directly — or with
some small additions — usable for final analysis, introduced in
2018–2019 in CMS to increase the efficiency of analyses on large datasets
(aiming to cover half of all CMS analysis use cases), more details here

• based on RDataFrame, cling, and PyROOT

• Currently used in several CMS analyses (mostly Higgs and top quark
physics, also some performance measurements), close to a 1.0 release

A few links: repository, HTML documentation, some examples

I wrote most of the code of bamboo, but it could not have reached the
current state without the feedback and help from a few early users, in
particular Sébastien Wertz, Khawla Jaffel, and Florian Bury
Pieter David (UCLouvain-CP3) bamboo: an RDataFrame-based analysis framework 8 October 2020 2

https://indico.cern.ch/event/708041/papers/3276172/files/8621-nanoaod_acat19_v2.pdf
https://gitlab.cern.ch/cp3-cms/bamboo
https://cp3.irmp.ucl.ac.be/~pdavid/bamboo/index.html
https://github.com/pieterdavid/bamboo-opendata-examples

A python layer on top of RDataFrame: motivation

• Typical LHC analysis: a number of
selection and slimming steps to go
from fully reconstructed triggered
events to reduced TTrees, then:
lots of histograms at different
selection stages, MVAs, some
statistical analysis, and results

• Code needs to be very flexible, and
allow to keep a good overview:
strong case for using python

• Data sets are large (run 2: several
TB in reduced formats), so code
becomes slow… try to make
python faster? Use C++ instead?

Pieter David (UCLouvain-CP3) bamboo: an RDataFrame-based analysis framework 8 October 2020 3

A python layer on top of RDataFrame: motivation

• Typical LHC analysis: a number of
selection and slimming steps to go
from fully reconstructed triggered
events to reduced TTrees, then:
lots of histograms at different
selection stages, MVAs, some
statistical analysis, and results

• Code needs to be very flexible, and
allow to keep a good overview:
strong case for using python

• Data sets are large (run 2: several
TB in reduced formats), so code
becomes slow… try to make
python faster? Use C++ instead?

Pieter David (UCLouvain-CP3) bamboo: an RDataFrame-based analysis framework 8 October 2020 4

A python layer on top of RDataFrame: motivation

• Typical LHC analysis: a number of
selection and slimming steps to go
from fully reconstructed triggered
events to reduced TTrees, then:
lots of histograms at different
selection stages, MVAs, some
statistical analysis, and results

• Code needs to be very flexible, and
allow to keep a good overview:
strong case for using python

• Data sets are large (run 2: several
TB in reduced formats), so code
becomes slow… try to make
python faster? Use C++ instead?

How much time and effort to:
• plot one more distribution
• change a selection

• change a selection, and compare
N plots between the two cases

• add a correction that a) is a
per-event weight, or b) changes
object kinematics, and/or c) tracks
changing detector conditions —
only for simulation, not for data

• add a higher-statistics sample that
covers part of the phasespace of
an already included one

• include systematic variations

Pieter David (UCLouvain-CP3) bamboo: an RDataFrame-based analysis framework 8 October 2020 5

A python layer on top of RDataFrame: motivation

• Typical LHC analysis: a number of
selection and slimming steps to go
from fully reconstructed triggered
events to reduced TTrees, then:
lots of histograms at different
selection stages, MVAs, some
statistical analysis, and results

• Code needs to be very flexible, and
allow to keep a good overview:
strong case for using python

• Data sets are large (run 2: several
TB in reduced formats), so code
becomes slow… try to make
python faster? Use C++ instead?

