$\mathbf{B} \longrightarrow \mathbf{K}^{(*)} \mathbf{I}^+ \mathbf{I}^-$ from B-Factories and Tevatron

Topics in this Talk

- **Studies** of B→K $\ell^+\ell^-$ and B→K* $\ell^+\ell^-$ rates and rate asymmetries from BABAR, Belle and CDF (new)
 - Branching fractions
 - Isospin asymmetries
 - CP asymmetries
 - Lepton flavor ratios
- ♠ Angular analyses of B→K $\ell^+\ell^-$ and B→K* $\ell^+\ell^-$ from BABAR, Belle and CDF (new)
 - K* longitudinal polarization
 - Lepton forward-backward asymmetries
- First search for $B \rightarrow K^* \tau^+ \tau^-$ in BABAR

Rare Decays $B \rightarrow K^{(*)} \ell^+ \ell^-$

- b→s ℓℓ are flavor-changing neutral current
 (FCNC) processes, forbidden in SM at tree level
- Effective Hamiltonian factorizes shortdistance from long-distance effects $[O(\alpha_s)]$
- 3 effective Wilson coefficients contribute
 - C_7^{eff} from electromagnetic penguin diagram $|C_7^{\text{eff}}| \approx 0.33$ from $\mathcal{B}(B \rightarrow X_s \gamma)$
 - C₉^{eff} from vector part of weak diagrams
 - C₁₀ eff from axial-vector part of weak diagrams

- New Physics adds new loops with new particles \rightarrow modifies SM values values of C_7^{eff} , C_9^{eff} , C_{10}^{eff} and introduces new coefficients C_5 and C_P
- \bullet Need to measure many observables to extract $|C_i|$ & phases

Characteristics of $B \rightarrow K^{(*)} \ell^+ \ell^-$ Decays

The overall shape of the $B \rightarrow K^{(*)}\ell^+\ell^-$ spectra is determined by the q^2 dependence of $C_9^{eff}(q^2)$

b s

- ♠ At $q^2=0$, $B\to K^*\ell^+\ell^-$ exhibits a singularity (from $B\to K^*\gamma$), while $B\to K\ell^+\ell^-$ is finite at $q^2=0$
- $J/\psi \& \psi(2S)$ modes interfere with $B \to (K,K^*)\ell^+\ell^- \to remove q^2$ regions

Analysis Methodologies for $B \rightarrow K^{(*)} \ell^+ \ell^-$

- **B** Both BABAR and Belle fully reconstruct 10 B→ $K^{(*)}\ell^+\ell^-$ final states
 - K, K_{S}^{0} , $K^{\pm}\pi^{\mp}$, $K^{\pm}\pi^{0}$ or $K_{S}^{0}\pi^{\pm}$ recoiling against $e^{+}e^{-}$ or $\mu^{+}\mu^{-}$
 - Select e[±] with p>0.3 (0.4) GeV/c; μ[±] with p > 0.7 GeV/c
 - Require good particle ID for e, μ , K, π ; select $K^0_S \to \pi^+\pi^-$
- \blacksquare CDF reconstructs only $K^{\pm} \mu^{+} \mu^{-}$ and $K^{\pm} \pi^{\mp} \mu^{+} \mu^{-}$ final states
 - Select μ^{\pm} (p_T>0.4 GeV/c) K, π (p_T>1.0 GeV/c) & B (p_T>4.0 GeV/c)
 - Require good particle ID for μ , K, π ; vertex fit of $\mu^{\dagger}\mu^{-}$
- All experiments suppress combinatorial BB & qq backgrounds, where each lepton originates from semileptonic b, c decays
 - \bullet BABAR trains neural networks (NN) using event shape variables, vertexing, E_{miss} , & ℓ separation near IP optimized in each mode and each q^2 -bin
 - Belle trains a Fisher discriminant using event shape variables, missing mass, B flavor tagging, & lepton separation in z near IP
 - ullet CDF trains NNs using vertexing, pointing variables and ℓ separation

Analysis Methodologies for $B \rightarrow K^{(*)} \ell^+ \ell^-$

BABAR and Belle select candidates using the mass $m_{ES} = \sqrt{E_{beam}^{*2} - p_{D}^{*2}}$ & and the B energy $\Delta E = E_{p}^* - E_{perm}^*$

$$\mathbf{m}_{\mathrm{ES}} = \sqrt{\mathbf{E}_{\mathrm{beam}}^{\mathrm{*2}} - \mathbf{p}_{\mathrm{B}}^{\mathrm{*2}}}$$

- BABAR extracts the signal yield from 1d unbinned extended maximum log-likelihood fit in mes
- Belle extracts the signal yield from 1d (2d) unbinned extended maximum log-likelihood fit in m_{ES} (and $m_{K\pi}$)
- CDF selects signal candidates from a unbinned maximum log-likelihood fit in the B invariant mass distribution
- \blacksquare All experiments reject events in J/ψ and $\psi(25)$ mass regions
- All experiments reject background from B→DX by requiring that $K\mu$ and $K\pi\mu$ masses are not consistent with a D
- All experiments use charmonium control samples for various checks

$B \rightarrow K \ell^+ \ell^-$ and $B \rightarrow K^* \ell^+ \ell^-$ Signals

- All three experiments see significant signal yields
- CDF data sample:

4.4 fb⁻¹ >>
$$2 \times 10^{10}$$
 BB [for p_T(B)>6 GeV/c]

$$N_{K\ell^+\ell^-} = 120 \pm 16$$

$$\mathcal{N}_{\kappa^{\star}\ell^{+}\ell^{-}} = 101 \pm 12$$

BABAR data sample:

