Status of Nuclear $\boldsymbol{\beta}$-decay Measurements

Dan Melconian

Cyclotron Institute/Texas A\&M University

Pure Fermi $0^{+} \rightarrow 0^{+}$decays

The comparative half-life of β decay is:

$$
\begin{aligned}
& \boldsymbol{f t}=\binom{\text { phase }}{\text { space }}\binom{\text { partial }}{\text { half-life }}=\frac{K}{G_{V}^{2}\left|\boldsymbol{M}_{\boldsymbol{F}}\right|^{2}+G_{A}^{2}\left|\boldsymbol{M}_{\boldsymbol{G T}}\right|^{2}} \\
& K /(\hbar c)^{6}=2 \pi^{3} \hbar \ln 2 /\left(m_{e} c^{2}\right)^{5} \quad \text { and } \quad \text { by CVC, } G_{V}=G_{F} V_{u d}
\end{aligned}
$$

For pure Fermi
$T=1$ decays

$$
\begin{array}{ll}
\left(T_{3} \equiv \frac{1}{2}(N-Z)=\text { isospin }\right) & \begin{array}{l}
\boldsymbol{M}_{\boldsymbol{F}}=\sqrt{2} \\
\\
\boldsymbol{M}_{\boldsymbol{G} \boldsymbol{T}}=0
\end{array}
\end{array}
$$

Pure Fermi $0^{+} \rightarrow 0^{+}$decays

The comparative half-life of β decay is:

$$
\begin{aligned}
& \boldsymbol{f t}=\binom{\text { phase }}{\text { space }}\binom{\text { partial }}{\text { half-life }}=\frac{K}{G_{V}^{2}\left|\boldsymbol{M}_{\boldsymbol{F}}\right|^{2}+G_{A}^{2}\left|\boldsymbol{M}_{\boldsymbol{G} \boldsymbol{T}}\right|^{2}} \\
& K /(\hbar c)^{6}=2 \pi^{3} \hbar \ln 2 /\left(m_{e} c^{2}\right)^{5} \quad \text { and } \quad \text { by CVC, } G_{V}=G_{F} V_{u d}
\end{aligned}
$$

For pure Fermi
$T=1$ decays

$$
\begin{array}{ll}
\left(T_{3} \equiv \frac{1}{2}(N-Z)=\text { isospin }\right) & \begin{array}{l}
\boldsymbol{M}
\end{array}{ }^{2}=\sqrt{2} \\
& \boldsymbol{M}_{\boldsymbol{G T}}=0
\end{array}
$$

$Q_{E C} \Rightarrow f$
$\left.\begin{array}{l}t_{1 / 2} \\ B R\end{array}\right\} \Rightarrow \boldsymbol{t}$
CKM 2010
Dan Melconian
Sept 8, 2010

Corrected $\mathcal{F} t$ value

We must account for the fact that the decay occurs within the nuclear medium

$$
\mathcal{F} t \equiv f t\left(1+\delta_{R}^{\prime}\right)\left(1+\left(\delta_{N S}-\delta_{C}\right)\right)=\frac{K}{G_{F}^{2}\left|V_{u d}\right|^{2}\left|M_{F}\right|^{2}\left(1+\Delta_{R}^{V}\right)}
$$

(really should be constant)

- $\delta_{R}^{\prime}=E_{e}^{\max }$ and Z dependent radiative correction
- $\delta_{N S}=$ nuclear structure depenedent radiative correction
- $\delta_{C}=$ isospin symmetry-breaking correction
- $\Delta_{R}^{V}=$ transition independent radiative correction

$\mathcal{F} t$ values of $0^{+} \rightarrow 0^{+}$decays

corrected $\mathcal{F} t$ values constant to better than 3 parts in 10^{4} !
hooray for the conserved vector current hypothesis!

The name of the game nowadays

- over 200 measurements have gone into superallowed $f t$ values ... hard for one new one to have a high impact ($\langle\mathcal{F} t\rangle$ is robust!)
- some measurements are old; worth going back and checking some of the results (e.g. masses)
- biggest question is often in the isospin-mixing corrections . . . measure them!
- pursue other avenues, notably the neutron; maybe $T=1 / 2$ decays?
- use the average $\mathcal{F} t$ value to fix SM predictions and search for new physics via angular correlation parameters

Half-lives continue to be improved

Example: GPS at TRIUMF

4π continuous-flow gasproportional counter and fast tape transport system

Typical half-life spectrum

(courtesy of P. Finlay)

Branching ratios continue to be improved

Example: Fast tape-transport at CI/TAMU

Penning traps at RIB facililties

mass measurements, correlation studies, EC branches, ...