How much time and effort to:
• plot one more distribution
• change a selection
• change a selection, and compare

N plots between the two cases

• add a correction that a) is a
per-event weight, or b) changes
object kinematics, and/or c) tracks
changing detector conditions —
only for simulation, not for data

• add a higher-statistics sample that
covers part of the phasespace of
an already included one

• include systematic variations

Pieter David (UCLouvain-CP3) bamboo: an RDataFrame-based analysis framework 8 October 2020 6

A python layer on top of RDataFrame: motivation

• Typical LHC analysis: a number of
selection and slimming steps to go
from fully reconstructed triggered
events to reduced TTrees, then:
lots of histograms at different
selection stages, MVAs, some
statistical analysis, and results

• Code needs to be very flexible, and
allow to keep a good overview:
strong case for using python

• Data sets are large (run 2: several
TB in reduced formats), so code
becomes slow… try to make
python faster? Use C++ instead?

How much time and effort to:
• plot one more distribution
• change a selection
• change a selection, and compare

N plots between the two cases
• add a correction that a) is a

per-event weight, or b) changes
object kinematics, and/or c) tracks
changing detector conditions —
only for simulation, not for data

• add a higher-statistics sample that
covers part of the phasespace of
an already included one

• include systematic variations

Pieter David (UCLouvain-CP3) bamboo: an RDataFrame-based analysis framework 8 October 2020 7

A python layer on top of RDataFrame: motivation

• Typical LHC analysis: a number of
selection and slimming steps to go
from fully reconstructed triggered
events to reduced TTrees, then:
lots of histograms at different
selection stages, MVAs, some
statistical analysis, and results

• Code needs to be very flexible, and
allow to keep a good overview:
strong case for using python

• Data sets are large (run 2: several
TB in reduced formats), so code
becomes slow… try to make
python faster? Use C++ instead?

How much time and effort to:
• plot one more distribution
• change a selection
• change a selection, and compare

N plots between the two cases
• add a correction that a) is a

per-event weight, or b) changes
object kinematics, and/or c) tracks
changing detector conditions —
only for simulation, not for data

• add a higher-statistics sample that
covers part of the phasespace of
an already included one

• include systematic variations

Pieter David (UCLouvain-CP3) bamboo: an RDataFrame-based analysis framework 8 October 2020 8

A python layer on top of RDataFrame: motivation

• Typical LHC analysis: a number of
selection and slimming steps to go
from fully reconstructed triggered
events to reduced TTrees, then:
lots of histograms at different
selection stages, MVAs, some
statistical analysis, and results

• Code needs to be very flexible, and
allow to keep a good overview:
strong case for using python

• Data sets are large (run 2: several
TB in reduced formats), so code
becomes slow… try to make
python faster? Use C++ instead?

How much time and effort to:
• plot one more distribution
• change a selection
• change a selection, and compare

N plots between the two cases
• add a correction that a) is a

per-event weight, or b) changes
object kinematics, and/or c) tracks
changing detector conditions —
only for simulation, not for data

• add a higher-statistics sample that
covers part of the phasespace of
an already included one

• include systematic variations

Pieter David (UCLouvain-CP3) bamboo: an RDataFrame-based analysis framework 8 October 2020 9

A python layer on top of RDataFrame: motivation

• Typical LHC analysis: a number of
selection and slimming steps to go
from fully reconstructed triggered
events to reduced TTrees, then:
lots of histograms at different
selection stages, MVAs, some
statistical analysis, and results

• Code needs to be very flexible, and
allow to keep a good overview:
strong case for using python

• Data sets are large (run 2: several
TB in reduced formats), so code
becomes slow… try to make
python faster? Use C++ instead?

How much time and effort to:
• plot one more distribution
• change a selection
• change a selection, and compare

N plots between the two cases
• add a correction that a) is a

per-event weight, or b) changes
object kinematics, and/or c) tracks
changing detector conditions —
only for simulation, not for data

• add a higher-statistics sample that
covers part of the phasespace of
an already included one

• include systematic variations

Pieter David (UCLouvain-CP3) bamboo: an RDataFrame-based analysis framework 8 October 2020 10

A python layer on top of RDataFrame: motivation

• Typical LHC analysis: a number of
selection and slimming steps to go
from fully reconstructed triggered
events to reduced TTrees, then:
lots of histograms at different
selection stages, MVAs, some
statistical analysis, and results

• Code needs to be very flexible, and
allow to keep a good overview:
strong case for using python

• Data sets are large (run 2: several
TB in reduced formats), so code
becomes slow… try to make
python faster? Use C++ instead?