349 fb⁻¹ → 384 M BB

$$\mathcal{N}_{\mathrm{K}\ell^{+}\ell^{-}} = 60 \pm 11$$

$$\mathcal{N}_{\kappa^{\star}{}_{\ell^{+}{}_{\ell^{-}}}} = 74 \pm 13$$

605 fb-1 →656 M BB

$$\mathcal{N}_{K\ell^+\ell^-} = 161.6^{+22.6}_{-20.3}$$

$$\mathcal{N}_{\mathbf{K}^{\star}\ell^{+}\ell^{-}} = 246.3^{+15.9}_{-14.3}$$

G. Eigen, CKM10 Warwick, 07-09-2010

B→K(*) ℓ+ℓ- Partial Branching Fractions

CDF and Belle measure dB/dq2 consistent with the SM

$B \rightarrow K^{(*)} \ell^+ \ell^-$ Branching Fractions

BaBar 349 fb⁻¹, '09 BaBar 82 fb⁻¹, '04

- Total branching fractions of all 3 experiments are consistent with each other and the SM
- Belle updated $B(B \rightarrow X_s \ell^+ \ell^-)$ using 605 fb-1

CDF 4.4 fb⁻¹, '10 prelim.

Belle 605 fb⁻¹, '09

Belle 605 fb⁻¹, '10 prelim. Kl^+l^- 10⁻⁶ 10⁻⁷ **Branching Fraction**

 $\mathcal{B}(B \to X_s \ell^+ \ell^-) = (3.33 \pm 0.8^{+0.19}_{-0.24}) \times 10^{-6}$

Ali et al PRD 66. 034002 (2002)

BABAR: PRL 102, 091803 (2009) PRL 93,081862 (2004)

CDF: Note 10047 (2010)

Belle: PRL 103, 171801 (2009) C.C.Ciang, ICHEP(2010)

BABAR: $\mathcal{B}(B \to K\ell^+\ell^-) = (0.394^{+0.073}_{-0.069} \pm 0.02) \times 10^{-6}$ $\mathcal{B}(B \to K^*\ell^+\ell^-) = (1.11^{+0.19}_{-0.18} \pm 0.07) \times 10^{-6}$

Belle: $\mathcal{B}(B \to K\ell^+\ell^-) = (0.48^{+0.05}_{-0.04} \pm 0.03) \times 10^{-6}$ $\mathcal{B}(B \to K^*\ell^+\ell^-) = (1.07^{+0.11}_{-0.10} \pm 0.09) \times 10^{-6}$

CDF: $\mathcal{B}(B^{\pm} \to K^{\pm}\mu^{+}\mu^{-}) = (0.38^{+0.05}_{-0.05} \pm 0.03) \times 10^{-6}$ $\mathcal{B}(B^{0} \to K^{*0}\mu^{+}\mu^{-}) = (1.06^{+0.14}_{-0.14} \pm 0.09) \times 10^{-6}$

G. Eigen, CKM10 Warwick, 07-09-2010

$B \rightarrow K^{(*)} \ell^+ \ell^-$ Isospin Asymmetry

- Since branching fractions are affected by large theory uncertainties, we focus on rate & angular asymmetries as many uncertainties cancel
- We start with the isospin asymmetry defined in different q² bins by

$$\mathcal{A}_{\text{I}}^{q^2-\text{bin}} \equiv \frac{\mathcal{B}^{q^2-\text{bin}}(\mathsf{B}^0 \to \mathsf{K}^{(*)0}\ell^+\ell^-) - \mathcal{B}^{q^2-\text{bin}}(\mathsf{B}^{\pm} \to \mathsf{K}^{(*)\pm}\ell^+\ell^-)}{\mathcal{B}^{q^2-\text{bin}}(\mathsf{B}^0 \to \mathsf{K}^{(*)0}\ell^+\ell^-) + \mathcal{B}^{q^2-\text{bin}}(\mathsf{B}^{\pm} \to \mathsf{K}^{(*)\pm}\ell^+\ell^-)}$$

- We scale the B+ branching fractions by $\tau_{B^0}/\tau_{B^+} = 1/(1.071 \pm 0.09)$
- In the SM, $A_{\rm I}$ is expected to be small (<10% for most q^2)
- A_I shows a q^2 -dependence in the low q^2 region

For flipped C_7 , A_I is negative at low q^2

$B \rightarrow K^{(*)} \ell^+ \ell^-$ Isospin Asymmetry

- $A_{\rm I}$ is consistent with zero for all q^2 and in the high- q^2 region
- \blacksquare In the low-q² region $A_{\rm I}$ shows a significant deviation from zero
- \blacksquare BABAR measures a significant \mathcal{A}_{I} in the low q² region
 - \rightarrow Ket and K* et modes modes differ from the SM prediction by 3.90
- Belle and BABAR results are consistent
- Belle is also consistent with SM prediction

BABAR: PRL 102, 091803 (2009) Belle: PRL 103, 171801 (2009)

CP Asymmetry in $B \rightarrow K^{(*)} \ell^+ \ell^-$

Define time-integrated CP asymmetry

$$\mathcal{A}_{CP} \equiv \frac{\mathcal{B}(\overline{\mathsf{B}} \to \overline{\mathsf{K}}^{(*)}\ell^{+}\ell^{-}) - \mathcal{B}(\mathsf{B} \to \mathsf{K}^{(*)}\ell^{+}\ell^{-})}{\mathcal{B}(\overline{\mathsf{B}} \to \mathsf{K}^{(*)}\ell^{+}\ell^{-}) + \mathcal{B}(\mathsf{B} \to \mathsf{K}^{(*)}\ell^{+}\ell^{-})}$$

- \blacksquare In the SM, A_{CP} is expected at <1% level
- **⊜** BABAR performs a simultaneous fit for all $B^{\pm} \rightarrow K^{\pm} \ell^{+} \ell^{-}$ and $B \rightarrow K^{*} \ell^{+} \ell^{-}$ modes

$$\mathcal{A}_{CP}^{\text{all } q^2} (\mathsf{B}^{\pm} \to \mathsf{K}^{\pm} \ell^+ \ell^-) = -0.18_{-0.18}^{+0.18} \pm 0.01$$
$$\mathcal{A}_{CP}^{\text{all } q^2} (\mathsf{B} \to \mathsf{K}^{\star} \ell^+ \ell^-) = -0.01_{-0.15}^{+0.16} \pm 0.01$$