ISOLDE, ANL, JYFL, NSCL, GSI, TRIUMF, KVI, Stockholm, Ganil

$Q_{E C}$ Values

- Penning traps at RIB facilities now producing results at a steady, impressive rate
- Mass resolution $\approx 100 \mathrm{eV}$ (!)
- Check/improve previous mass determinations, e.g. $\left({ }^{3} \mathrm{He}, t\right)$ rxns

difference of 197 keV

(Re-)Measured superallowed masses

FIG. 1. Differences between individual measurements and the averages of all measurements for the seven parent nuclei studied by Vonach et al. [162]. The filled squares are the results of the $\left({ }^{3} \mathrm{He}, t\right)$ measurements of Vonach et al.; the open squares are recent Penningtrap results [$61,62,73,149]$. For each parent nucleus, the gray band about the zero line represents the uncertainty of the average for that case. Note that all the averages include the results of Vonach et al., the Penning-trap results, and any other relevant measurements appearing in Table I.
(courtesy of T. Eronen)

Isospin breaking corrections

How can we test these theoretical corrections?
\Rightarrow measure it in a case where it is large

$T=2$ superallowed decays

$T=2$ superallowed decays

Result from ${ }^{32} \mathrm{Ar}$

Branching ratios

protons:
$N_{p} / N_{\mathrm{Ar}}=20.79(14) \%$

Summary of systematic uncertainties on the absolute superallowed branch in ${ }^{32} \mathrm{Ar}$ decay.

Component	$\Delta b_{\mathrm{SA}}^{\beta} / b_{\mathrm{SA}}^{\beta}[\%]$
Implanted ${ }^{\mathbf{3 2}} \mathbf{A r}{ }^{\prime} \mathrm{s}$	$\pm \mathbf{0 . 2 3}$
p $_{0}$ branch	$\pm \mathbf{0 . 5 2}$
p_{1} branch	± 0.04
p_{2} branch	± 0.04
p_{3} branch	± 0.07
个 statistics	$\pm \mathbf{0 . 4 3}$
32 Cl branching ratios $_{\text {HPGe detector efficiency }}$	± 0.11
Total	± 0.09

Result from ${ }^{32} \mathrm{Ar}$

Branching ratios

protons:
$N_{p} / N_{\mathrm{Ar}}=20.79(14) \%$
gammas:
$N_{\gamma} / N_{\text {Ar }}=1.92(9) \%$

Summary of systematic uncertainties on the absolute superallowed branch in ${ }^{32} \mathrm{Ar}$ decay.

Component	$\Delta b_{\mathrm{SA}}^{\beta} / b_{\mathrm{SA}}^{\beta}[\%]$
Implanted ${ }^{\mathbf{3 2}} \mathrm{Ar}{ }^{\prime} \mathrm{s}$	$\pm \mathbf{0 . 2 3}$
p $_{0}$ branch	$\pm \mathbf{0 . 5 2}$
p $_{1}$ branch	± 0.04
p $_{2}$ branch	± 0.04
p3 branch	± 0.07
ү statistics	$\pm \mathbf{0 . 4 3}$
32 Cl branching ratios	± 0.11
HPGe detector efficiency	± 0.09
Total	± 0.70

Result from ${ }^{32} \mathrm{Ar}$

Branching ratios

$\Rightarrow f t=1538(14) \mathrm{s} \Rightarrow$

$$
\begin{gathered}
\text { protons: } \\
N_{p} / N_{\mathrm{Ar}}=20.79(14) \% \\
\text { gammas: } \\
\boldsymbol{N}_{\gamma} / \boldsymbol{N}_{\mathrm{Ar}}=1.92(9) \% \\
\begin{array}{c}
f=3505(8) \text { and } \\
t_{1 / 2}=100.5(3) \mathrm{ms}
\end{array}
\end{gathered}
$$

Summary of systematic uncertainties on the absolute superallowed branch in ${ }^{32} \mathrm{Ar}$ decay.
experimental value: $\delta_{C}^{\exp }=2.1(8) \%$ versus predicted: $\delta_{C}^{\text {theory }}=2.0(4) \%$

$$
1^{\text {st }} \text { sub-\% measurement of a } T=2 \text { pure Fermi } 0^{+} \rightarrow 0^{+} \text {decay }
$$