Personal experience: need for speed
makes analysis code messy (hard to
find bugs), inflexible, or both

but with modern ROOT (RDataFrame
+ cling + PyROOT), an event loop can
be built declaratively, with compiled
code, from python — so this
performance versus readability and
flexibility tradeoff can be avoided

Pieter David (UCLouvain-CP3) bamboo: an RDataFrame-based analysis framework 8 October 2020 11

A python layer on top of RDataFrame: motivation

• Typical LHC analysis: a number of
selection and slimming steps to go
from fully reconstructed triggered
events to reduced TTrees, then:
lots of histograms at different
selection stages, MVAs, some
statistical analysis, and results

• Code needs to be very flexible, and
allow to keep a good overview:
strong case for using python

• Data sets are large (run 2: several
TB in reduced formats), so code
becomes slow… try to make
python faster? Use C++ instead?

image credit: Claudio Caputo

bamboo is an attempt to turn this
idea into a framework usable for
analysis of CMS NanoAODs (and
similar formats)

Pieter David (UCLouvain-CP3) bamboo: an RDataFrame-based analysis framework 8 October 2020 12

Building expressions from decorated flat TTrees

• Decorations group related branches. As an example: how to plot the
invariant mass of the two highest-pT b-tagged jets that are not within
ΔR < 0.3 from any isolated muon with pT > 15GeV?

muons = op.select(t.Muon, lambda mu : op.AND(mu.pt > 15., mu.iso < 0.4))
cleanedBJets = op.select(t.Jet, lambda j : op.AND(

op.NOT(op.rng_any(muons, lambda mu : op.deltaR(mu.p4, j.p4) < 0.3)),
j.bTag > 0.6))

has2b = noSel.refine("2b", cut=(op.rng_len(cleanedBJets) >= 2))
Plot.make1D("mbb", (cleanedBJets[0].p4+cleanedBJets[1].p4).M(), has2b,

EqB(100, 0., 500.))

• Derived “collections” only exist in python, at the RDataFrame level they
are vectors of indices, and the other columns are used directly

• Also allows to add some extensions for convenience (p4 is not in the
NanoAOD, but constructed from X_pt, X_eta, X_phi, and X_mass)

• Can convert to code and RDataFrame nodes when constructing plots
and selections, or in one go later

Pieter David (UCLouvain-CP3) bamboo: an RDataFrame-based analysis framework 8 October 2020 13

Structure of a bamboo analysis module

from bamboo.analysismodules import NanoAODHistoModule
class DimuonPlots(NanoAODHistoModule):

def definePlots(self, t, noSel, sample=None, sampleCfg=None):
from bamboo.plots import Plot
from bamboo.plots import EquidistantBinning as EqB
from bamboo import treefunctions as op
if self.isMC(sample):

noSel = noSel.refine("mcWeight", weight=t.genWeight)
plots = []
muons = op.select(t.Muon, lambda mu : op.AND(mu.mediumId,

mu.pfRelIso03_all < 0.4, mu.pt > 15.))
twoMuSel = noSel.refine("has2mu", cut=(op.rng_len(muons) > 1))
plots.append(Plot.make1D("dimuM", (muons[0].p4+muons[1].p4).M(),

twoMuSel, EqB(100, 20., 120.), title="Invariant mass"))
return plots

RResultPtrs to all histograms collected in the base class, then filled
Selection represents a subsample (Filter node), with a weight column;
constructed with parent.refine(name, cut=..., weight=...)
Plot (Histo1D node): name, variable, binning, Selection, and options
Pieter David (UCLouvain-CP3) bamboo: an RDataFrame-based analysis framework 8 October 2020 14