BABAR: PRL 102, 091803 (2009) Belle: PRL 103, 171801 (2009)

$$\mathcal{A}_{CP}^{\text{all } q^2} (B^{\pm} \to K^{\pm} \ell^+ \ell^-) = 0.04 \pm 0.1 \pm 0.02$$
$$\mathcal{A}_{CP}^{\text{all } q^2} (B \to K^* \ell^+ \ell^-) = -0.10 \pm 0.1 \pm 0.01$$

All measurements are consistent with zero, agreeing with the SM

$B \rightarrow K^{(*)} \ell^+ \ell^-$ Lepton Flavor Ratios

• Define ratios
$$\mathcal{R}_{K} \equiv \frac{\mathcal{B}(B \to K\mu^{+}\mu^{-})}{\mathcal{B}(B \to Ke^{+}e^{-})}$$
 and

$$\mathcal{R}_{\mathsf{K}^*} \equiv \frac{\mathcal{B}(\mathsf{B} \to \mathsf{K}^* \mu^+ \mu^-)}{\mathcal{B}(\mathsf{B} \to \mathsf{K}^* \mathbf{e}^+ \mathbf{e}^-)}$$

• In the SM $\mathcal{R}_{K}=1$ and $\mathcal{R}_{K*}=0.75$ ($\mathcal{R}_{K*}=1$, if the $q^{2}<0.1$ GeV region is removed)

BABAR and Belle measure $R_{K(*)}$ values that are consistent with

the SM prediction

$$\mathcal{R}_{K} = 0.96^{+0.44}_{-0.34} \pm 0.05$$

$$\mathcal{R}_{K^{*}} = 1.10^{+0.42}_{-0.32} \pm 0.07$$

$$\mathcal{R}_{\kappa^{\star}} = 1.10^{+0.42}_{-0.32} \pm 0.07$$

$$\mathcal{R}_{K} = 1.03 \pm 0.19 \pm 0.06$$

$$\mathcal{R}_{\nu^{*}} = 0.83 \pm 0.17 \pm 0.08$$

Angular Distributions in B→K* ¢+¢-

- The $B \rightarrow K^* \ell^+ \ell^-$ angular distribution depends on three angles, θ_K , θ_ℓ , ϕ
- It involves 12 coefficients J_i that can be determined from a full angular fit as a function of q²
- A large data sample is needed to perform this task (LHCb, or Super B-factory)

$$\frac{d^4 \Gamma}{dq^2 d \cos \theta_{\ell} d \cos \theta_{\kappa} d\phi} = \frac{9}{32\pi} J(q^2, \theta_{\ell}, \theta_{\kappa}, \phi)$$

Krüger et al., PRD, 61114028 (2000) Kim et al, PRD 62, 034013 (2000)

$$J(q^2, \theta_{\ell}, \theta_{K}, \phi) =$$

$$\begin{split} & \boldsymbol{J_{1s}} \sin^2 \theta_{_{\boldsymbol{K}}} + \boldsymbol{J_{1c}} \cos^2 \theta_{_{\boldsymbol{K}}} + \left(\boldsymbol{J_{2s}} \sin^2 \theta_{_{\boldsymbol{K}}} + \boldsymbol{J_{2c}} \cos^2 \theta_{_{\boldsymbol{K}}}\right) \cos 2\theta_{_{\ell}} + \boldsymbol{J_{3}} \sin^2 \theta_{_{\boldsymbol{K}}} \sin^2 \theta_{_{\ell}} \cos 2\phi \\ & + \boldsymbol{J_{4}} \sin 2\theta_{_{\boldsymbol{K}}} \sin 2\theta_{_{\ell}} \cos \phi + \boldsymbol{J_{5}} \sin 2\theta_{_{\boldsymbol{K}}} \sin \theta_{_{\ell}} \cos \phi + \left(\boldsymbol{J_{6s}} \sin^2 \theta_{_{\boldsymbol{K}}} + \boldsymbol{J_{6c}} \cos^2 \theta_{_{\boldsymbol{K}}}\right) \cos \theta_{_{\ell}} \\ & + \boldsymbol{J_{7}} \sin 2\theta_{_{\boldsymbol{K}}} \sin \theta_{_{\ell}} \sin \phi + \boldsymbol{J_{8}} \sin 2\theta_{_{\boldsymbol{K}}} \sin 2\theta_{_{\ell}} \sin \phi + \boldsymbol{J_{9}} \sin^2 \theta_{_{\boldsymbol{K}}} \sin^2 \theta_{_{\ell}} \sin 2\phi \end{split}$$

Angular Distributions in $B \rightarrow K^* \ell^+ \ell^-$

- Since the present experiments have limited data samples, the 1d-angular projections have been studied which allow to extract the K* longitudinal polarization and the lepton forward backward asymmetry in different q² regions
- \bullet K* longitudinal polarization \mathcal{F}_L is obtained from the distribution of angle θ_K between K & B in K* rest frame

$$W(\cos\theta_{K}) = \frac{3}{2} \mathcal{F}_{L} \cos^{2}\theta_{K} + \frac{3}{4} (1 - \mathcal{F}_{L}) \sin^{2}\theta_{K}$$
$$\mathcal{F}_{L} \sim J_{1c} = -J_{2c}$$

Lepton forward-backward asymmetry \mathcal{A}_{FB} is obtained from distribution of angle θ_{ℓ} between ℓ^+ (ℓ) & B(\overline{B}) in $\ell^+\ell^-$ rest frame

$$W(\cos\theta_{\ell}) = \frac{3}{4} \mathcal{F}_{L} \sin^{2}\theta_{\ell} + \frac{3}{8} (1 - \mathcal{F}_{L})(1 + \cos^{2}\theta_{\ell}) + \mathcal{A}_{FB} \cos\theta_{\ell}$$