M. Bhattacharya et al., PRC 77065503 (2008)

$f t$ of neutron decay

The comparative half-life of β decay is:

$$
f t=\binom{\text { phase }}{\text { space }}\binom{\text { partial }}{\text { half-life }}=\frac{K}{G_{V}^{2}\left|M_{F}\right|^{2}+G_{A}^{2}\left|M_{G T}\right|^{2}}
$$

$$
\begin{array}{lll}
K /(\hbar c)^{6}=2 \pi^{3} \hbar \ln 2 /\left(m_{e} c^{2}\right)^{5} \quad \text { and } \quad & G_{V}=G_{F} V_{u d}(\mathrm{CVC}) \\
& G_{A} \approx-1.27 G_{F} V_{u d}(\mathrm{PCAC})
\end{array}
$$

theoretically simpler 3-quark system:

- no isospin corrections
- smaller radiative corrections

$f t$ of neutron decay

The comparative half-life of β decay is:

$$
\boldsymbol{f t} \boldsymbol{t}=\binom{\text { phase }}{\text { space }}\binom{\text { partial }}{\text { half-life }}=\frac{K}{G_{V}^{2}\left|M_{F}\right|^{2}+G_{A}^{2}\left|M_{G T}\right|^{2}}
$$

$K /(\hbar c)^{6}=2 \pi^{3} \hbar \ln 2 /\left(m_{e} c^{2}\right)^{5} \quad$ and $\quad G_{V}=G_{F} V_{u d}$ (CVC) $G_{A} \approx-1.27 G_{F} V_{u d}$ (PCAC)
For neutron decay: $M_{F}=1$ and $M_{G T}=\sqrt{3}$
Gamow-Teller component \Rightarrow have to measure $\lambda \equiv G_{A} / G_{V}$

How to get the Gamow-Teller part?

Within the Standard Model and in terms of $\boldsymbol{\lambda} \equiv G_{A} / G_{V}$:

$$
\left.\begin{array}{rl}
\boldsymbol{A}_{\boldsymbol{\beta}} & =-2 \frac{|\boldsymbol{\lambda}|^{2}+\Re e(\boldsymbol{\lambda})}{1+3|\boldsymbol{\lambda}|^{2}} \\
& =-0.1173(13) \\
\Leftrightarrow \boldsymbol{\lambda} & =-1.2695(27)
\end{array}\right\} \text { PDG } 2006
$$

Advantage of UCNs

Reduced backgrounds:

- higher ratio of decays/neutrons

$$
V_{58 \mathrm{Ni}}=335 \mathrm{neV}(\Rightarrow 8 \mathrm{~m} / \mathrm{s})
$$

- no production source bkgds

$$
\begin{aligned}
& V_{\text {grav }}=m g h=102 \mathrm{neV} / \mathrm{m} \\
& V_{\mathrm{mag}}=\boldsymbol{\mu} \cdot \boldsymbol{B}=60 \mathrm{neV} / \mathrm{T}
\end{aligned}
$$

100% polarization using magnetic fields

Area B at LANSCE

Area B at LANSCE

polarizing magnets

β spectrometer data collection

Superconducting solenoidal

UCN from
SD2 source

- solenoidal magnet with 1 T central field
- field expands to 0.6 T (supress backscatter)
- MWPC + scintillator detection

Asymmetry extracted from super-ratio:

$$
\begin{aligned}
S(E) & =\frac{R(E)_{1}^{\uparrow} R(E)_{2}^{\downarrow}}{R(E)_{1}^{\downarrow} R(E)_{2}^{\uparrow}} \\
A_{\exp }(E) & =\frac{1-\sqrt{S(E)}}{1+\sqrt{S(E)}} \\
A_{\circ} & =\frac{A_{\exp }(E)}{\langle\beta \cos \theta\rangle}
\end{aligned}
$$

Data taken in "pulse pair" cycles:

- 720 s bkgd
- 3600 s asymmetry
- 720 s depolarization

UCN β spectrum and asymmetry

- S/N over ROI (275-625 keV) ≈ 40
- lower limit for initial UCN polarization: $P>99.48 \%$

Preliminary error budget

Systematic	Correction	$\Delta A / A[\%]$
Polarization	-	${ }_{-0}^{+0.52}$
Field non-uniform	-	${ }_{-0}^{+0.2}$
Gain fluctuation	-	0.2
Energy response linearity	-	0.47
μ veto efficiency	-	0.3
live time	-	0.24
fiducial cut	-	0.24
recoil-order corr	-1.79	0.03
radiative corr	0.1	0.05
Angle effects	few $\%$	~ 0.1
Backscattering	$\sim 1 \%$	~ 0.3

$$
\begin{gathered}
A_{\circ}=-0.11966 \pm 0.00089_{-0.00140}^{+0.00123} \\
\hline \text { arXiv:1007.3790[nucl-ex] }
\end{gathered}
$$

$T=1 / 2$ mirror nuclei: A new avenue!