The corresponding generated code
// muons = op.select(t.Muon, lambda mu : op.AND(mu.mediumId,
// mu.pfRelIso03_all < 0.4, mu.pt > 15.))
// DEBUG:bamboo.dataframebackend:Defining new symbol with interpreter:
ROOT::VecOps::RVec<std::size_t> myFun1(const ROOT::VecOps::RVec<Bool_t>& myArg0,

const ROOT::VecOps::RVec<Float_t>& myArg1,
const ROOT::VecOps::RVec<Float_t>& myArg2, const UInt_t& myArg3)

{ return rdfhelpers::select(rdfhelpers::IndexRange<std::size_t>{myArg3},
[&myArg0, &myArg1, &myArg2, &myArg3] (std::size_t i0) {

return (myArg0[i0] && (myArg1[i0] < 0.4) && (myArg2[i0] > 15.0));
});

};
// DEBUG:bamboo.dataframebackend:Defining myCol1 as
myFun1(Muon_mediumId, Muon_pfRelIso03_all, Muon_pt, nMuon)
// twoMuSel = noSel.refine("has2mu", cut=(op.rng_len(muons) > 1))
// DEBUG:bamboo.dataframebackend:Filtering with (myCol1.size() > 1)
// plots.append(Plot.make1D("dimuM", (muons[0].p4+muons[1].p4).M(),
// twoMuSel, EqB(100, 20., 120.), title="Invariant mass"))
// DEBUG:bamboo.dataframebackend:Defining v0_dimuM as
(ROOT::Math::LorentzVector<ROOT::Math::PtEtaPhiM4D<float> >{

Muon_pt[myCol1[0]], Muon_eta[myCol1[0]], Muon_phi[myCol1[0]],
Muon_mass[myCol1[0]]} +

ROOT::Math::LorentzVector<ROOT::Math::PtEtaPhiM4D<float> >{
Muon_pt[myCol1[1]], Muon_eta[myCol1[1]], Muon_phi[myCol1[1]],

Muon_mass[myCol1[1]]}).M()
Pieter David (UCLouvain-CP3) bamboo: an RDataFrame-based analysis framework 8 October 2020 15

Implementation: interface to RDataFrame and Cling

• Plot and Selection interact with a wrapper
(for bookkeeping) around the RDataFrame

• A tree of “selection nodes” is built up, each
grouping a Filter node with an attached set
of Define nodes

• When converting an expensive expression to a
C++ string, values are defined on-demand by
attaching Define nodes (and functions
declared with the interpreter as needed;
global scope, so can be reused everywhere)

• Main python challenge: fast traversal and
comparison of (sub)expressions to avoid
redefinition. Caching of a value-based hash of
every expression (they are effectively
immutable) solved this for almost all cases

image credit

Pieter David (UCLouvain-CP3) bamboo: an RDataFrame-based analysis framework 8 October 2020 16

https://commons.wikimedia.org/wiki/File:Beffroi_Hôtel_de_ville_de_Bruxelles_04.jpg

Pushing the limits: automatic systematic variations

• Many systematic uncertainties are
taken into account in very similar
ways: as a change in per-event
weight, or as a different value for
some quantities (e.g. jet energy)

• If expressions are marked as
changing under a certain
systematic effect (in the
decorations, or explicitly when
constructing the expression), the
correspondingly varied histograms
can be automatically produced

• On by default, but can be disabled
for a selection (and everything
attached to it) or a plot

Implementation: the backend code
scans cuts, weights, and variables for
marked nodes, and defines the
additional RDataFrame nodes as
needed: alternative weights only add
Define and Histo1D, but anything used
in a Filter (e.g. jet pT) clones the
whole attached subgraph

Quite some bookkeeping, but fully
generic (changes to analysis code are
minimal), and the code for this is
localised in a handful of places —
killer feature, but also a performance
stress-test (much larger graph)

Pieter David (UCLouvain-CP3) bamboo: an RDataFrame-based analysis framework 8 October 2020 17

What is in bamboo.treefunctions?