 $A_{FB} \sim J_6$

- \blacksquare Belle and CDF measured \mathcal{F}_L and \mathcal{A}_{FB} in 6 bins of q^2
 - BABAR measure \mathcal{F}_{L} and \mathcal{A}_{FB} in 2 bins of q^2 (update with 6 bins is in progress)

Angular Distributions for $B \rightarrow K^{(*)} e^+ e^-$

 \bullet A_{FB} results from interplay between $C_9(q^2)C_{10}$ and C_7C_{10}/q^2

$$\frac{d\mathcal{A}_{FB}}{dq^{2}} \propto -\left\{ \text{Re} \left[\frac{C_{9}^{\text{eff}}(q^{2})C_{10}}{Q^{2}} \right] VA_{1} + \frac{m_{b}m_{B}}{q^{2}} \text{Re} \left[\frac{C_{7}^{\text{eff}}C_{10}}{7} \right] \left[VT_{10} \left[1 - \frac{m_{K^{*}}}{m_{B}} \right] + A_{1}T_{1} \left[1 + \frac{m_{K^{*}}}{m_{B}} \right] \right] \right\} VA_{1} + \frac{m_{b}m_{B}}{q^{2}} \text{Re} \left[\frac{C_{10}^{\text{eff}}C_{10}}{7} \right] \left[VT_{10} \left[1 - \frac{m_{K^{*}}}{m_{B}} \right] + A_{1}T_{1} \left[1 + \frac{m_{K^{*}}}{m_{B}} \right] \right] VA_{1} + \frac{m_{b}m_{B}}{q^{2}} \text{Re} \left[\frac{C_{10}^{\text{eff}}C_{10}}{7} \right] \left[VT_{10} \left[1 - \frac{m_{K^{*}}}{m_{B}} \right] + A_{1}T_{1} \left[1 + \frac{m_{K^{*}}}{m_{B}} \right] \right] VA_{1} + \frac{m_{b}m_{B}}{q^{2}} \text{Re} \left[\frac{C_{10}^{\text{eff}}C_{10}}{7} \right] \left[VT_{10} \left[1 - \frac{m_{K^{*}}}{m_{B}} \right] + A_{1}T_{1} \left[1 + \frac{m_{K^{*}}}{m_{B}} \right] \right] VA_{1} + \frac{m_{b}m_{B}}{q^{2}} \text{Re} \left[\frac{C_{10}^{\text{eff}}C_{10}}{7} \right] VA_{1} + \frac{m_{b}m_{B}}{q^{2}} VA_{1} + \frac{m_{b}m_{B}}{q^{2}} \text{Re} \left[\frac{C_{10}^{\text{eff}}C_{10}}{7} \right] VA_{1} + \frac{m_{b}m_{B}}{q^{2}} VA_{1} + \frac{m_{b}m_{B}}{q^{2}} VA_{1} + \frac{m_{b}m_{B}}{q^{2}} VA_{1} + \frac{m_{b}m_{B}}{q^{$$

form factors

Recent SM calculations focus on low q2-region

Feldmann & Matias JHEP 0301, 074 (2003)

Huber, Hurth & Lunghi, Nucl. Phys B802, 40 (2008)

• In the SM, A_{FB} crosses zero around $q^2_0 = 3.5 - 4.5 \text{ GeV}^2$

BABAR B→K* e+e Angular Distributions

Fit data to signal distribution, combinatorial backgrounds and peaking backgrounds

- Extract yields from m_{ES} fit
- Extract F from fits to the $cos\theta_k$ distribution
- Extract AFB from fits to the $cos\theta$, distribution

Belle $B \rightarrow K^* \ell^+ \ell^-$ Angular Distributions

- First extract F from fits to the $\cos \theta_{K}$ distribution
- Then extract AFR from fits to the $\cos \theta$, distribution
- The shape of both angular distributions is different for low and high q² regions

Belle: PRL 103, 171801 (2009)

$$\mathcal{F}_{L} = 0.12^{+0.15}_{-0.13} \pm 0.02$$

G. Eigen, CKM10 Warwick, 07-09-2010

Lepton Forward-Backward Asymmetry AF

BABAR: PRL 102, 091803 (2009)

CDF: Note 10047 (2010)

Belle: PRL 103, 171801 (2009)

(0.1<q2<6.25 GeV2/c2)

$$A_{FB} = 0.24^{+0.18}_{-0.23} \pm 0.05$$

(1<q2<6GeV2/c2)

$$A_{FB} = 0.26^{+0.27}_{-0.30} \pm 0.07$$

 $(1\langle q^2\langle 6GeV^2/c^2)$

$$A_{FB} = 0.43^{+0.36}_{-0.37} \pm 0.06$$

Ali et al. PRD 61, 074024 (2000) Buchalla et al. PRD 63, 014015 (2000) Ali et al. PRD 66, 034002 (2002) Krüger et al. PRD 61, 114028 (2002) Krüger & Matias PRD71, 094009 (2005)

They are consistent with the SM prediction

$$A_{\text{FB}}^{\text{SM}} = -0.05_{-0.04}^{+0.03} \quad (1 < q^2 < 6 \text{ GeV}^2)$$

G. Eigen, CKM10 Warwick, 07-09-2010

C. Bobeth *et al.* arXiv:1006.5013

K^* Longitudinal Polarization \mathcal{F}_{i}

BABAR, Belle and CDF measured F

BABAR: PRL 102, 091803 (2009)

CDF: Note 10047 (2010)

Belle: PRL 103, 171801 (2009)