Test of the Conserved Vector Current Hypothesis in $T=\mathbf{1} / 2$ Mirror Transitions and New Determination of $\left|V_{u d}\right|$
O. Naviliat-Cuncic ${ }^{1}$ and N. Severijns ${ }^{2}$
${ }^{1}$ LPC-Caen, ENSICAEN, Université de Caen Basse-Normandie, CNRS/IN2P3-ENSI, Caen, France
${ }^{2}$ Instituut voor Kern- en Stralingsfysica, Katholieke Universiteit Leuven, B-3001 Leuven, Belgium (Received 23 January 2009; published 8 April 2009)
The $V_{u d}$ element of the Cabibbo-Kobayashi-Maskawa quark mixing matrix has traditionally been determined from the analysis of data in nuclear superallowed $0^{+} \rightarrow 0^{+}$transitions, neutron decay, and pion beta decay. After providing a new test of the conserved vector current hypothesis, we present here a new independent determination of $\left|V_{u d}\right|$ from a set of five $T=1 / 2$ nuclear mirror transitions. The extracted value, $\left|V_{u d}\right|=0.9719 \pm 0.0017$, is at 1.2 combined standard deviations from the value obtained from superallowed $0^{+} \rightarrow 0^{+}$transitions and has a precision comparable to the value obtained from neutron decay experiments.

FIG. 1. $\mathcal{F} t_{0}$ values deduced for five mirror transitions as a function of the mass number of the mirror nuclei. The horizontal band shows the $\pm 1 \sigma$ limits of the result from the fit.

$T=1 / 2$ mirror nuclei: A new avenue!

FIG. 1. Histogram of the fractional uncertainties attributed to each experimental and theoretical input factor that contributes to the final $\mathcal{F} t^{\text {mirror }}$ values.

TABLE X. Calculated standard model values for the a, A, B, N, and R correlation coefficients for the $T=1 / 2$ mirror β transitions up to ${ }^{45} \mathrm{~V}$, using the mixing ratios listed in Table IX. The D triple correlation is zero in the standard model. The β particle longitudinal polarization, G, is -1 for β^{-}decay and +1 for β^{+}decay. The N and R correlations are nonzero due to final-state interactions (FSI). Note that the about 10% accuracy to which the Eqs. (32) and (33) used to calculate N^{FSI} and R^{FSI} are valid [41] is not included in the error bars.

Parent nucleus	spin J	$a_{\text {SM }}$	δa $(\%)$	$A_{\text {SM }}$	δA $(\%)$	B_{SM}	δB $(\%)$	$R^{\text {FSI }}$

TABLE IX. The $\mathcal{F}_{t}{ }^{\text {mirror }}$ values and Gamow-Teller/Fermi mixing ratios, ρ (assuming $C_{A}=-1.27 C_{V}$), with their relative uncertainties.