The main module with helper methods to construct expressions
• (most importantly) per-event range operations, using array branches

(first, min/max, select, combine etc.). These are implemented using a
range version of STL algorithms like find_if, copy_if, accumulate… and
converting the result of the python lambda to a C++ lambda

• evaluating multivariate classifiers (we are actively using TMVA and
tensorflow; torchscript and lwtnn are also implemented)

• indicating if/when expressions should be defined as columns

and also (since everything needs to become an expression)
• basic math, boolean logic, special functions etc.

• more C++-specific: construct an object, call a method

• some kinematic operations (using ROOT::Math::VectorUtil)
full list

Pieter David (UCLouvain-CP3) bamboo: an RDataFrame-based analysis framework 8 October 2020 18

https://cp3.irmp.ucl.ac.be/~pdavid/bamboo/treefunctions.html

Combining histograms for different samples

• Samples (input files, name, scaling) are defined in a YAML file, e.g.

DY_M10to50_2017:
group: DY
era: "2017"
db: "das:/DYJetsToLL_M-10to50_TuneCP5_13TeV-madgraphMLM-pythia8/piedavid-TopNanoAODv6-1-1_2017-a11761155c05d04d6fed5a2401fa93e8/USER instance=prod/phys03"
cross-section: 18610
generated-events: 'genEventSumw'
split: 2

• definePlots gets all sample metadata, so can adjust the graph for it

• One RDataFrame graph per sample, or (more commonly) batch job

• By default combined in a stack plot with plotIt, but easy to override

bambooRun -m dimu.py:DimuonPlots dimu_example.yml -o test_dimu1

options for running on a batch system, enabling IMT, verbose logging…

Pieter David (UCLouvain-CP3) bamboo: an RDataFrame-based analysis framework 8 October 2020 19

https://github.com/cp3-llbb/plotIt

Performance

• bamboo uses mostly JITted code, so some overhead is expected — so far
acceptable, in return for simpler analysis code

• No detailed benchmarking done so far, but speed is in the target range:
turnaround of a few hours for O(100) plots (thousands of histograms) of
the CMS Run2 data on a batch system

• Memory usage has been a bigger worry, but ROOT 6.22/00 brought a
huge improvement (factor 3–5), details in this forum thread

• Implicit multi-threading mostly “just works”, can be useful in case of
large graphs or a lot of calculation (otherwise I/O and decompression
dominate)

• Filling a list of histograms with the same value but different weights is a
common pattern, some repetition (bin lookup) could be avoided there

• Is it possible to evaluate an MVA on inputs from a batch of events?
More generally: how is, or could, vectorisation be used?

Pieter David (UCLouvain-CP3) bamboo: an RDataFrame-based analysis framework 8 October 2020 20

https://root-forum.cern.ch/t/bamboo-an-analysis-framework-based-on-rdataframe/39496/7

Development experience

• RDataFrame provides a nice and consistent API to build on
• One thing “missing” is combining results (e.g. adding up histograms) from

different analysis categories (different Filter branches of the graph) — the
limitation makes sense (and can be worked around in the analysis code)

• Count and Sum are nice, but ended up using 1-bin histograms for counters
because they collect entries, sum of weights, and the uncertainty together

• JIT C++ support is really complete (templates) and solid (the compiler
warnings and errors prevented a few bugs)

• Dynamically adding code, with automatic python bindings, makes it
very easy to load extensions (e.g. for reading weights from a file, or
evaluating a multivariate classifier)

• Main annoyance so far: logical errors in analysis code (read beyond
array end) give a segmentation fault at runtime, and are hard to debug
(removing parts of the graph to isolate the problem is time-consuming)

Pieter David (UCLouvain-CP3) bamboo: an RDataFrame-based analysis framework 8 October 2020 21

Conclusions

• Described bamboo, with a focus on filling histograms (the most common
use case; making skims is also supported, based on RDF::Snapshot)

• RDataFrame with JIT scales well to making plots for a CMS Run2
analysis (thousands of histograms, O(10TB) of data available locally,
using a batch system to split and process samples in parallel)

• Relatively large graphs, and centralised calls to RDataFrame, so it is
relatively easy to try some changes in the latter that could improve
performance (and I am happy to test things; our largest graphs assume
CMS data locally available, so not as easy to provide runnable code)

Thanks for the opportunity to present here and exchange ideas with you!