 $(0.1 < q^2 < 6.25 \text{ GeV}^2/c^2)$

$$\mathcal{F}_{1} = 0.35 \pm 0.16 \pm 0.04$$

 $(1\langle q^2\langle 6GeV^2/c^2)$

$$\mathcal{F}_{1} = 0.67 \pm 0.23 \pm 0.04$$

 $(1 < q^2 < 6 \text{GeV}^2/c^2)$

$$\mathcal{F}_{L} = 0.50^{+0.27}_{-0.30} \pm 0.04$$

Krüger & Matias PRD71, 094009 (2005)

- The 3 measurements are consistent with each other
- They are also consistent with the SM prediction

$$\mathcal{F}_{L}^{SM} = 0.73^{+0.13}_{-0.23}$$
 (1 < q² < 6 GeV²)

C. Bobeth et al. arXiv:1006.5013

Belle B→Ke+t Angular Distributions

- Set $\mathcal{F}_L = 1$ and fit $W(\theta_e)$ to extract \mathcal{A}_{FB}
- In the SM $A_{FB} = 0$
- ullet In MSSM scalar and pseudoscalar amplitudes arise that may interfere with the SM amplitudes and thus change $\mathcal{A}_{\mathcal{FB}}$ from the SM expectation
- In BABAR, Belle and CDF A_{FB} is consistent with zero in all q^2 bins
- At LHCb and at Super B-factories A_{FB} from $B \rightarrow K\ell^+\ell^-$ provides another test for New Physics

combinatorial backg.

$$A_{FB}^{K} = 0.06_{-0.35}^{+0.32} \pm 0.02$$

 $\cos\theta_{\rm p}$

$$A_{FB}^{K} = 0.02_{-0.08}^{+0.11} \pm 0.02$$

Search for $B^{\pm} \rightarrow K^{\pm} \tau^{+} \tau^{-}$

For $B \to X_s \tau^+ \tau^-$ the SM rate similar to $B \to X_s \ell^+ \ell^-$ ($\ell = e, \mu$) in the kinematic region accessible to all

⊜ B[±] → K[±] τ ⁺ τ ⁻ ~50% of total inclusive rate

- In NMSSM rate enhancements could be proportional to $(M_{\tau}^2/M_{\mu}^2) \sim 280$
- Since signal modes contain between 2-4 v's, a different analysis strategy is needed to control backgrounds
- BABAR has performed first search for $B^{\pm} \rightarrow K^{\pm} \tau^{+} \tau^{-}$ using 423 fb⁻¹

Lepton	$0.6 \leqslant \hat{s} \leqslant 1$
Electron	8.5×10^{-7}
\mathbf{Muon}	8.5×10^{-7}
Tau	$4.3 imes10^{-7}$

Analysis Strategy for $B^{\pm} \rightarrow K^{\pm} \tau^{+} \tau^{-}$

Fully reco'd

- BABAR reconstructs recoiling B in many hadronic final states $B^- \rightarrow D^{(*)0,+}X$, where X=up to total of six π^0 , π^+ , K_s, K⁺
- Tag efficiency <~0.2%

Signal hadronic B $\Upsilon(4S)$ B+ D(*)0,+

• Use $\tau \rightarrow ev\overline{v}$, $\mu v\overline{v}$, πv as signal modes

Signal Selection for $B^{\pm} \rightarrow K^{\pm} \tau^{+} \tau^{-}$

- \blacksquare Suppress continuum backgrounds by $|\cos\theta_{\rm T}|<0.8$, $(\theta_{\rm T})$ is opening angle between thrusts $T_{\rm tag~B}$ & $T_{\rm rest-of-the-event}$
- Require 3 charged tracks only
 - 1 charged K with PID 0.44 K</sub>*Q_{tag}=-1
 - 1 e⁺, μ^+ , or π^+ & 1 e⁻, μ^- , or π^- (PID) p < 1.59 GeV/c, M_{pair} < 2.89 GeV/c²
 - $q^2 = (p_{\Upsilon(45)} p_{tag} p_K)^2 > 14.23 \text{ GeV}^2$

Suppress largest remaining background from $B^+ \to D^0 X^+$ decays by combining signal K^{\mp} with signal τ^{\pm} daughter (assigning a π mass hypothesis) and requiring: $M(K\pi) > 1.96$ GeV/c²

Results for $B^{\pm} \rightarrow K^{\pm} \tau^{+} \tau^{-}$

- BABAR observes 47 events (423 fb-1)
- Expected background is 64.7±7.3 events
- Systematic errors include B counting (1.1%), tag efficiency (3.2%), signal efficiency (14.8%), background estimate (5.1%) for PID of correct tags) and (14.8%) for data/MC statistics of incorrect tags
- Set branching fraction upper limit of $\mathcal{B}(B^+ \to K^+\tau^+\tau^-) < 3.3 \times 10^{-3}$ @90% CL
 - > nearly 4 orders of magnitude above the SM prediction

Conclusion

- \blacksquare BABAR and Belle have measured rate asymmetries in $B \rightarrow K(*)\ell^+\ell^-$
 - CP asymmetries agree with zero as expected in the SM
 - Lepton-flavor asymmetries are consistent with universality
 - For high q², isospin asymmetries are consistent with zero
 - For low q^2 , BABAR sees an A_T different from zero (3.9 σ)
 - Belle measurements are consistent both with BABAR and the SM
- \blacksquare BABAR, Belle & CDF measured $B \rightarrow K^{(*)}\ell^+\ell^-$ angular distributions in q^2 bins
 - \bullet A_{FB} : for all q^2 , well agreeing results are consistent with the SM For low q^2 , non-zero A_{FB} values fit better to the flipped C_7 -model
 - \bullet \mathcal{F}_L : for all q^2 , data are consistent with each other and with the SM
- **■** BABAR, Belle and CDF also have measured $B \rightarrow K^{(*)} \ell^+ \ell^-$ partial and total branching fractions that agree with the SM (large uncertainties ~50%)
- **BABAR** performed the first search for B[±] → K[±]τ⁺τ⁻ → no signal is seen yielding an upper limit $\mathcal{B}(B^+ \to K^+\tau^+\tau^-) < 3.3 \times 10^{-3}$ @90% CL
- Though all experiments will update results, significant progress will come from LHCb and Super B-factories > the sensitivity to new observables (J.) helps in revealing small discrepancies wrt the SM G. Eigen, CKM10 Warwick, 07-09-2010