Parent	$\mathcal{F} t$	$\delta \mathcal{F} t$	ρ	$\delta \rho$
nucleus	(s)	$(\%)$		$(\%)$
${ }^{3} \mathrm{H}$	1135.3 ± 1.5	0.13	-2.0951 ± 0.0020	0.10
${ }^{11} \mathrm{C}$	3933 ± 16	0.41	0.7456 ± 0.0043	0.58
${ }^{13} \mathrm{~N}$	4682.0 ± 4.9	0.10	0.5573 ± 0.0013	0.23
${ }^{15} \mathrm{O}$	4402 ± 11	0.25	-0.6281 ± 0.0028	0.45
${ }^{17} \mathrm{~F}$	2300.4 ± 6.2	0.27	-1.2815 ± 0.0035	0.27
${ }^{19} \mathrm{Ne}$	1718.4 ± 3.2	0.19	1.5933 ± 0.0030	0.19
${ }^{21} \mathrm{Na}$	4085 ± 12	0.29	-0.7034 ± 0.0032	0.45
${ }^{23} \mathrm{Mg}$	4725 ± 17	0.36	0.5426 ± 0.0044	0.81
${ }^{25} \mathrm{Al}$	3721.1 ± 7.0	0.19	-0.7973 ± 0.0027	0.34
${ }^{27} \mathrm{Si}$	4160 ± 20	0.48	0.6812 ± 0.0053	0.78
${ }^{29} \mathrm{P}$	4809 ± 19	0.40	-0.5209 ± 0.0048	0.92
${ }^{31} \mathrm{~S}$	4828 ± 33	0.68	0.5167 ± 0.0084	1.63
${ }^{33} \mathrm{Cl}$	5618 ± 13	0.23	0.3076 ± 0.0042	1.37
${ }^{35} \mathrm{Ar}$	5688.6 ± 7.2	0.13	-0.2841 ± 0.0025	0.88
${ }^{37} \mathrm{~K}$	4562 ± 28	0.61	0.5874 ± 0.0071	1.21
${ }^{39} \mathrm{Ca}$	4315 ± 16	0.37	-0.6504 ± 0.0041	0.63
${ }^{41} \mathrm{Sc}$	2849 ± 11	0.39	-1.0561 ± 0.0053	0.50
${ }^{43} \mathrm{Ti}$	3701 ± 56	1.51	0.800 ± 0.016	2.00
${ }^{45} \mathrm{~V}$	4382 ± 99	2.26	-0.621 ± 0.025	4.03

β-decay observables of ${ }^{37} \mathrm{~K}$

$$
\boldsymbol{f} \boldsymbol{t}=\binom{\text { phase }}{\text { space }}\binom{\text { partial }}{\text { half-life }}=\frac{K}{G_{V}^{2}\left|M_{F}\right|^{2}+G_{A}^{2}\left|M_{G T}\right|^{2}}
$$

For isobaric analogue decay: $M_{F}=1$ and $M_{G T}=? ? ?$
GT component \Rightarrow have to measure $\rho \equiv G_{A} M_{G T} / G_{V} M_{F}$

$$
f t=\frac{K}{G_{F}^{2}\left|V_{u d}\right|^{2}\left(1+\rho^{2}\right)}
$$

Angular distribution of the $\frac{3}{2}^{+} \rightarrow \frac{3}{2}^{+}$decay:

$$
\begin{aligned}
d W & \sim 1+a \frac{\boldsymbol{p}_{e} \cdot \boldsymbol{p}_{\nu}}{E_{e} E_{\nu}}+b \Gamma \frac{m}{E_{e}}+\frac{\boldsymbol{I}}{I} \cdot\left[\boldsymbol{A}_{\boldsymbol{\beta}} \frac{\boldsymbol{p}_{e}}{E_{e}}+\boldsymbol{B}_{\nu} \frac{\boldsymbol{p}_{\nu}}{E_{\nu}}+\boldsymbol{D} \frac{\boldsymbol{p}_{e} \times \boldsymbol{p}_{\nu}}{E_{e} E_{\nu}}\right] \\
& +c_{\text {align }}\left[\frac{\boldsymbol{p}_{e} \cdot \boldsymbol{p}_{\nu}}{3 E_{e} E_{\nu}}-\frac{\left(\boldsymbol{p}_{e} \cdot \hat{i}\right)\left(\boldsymbol{p}_{\nu} \cdot \hat{i}\right)}{E_{e} E_{\nu}}\right]\left[\frac{I(I+1)-3\left\langle(\boldsymbol{I} \cdot \hat{i})^{2}\right\rangle}{I(2 I-1)}\right]
\end{aligned}
$$

The β asymmetry

$$
A_{\beta}=\frac{-2 \rho(\sqrt{3 / 5}-\rho / 5)}{1+\rho^{2}}
$$

- recoil order corrections under control
- also sensitive to RHCs and SCCs

TRIUMF's Neutral Atom Trap

- Isomerically selective
- $\lesssim 1 \mathrm{~mm}^{3}$ cloud size
- $\approx 10^{-3} \mathrm{~K}$ cloud temperature
- recoils escape unperturbed

Side view of $2^{\text {nd }}$ trap

The neutrino asymmetry measurement

A_{β} - Phoswich asymmetries

A_{β} - Phoswich asymmetries

$$
\text { Asymmetry }=\frac{N\left(\sigma^{+}\right)-N\left(\sigma^{-}\right)}{N\left(\sigma^{+}\right)+N\left(\sigma^{-}\right)}
$$

$$
\sim P A_{\beta}\left\langle\frac{p_{e}}{E_{e}}\right\rangle
$$

Lots of improvements being made . . . but no time to go through them. Expect new results by the next CKM workshop!