Pieter David (UCLouvain-CP3) bamboo: an RDataFrame-based analysis framework 8 October 2020 22

Additional material

Analysis workflows: from MiniAOD to NanoAOD

RAW

RECO

(Mini)AOD

central productionseveral months (few times)

central production1-2 months (few more times)

Analysis trees

group framework
months now (often)

Skimmed trees

Histograms

Plots Results

histogram and
tree factories

O(1h) (very often)

plotIt combine/theta/…

corrections
machine learning

NanoAOD

central production
1 month (often)

bamboo

Pieter David (UCLouvain-CP3) bamboo: an RDataFrame-based analysis framework 8 October 2020 24

bamboo ingredients

• High-level python analysis code to define plots and selections
(using loops, higher-order functions etc.)

• Decorated version of the input TTree: an event looks like a set of
containers of physics objects (jets, leptons, tracks etc.) and
(groups of) per-event quantities

• Expressions (selection, weight, variable) are composed of simple
python objects, built from decorators, and decorated to behave
as a value (to construct derived expressions)

• When the analysis is complete: convert expressions to strings for
RDataFrame, run over all samples, and make plots

• Every analysis derives from a base class, such that e.g. splitting
in batch jobs, and plotting code can be reused

Pieter David (UCLouvain-CP3) bamboo: an RDataFrame-based analysis framework 8 October 2020 25

Implementation: tree decorations

• Tree proxy class generated on the fly, based on
the branches that are found

• By default, each branch is an attribute of the tree
proxy (the class is generated with type())

• Groups of non-array branches: “group proxy” in
between: t.HLT.MuXX, t.pdf.x1

• Groups of array branches: container proxy, and a
proxy for the elements: t.Muon[0].IDLoose

• Can also add references and arbitrary functions:
t.Jet[0].Mu1.pt, t.Muon[0].p4.E()

• Needs to be adapted to recognize different tree
formats, but for flat trees (most common) this is
fairly straightforward (examples are from CMS
NanoAOD, one other format is implemented) image credit

Pieter David (UCLouvain-CP3) bamboo: an RDataFrame-based analysis framework 8 October 2020 26

https://commons.wikimedia.org/wiki/File:Yarn_bombing_St_Patricks_Cathedral_Park_1.JPG

Implementation: expressions and proxies

Expressions
• are composed of simple python

objects, e.g. t.Muon[0].pt
(Muon_pt[0]) becomes
GetItem(GetArrayLeaf("Muon_pt"),0)

• can be converted to a string for
RDataFrame/JIT

• are considered immutable as soon
as they are fully constructed and
passed around (but a fresh clone
can be modified by the owner)

Proxies
• Wrap an expression

• Emulate the value type of
expression’s result (through
python operator overloading and
other magic methods)

• float-like, integer-like, object-like,
and a few list-like classes — but no
complete type system (yet), so
limited checks at construction

Currently each of these interfaces has about 25 implementations – the user
should only need the decorated tree and the bamboo.treefunctions module

Pieter David (UCLouvain-CP3) bamboo: an RDataFrame-based analysis framework 8 October 2020 27

Selections and plots

Zooming in on the currently main use
case of different selections and
histograms now (skims also work)

• This only needs two fundamental
RDataFrame actions: Filter and
Histo{1D,2D} (and Define, to
calculate intermediate values)