Backup Slides

Transversity Amplitudes

Left and right transversity amplitudes

$$\begin{split} A_{\perp}^{L,R} &= +i \left\{ \left(\mathcal{C}_9^{\text{eff}} \mp \mathcal{C}_{10} \right) + \kappa \frac{2 \hat{m}_b}{\hat{s}} \, \mathcal{C}_7^{\text{eff}} \right\} f_{\perp}, \\ A_{\parallel}^{L,R} &= -i \left\{ \left(\mathcal{C}_9^{\text{eff}} \mp \mathcal{C}_{10} \right) + \kappa \frac{2 \hat{m}_b}{\hat{s}} \, \mathcal{C}_7^{\text{eff}} \right\} f_{\parallel}, \\ A_0^{L,R} &= -i \left\{ \left(\mathcal{C}_9^{\text{eff}} \mp \mathcal{C}_{10} \right) + \kappa \frac{2 \hat{m}_b}{\hat{s}} \, \mathcal{C}_7^{\text{eff}} \right\} f_0, \end{split}$$

• Form factors

$$f_{\perp} = N m_B \frac{\sqrt{2\hat{\lambda}}}{1 + \hat{m}_{K^*}} V$$
,

$$f_{\parallel} = N m_B \sqrt{2} (1 + \hat{m}_{K^*}) A_1$$

$$f_0 = N m_B \frac{(1 - \hat{s} - \hat{m}_{K^*}^2)(1 + \hat{m}_{K^*})^2 A_1 - \hat{\lambda} A_2}{2 \hat{m}_{K^*} (1 + \hat{m}_{K^*}) \sqrt{\hat{s}}},$$

2

Normalization

$N = \sqrt{\frac{G_{ m F}^2 \, lpha_{ m e}^2 \, |\lambda_t|^2 \, m_B \, \hat{s} \sqrt{\hat{\lambda}}}{3 \cdot 2^{10} \, \pi^5}}.$

 Old observables in terms of transversity amplitudes

$$egin{aligned} rac{\mathrm{d}\Gamma}{\mathrm{d}q^2} &= 2\,
ho_1 imes (f_0^2 + f_\perp^2 + f_\parallel^2), \\ A_\mathrm{FB} &= 3\,rac{
ho_2}{
ho_1} imes rac{f_\perp f_\parallel}{(f_0^2 + f_\perp^2 + f_\parallel^2),} \\ F_\mathrm{L} &= rac{f_0^2}{f_0^2 + f_\perp^2 + f_\parallel^2}, \end{aligned}$$

where

$$ho_1 \equiv \left| \mathcal{C}_9^{ ext{eff}} + \kappa rac{2\hat{m}_b}{\hat{s}} \mathcal{C}_7^{ ext{eff}}
ight|^2 + \left| \mathcal{C}_{10}
ight|^2,
onumber \
ho_2 \equiv ext{Re} \left\{ \left(\mathcal{C}_9^{ ext{eff}} + \kappa rac{2\hat{m}_b}{\hat{s}} \mathcal{C}_7^{ ext{eff}}
ight) \mathcal{C}_{10}^\star
ight\}.$$

Ji in Terms of Transversity Amplitudes

$$\begin{split} J_{1}^{s} &= \frac{3}{4} \left\{ \frac{(2+\beta_{l}^{2})}{4} \left[|A_{\perp}^{L}|^{2} + |A_{\parallel}^{L}|^{2} + (L \to R) \right] + \frac{4m_{l}^{2}}{q^{2}} \operatorname{Re} \left(A_{\perp}^{L} A_{\perp}^{R^{*}} + A_{\parallel}^{L} A_{\parallel}^{R^{*}} \right) \right\}, \\ J_{1}^{c} &= \frac{3}{4} \left\{ |A_{0}^{L}|^{2} + |A_{0}^{R}|^{2} + \frac{4m_{l}^{2}}{q^{2}} \left[|A_{t}|^{2} + 2\operatorname{Re}(A_{0}^{L} A_{0}^{R^{*}}) \right] \right\}, \\ J_{2}^{s} &= \frac{3\beta_{l}^{2}}{16} \left[|A_{\perp}^{L}|^{2} + |A_{\parallel}^{L}|^{2} + (L \to R) \right], \\ J_{2}^{c} &= -\frac{3\beta_{l}^{2}}{4} \left[|A_{0}^{L}|^{2} + (L \to R) \right], \\ J_{3} &= \frac{3}{8} \beta_{l}^{2} \left[|A_{\perp}^{L}|^{2} - |A_{\parallel}^{L}|^{2} + (L \to R) \right], \\ J_{4} &= \frac{3}{4\sqrt{2}} \beta_{l}^{2} \left[\operatorname{Re}(A_{0}^{L} A_{\parallel}^{L^{*}}) + (L \to R) \right], \\ J_{5} &= \frac{3\sqrt{2}}{4} \beta_{l} \left[\operatorname{Re}(A_{0}^{L} A_{\perp}^{L^{*}}) - (L \to R) \right], \\ J_{7} &= \frac{3\sqrt{2}}{4} \beta_{l} \left[\operatorname{Im}(A_{0}^{L} A_{\parallel}^{L^{*}}) - (L \to R) \right], \\ J_{8} &= \frac{3}{4\sqrt{2}} \beta_{l}^{2} \left[\operatorname{Im}(A_{0}^{L} A_{\parallel}^{L^{*}}) + (L \to R) \right], \\ \end{split} \qquad \beta_{l} &= \sqrt{1 - \frac{4m_{l}^{2}}{q^{2}}}. \end{split}$$

$$eta_l = \sqrt{1-rac{4m_l^2}{q^2}}.$$

C. Bobeth et al. arXiv:1006.5013

 $J_9 = \frac{3}{4}\beta_l^2 \left[\operatorname{Im}(A_{\parallel}^{L^*}A_{\perp}^L) + (L \rightarrow R) \right],$