(Some) Planned or recently completed projects

- many Penning traps: many $Q_{E C}$ values
- Bordeaux/JYFL: ${ }^{39} \mathrm{Ca},{ }^{29} \mathrm{P}$ half-lives; ${ }^{31} \mathrm{~S}$ half-life and branch
- TUNL/KVI: ${ }^{19} \mathrm{Ne},{ }^{21} \mathrm{Na},{ }^{37} \mathrm{~K}$ half-lives
- TRIUMF: ${ }^{19} \mathrm{Ne},{ }^{26 \mathrm{~m}} \mathrm{Al}$ half-lives
- TAMU/TRIUMF: ${ }^{37}$ K half-life, branch, $A_{\beta}, B_{\nu},(\ldots)$
- LPC-Caen: ${ }^{35} \operatorname{Ar} \beta-\nu$ correlation
- TAMU: $T=2$ super-allowed $f t$ and $\beta-\nu$ correlation:

$$
{ }^{20} \mathrm{Mg},{ }^{24} \mathrm{Si},{ }^{28} \mathrm{~S},{ }^{32} \mathrm{Ar},{ }^{36} \mathrm{Ca},{ }^{40} \mathrm{Ti}
$$

- TAMU: ${ }^{10} \mathrm{C},{ }^{26}$ Si half-lives

Conclusions

- value of $V_{u d}$ within quoted uncertainty after many years/expts
- hard to dramatically affect $\langle\mathcal{F} t\rangle$ with one measurement
- there are still many strong programs in $0^{+} \rightarrow 0^{+}$decays:
- check/improve old measurements
- test/develop theoretical corrections
- limits on scalar and RH currents
- $T=2 \beta$-delayed proton decays
- other avenues: neutron, $T=1 / 2$ mirror decays

Thanks to G. Ball (TRIUMF), T. Eronen (JYFL), J. Äystö (JYFL), P.
Finlay (UGuelph), O. Naviliat-Cuncic (NSCL), G. Bollen (NSCL), J.C.
Hardy (TAMU), the UCNA collaboration, the TRINAT collaboration
S. Behling, M. Mehlman, P. Shidling and the staff at the Cl
and to you for your attention!

Measuring B_{ν} (and D)

Measuring B_{ν} (and D)

Measuring B_{ν} (and D)

B_{ν} measurement and current limits

μ decay D $\emptyset p-p$ colls	- other nuclear $--P^{-} / P^{+}$
$\nu-N$ scattering	$--P_{\mathrm{F}} / P_{\mathrm{GT}}$
CKM unitarity	--- ${ }^{19} \mathrm{Ne}$
	neutron

Expected limits if $\boldsymbol{A}_{\beta}, B_{\nu}$ and $\boldsymbol{R}_{\text {slow }}$ all measured to 0.1%
see Profumo, Ramsey-Musolf and Tulin, PRD 75 (2007) 075017

Geometry with shakeoff e^{-}detector

- high-statistics!
- know decay occured from trap!
- S1188 approved with high priority
- goal is 0.1% in A_{β} (and B_{ν} and $R_{\text {slow }}$)

$\boldsymbol{\beta}^{+}$decay of polarized ${ }^{37} \mathrm{~K}$

$$
\Rightarrow\left\{\begin{array}{l}
\frac{\mathcal{F} t / \boldsymbol{f t}+\mathbf{S M}}{} \begin{array}{l}
\boldsymbol{A}_{\boldsymbol{\beta}}=-0.5702(6) \\
\boldsymbol{B}_{\nu}=-0.7692(15)
\end{array}
\end{array}\right.
$$

$$
\begin{gathered}
\Rightarrow D=(-4 \pm 6) \times 10^{-4} \\
\text { Soldner et al., }
\end{gathered}
$$

PhysLett B581 (2004)

Trap/optical pumping cycle

- re-trap atoms before they expand too far

Atomic measurement of P

- deduce P based on a model of the excited state populations:

$$
\Rightarrow P_{\mathrm{nucl}}=96.74 \pm 0.53_{-0.73}^{+0.19}
$$

Geometry with shakeoff e^{-}detector

- high-statistics!
- know decay occured from trap!
- S1188 approved with high priority
- goal is 0.1% in A_{β}