• Important distinction: Filter
changes control flow, whereas the
others do not — so there is some
freedom in ordering the Define
nodes (in between the Filter
that makes sure the expression is
valid and the first use)

Current solution (bamboo.plots):
• Selection class, with each

instance (optionally) holding a set
of selection requirements (cuts)
and weight factors

• Selections are defined by adding
cuts or weights to a more inclusive
selection (starting point: all events
in the input, unit weight)

• Plot instances are defined by a
Selection, variable(s), binning(s),
and layout options

• RDataFrame nodes are created
when Selection and Plot
objects are constructed

Pieter David (UCLouvain-CP3) bamboo: an RDataFrame-based analysis framework 8 October 2020 28

From code to workflows

$ bambooRun -m myAnalysis.py:BasicPlots mySamples.yml

• Also between the command line
and the analysis definition, much
code can be shared or reused, e.g.
for processing different samples
and combining the results in one
plot, using a batch system…

• Proposed solution: analysis
module inherits from a base class,
and implements the definePlots
method (which returns a list of
Plot objects)

• Input samples, and plot options,
are passed through a YAML file

With different options one can:
• interactively explore the decorated

tree (in an IPython prompt)
• run over only one file per sample,

for testing locally
• run sequentially or on a batch

system (slurm or HTCondor are
supported), worker jobs use
almost the same command

• rerun only the postprocessing
(plotting) step

• enable “implicit multi-threading”

Pieter David (UCLouvain-CP3) bamboo: an RDataFrame-based analysis framework 8 October 2020 29

Extending the basic functionality

Written in python, and tried to keep things loosely coupled (interfaces), so
many things are straightforward to customise and extend:

• Loading additional C++ headers and libraries in the interpreter
Examples: good runs/events filter and scale factors from JSON files,
jet and muon energy scale corrections calculated on the fly

• Alternative analysis (base) classes, e.g. for different tree formats, to
customise plotting, or to calculate efficiencies in addition

• There is a hook to specify additional command-line arguments from the
analysis module

• The sample definition (YAML) is open-ended, the base class only looks at
the attributes it needs (e.g. input files, to do the job splitting), and the
plotting library at a few more (normalisation for MC, grouping and
ordering, colors…)

Pieter David (UCLouvain-CP3) bamboo: an RDataFrame-based analysis framework 8 October 2020 30

Selections and plots: a longer example
def definePlots(self, t, noSel, sample=None, sampleCfg=None):

from bamboo.plots import Plot, EquidistantBinning
from bamboo import treefunctions as op
plots = []
muons = op.select(t.Muon, lambda mu : mu.pt > 20.)
twoMuSel = noSel.refine("dimu", cut=(op.rng_len(muons) > 1))
plots.append(Plot.make1D("dimu_M",

op.invariant_mass(muons[0].p4, muons[1].p4), twoMuSel,
EquidistantBinning(100, 20., 120.), title="Dimuon invariant mass"))

jets = op.select(t.Jet, lambda j : j.pt > 20.)
plots.append(Plot.make1D("dimu_nAllJets", op.rng_len(jets), twoMuSel,

EquidistantBinning(10, 0., 10.), title="Number of jets (uncleaned)"))
cleanedJets = op.select(jets, lambda j : op.NOT(

op.rng_any(muons, lambda mu : op.deltaR(mu.p4, j.p4) < 0.3)))
plots.append(Plot.make1D("dimu_nJets", op.rng_len(jets), twoMuSel,

EquidistantBinning(10, 0., 10.), title="Number of jets (cleaned)"))
twoMuTwoJetSel = twoMuSel.refine("dimudijet",

cut=(op.rng_len(cleanedJets) > 1))
plots.append(Plot.make1D("dimudijet_leadJetPT", cleanedJets[0].pt,

twoMuTwoJetSel, EquidistantBinning(50,0.,250.),title="Leading jet PT"))
return plots

Pieter David (UCLouvain-CP3) bamboo: an RDataFrame-based analysis framework 8 October 2020 31