Observables in terms of Jis

Old observables

$$\begin{split} \frac{\mathrm{d}\Gamma}{\mathrm{d}q^2} &= 2J_1^s + J_1^c - \frac{2J_2^s + J_2^c}{3} = |A_0^L|^2 + |A_\perp^L|^2 + |A_\parallel^L|^2 + (L \leftrightarrow R), \\ A_{\mathrm{FB}} &= \left[\int_0^1 - \int_{-1}^0 \right] \mathrm{d}\cos\theta_l \, \frac{\mathrm{d}^2\Gamma}{\mathrm{d}q^2 \, \mathrm{d}\cos\theta_l} \bigg/ \frac{\mathrm{d}\Gamma}{\mathrm{d}q^2} = \frac{J_6}{\mathrm{d}\Gamma/\mathrm{d}q^2}, \\ F_{\mathrm{L}} &= \frac{|A_0^L|^2 + |A_0^R|^2}{\mathrm{d}\Gamma/\mathrm{d}q^2}, \end{split}$$

Transversity observables (new)

$$A_T^{(3)} = \frac{|A_0^L A_\parallel^{L*} + A_0^{R*} A_\parallel^R|}{\sqrt{\left(|A_0^L|^2 + |A_0^R|^2\right)\left(|A_\perp^L|^2 + |A_\perp^R|^2\right)}} = \sqrt{\frac{4J_4^2 + \beta_l^2 J_7^2}{-2J_2^c(2J_2^s + J_3)}},$$

$$A_T^{(4)} = \frac{|A_0^L A_\perp^{L\star} - A_0^{R\star} A_\perp^R|}{|A_0^{L\star} A_\parallel^L + A_0^R A_\parallel^{R\star}|} = \sqrt{\frac{\beta_l^2 J_5^2 + 4J_8^2}{4J_4^2 + \beta_l^2 J_7^2}},$$

$$H_T^{(1)} = \frac{\text{Re}(A_0^L A_{\parallel}^{L*} + A_0^{R*} A_{\parallel}^R)}{\sqrt{\left(|A_0^L|^2 + |A_0^R|^2\right)\left(|A_{\parallel}^L|^2 + |A_{\parallel}^R|^2\right)}} = \frac{\sqrt{2}J_4}{\sqrt{-J_2^c\left(2J_2^s - J_3\right)}},$$

$$H_T^{(2)} = \frac{\text{Re}(A_0^L A_\perp^{L\star} - A_0^{R\star} A_\perp^R)}{\sqrt{\left(|A_0^L|^2 + |A_0^R|^2\right)\left(|A_\perp^L|^2 + |A_\perp^R|^2\right)}} = \frac{\beta_l J_5}{\sqrt{-2J_2^c \left(2J_2^s + J_3\right)}},$$

$$H_T^{(3)} = \frac{\text{Re}(A_{\parallel}^L A_{\perp}^{L*} - A_{\parallel}^{R*} A_{\perp}^R)}{\sqrt{\left(|A_{\parallel}^L|^2 + |A_{\parallel}^R|^2\right)\left(|A_{\perp}^L|^2 + |A_{\perp}^R|^2\right)}} = \frac{\beta_l J_6}{2\sqrt{(2J_2^s)^2 - J_3^2}}.$$

C. Bobeth et al. arXiv:1006.5013

Transverse Asymmetries

$$A_T^{(2)} = \frac{|A_\perp^L|^2 + |A_\perp^R|^2 - |A_\parallel^L|^2 - |A_\parallel^R|^2}{|A_\perp^L|^2 + |A_\perp^R|^2 + |A_\parallel^L|^2 + |A_\parallel^R|^2} = \frac{1}{2} \frac{J_3}{J_2^8}$$

$$A_T^{(3)} = \frac{|A_0^L A_{\parallel}^{L*} + A_0^{R*} A_{\parallel}^R|}{\sqrt{(|A_0^L|^2 + |A_0^R|^2)(|A_{\perp}^L|^2 + |A_{\perp}^R|^2)}} = \sqrt{\frac{4J_4^2 + \beta_l^2 J_7^2}{-2J_2^c (2J_2^s + J_3)}},$$

$$A_T^{(4)} = \frac{|A_0^L A_{\perp}^{L*} - A_0^{R*} A_{\perp}^R|}{|A_0^{L*} A_{\parallel}^L + A_0^R A_{\parallel}^{R*}|} = \sqrt{\frac{\beta_l^2 J_5^2 + 4J_8^2}{4J_4^2 + \beta_l^2 J_7^2}},$$

C. Bobeth et al. arXiv:1006.5013

Transverse Asymmetries with New Physics

$$A_{\rm T}^{(5)}\Big|_{m_{\ell}=0} = \frac{\sqrt{16J_1^s^2 - 9J_6^s^2 - 36(J_3^2 + J_9^2)}}{8J_1^s}$$

(a)
$$(C_7^{NP}, C_7') = (0.26e^{-i\frac{7\pi}{16}}, 0.2e^{i\pi})$$

(b)
$$(0.07e^{i\frac{3\pi}{5}}, 0.3e^{i\frac{3\pi}{5}})$$

$$(0.18e^{-i\frac{\pi}{2}}, 0)$$

CDF $B \rightarrow K^{(*)} \ell^+ \ell^-$ Results

\blacksquare Branching fractions, \mathcal{F}_L and \mathcal{A}_{FB} for $B \to K^{(*)} \ell^+ \ell^-$ in bins of q^2

of unching in	actions, of	and .	AFB 101 D-71		1 01113	01 4
$q^2 \left(\text{GeV}^2/c^2 \right)$	$N_{\rm sig}$		$\mathcal{B}(10^{-7})$	7)	$\mathrm{F_{L}}$	A_{FB}
0.00-2.00	11.58 ± 4	.60	0.38 ± 0.16	± 0.03	-	$-0.15^{+0.46}_{-0.39} \pm 0.08$
2.00 - 4.30	18.02 ± 5	6.48	0.58 ± 0.19	± 0.04	-	$+0.72^{+0.40}_{-0.35} \pm 0.07$
4.30 - 8.68	34.53 ± 8	8.87	0.93 ± 0.25	± 0.06	-	$-0.20^{+0.17}_{-0.28} \pm 0.03$
10.09-12.86	29.15 ± 6	3.24	0.72 ± 0.17	± 0.05	-	$-0.10^{+0.17}_{-0.15} \pm 0.07$
14.18-16.00	15.98 ± 4	.64	0.38 ± 0.12	± 0.03	-	$+0.03^{+0.49}_{-0.16} \pm 0.04$
16.00-23.00	13.94 ± 5	00.	0.35 ± 0.13	± 0.02	-	$+0.07^{+0.30}_{-0.23} \pm 0.02$
0.00-4.30	29.37 ± 7	7.15	0.96 ± 0.25	± 0.06	-	$+0.36^{+0.24}_{-0.26} \pm 0.06$
1.00-6.00	32.67 ± 8	3.11	1.01 ± 0.26	± 0.07	-	$+0.08^{+0.27}_{-0.22} \pm 0.07$
$q^2 \left(\text{GeV}^2/c^2 \right)$	$N_{ m sig}$		$\mathcal{B}(10^{-7})$	F	L	$ m A_{FB}$
0.00-2.00	8.52 ± 3.05			$0.53^{+0.3}_{-0.3}$	$\frac{12}{4} \pm 0.07$	-0.75
2.00 - 4.30	8.91 ± 2.79	1.00	$\pm 0.38 \pm 0.09$	-0.0	$\frac{12}{3} \pm 0.08$	
4.30 - 8.68	16.86 ± 5.31	1.69	$\pm 0.57 \pm 0.15$	$0.82^{+0.1}_{-0.2}$	$^{9}_{3} \pm 0.07$	
10.09 - 12.86	25.71 ± 5.38	1.97	$\pm 0.47 \pm 0.17$	$0.31^{+0.1}_{-0.1}$	$\frac{9}{8} \pm 0.02$	$+0.66^{+0.23}_{-0.20} \pm 0.07$
14.18-16.00	21.91 ± 3.95	1.51	$\pm 0.36 \pm 0.13$	$0.55^{+0.1}_{-0.1}$	$\frac{7}{8} \pm 0.02$	0.16
16.00-19.30	19.78 ± 4.78	1.35	$~\pm~0.37\pm0.12$	$0.09^{+0.1}_{-0.1}$	$\frac{8}{4} \pm 0.03$	$+0.70^{+0.16}_{-0.25} \pm 0.10$
0.00-4.30	17.43 ± 4.13	1.98	$\pm 0.55 \pm 0.18$	$0.47^{+0.2}_{-0.2}$	$\frac{3}{4} \pm 0.03$	$3 + 0.21^{+0.31}_{-0.33} \pm 0.05$
1.00-6.00	13.92 ± 4.29	1.60	$\pm~0.54\pm0.14$	$0.50^{+0.2}_{-0.3}$	$\frac{7}{30} \pm 0.03$	$3 + 0.43^{+0.36}_{-0.37} \pm 0.06$
	$q^2 ext{ (GeV}^2/c^2$ $0.00-2.00$ $2.00-4.30$ $4.30-8.68$ $10.09-12.86$ $14.18-16.00$ $16.00-23.00$ $0.00-4.30$ $1.00-6.00$ $q^2 ext{ (GeV}^2/c^2)$ $0.00-2.00$ $2.00-4.30$ $4.30-8.68$ $10.09-12.86$ $14.18-16.00$ $16.00-19.30$ $0.00-4.30$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

G. Eigen, CKM10 Warwick, 07-09-2010

CDF: Note 10047 (2010)

CDF B \rightarrow K $\ell^+\ell^ A_{FB}$ Results

 \bullet CDF measured A_{FB} for $B \rightarrow K \ell^+ \ell^-$ in different bins of q^2

CDF: Note 10047 (2010)

Belle $B \rightarrow K^{(*)} \ell^+ \ell^-$ Results

 \blacksquare Branching fractions, \mathcal{F}_L , \mathcal{A}_{FB} , and \mathcal{A}_I for $B \rightarrow K^{(*)} \ell^+ \ell^-$ in bins of q^2

$q^2 (\text{GeV}^2/c^2)$	N_s	$B(10^{-7})$	F_L	A_{FB}	A_I	
$B \rightarrow K^* \ell^+ \ell^-$						
0.00-2.00	$27.4^{+7.4}_{-6.6}$	$1.46^{+0.40}_{-0.35}\pm0.11$	$0.29^{+0.21}_{-0.18}\pm0.02$	$0.47^{+0.26}_{-0.32}\pm0.03$	$-0.67^{+0.18}_{-0.16}\pm0.05$	
2.00 - 4.30	$16.8^{+6.1}_{-5.3}$	$0.86^{+0.31}_{-0.27}\pm0.07$	$0.71^{+0.24}_{-0.24}\pm0.05$	$0.11^{+0.31}_{-0.36}\pm0.07$	$1.45^{+1.04}_{-1.15}\pm0.10$	
4.30 - 8.68	$27.9^{+9.5}_{-8.5}$	$1.37^{+0.47}_{-0.42}\pm0.39$	$0.64^{+0.23}_{-0.24}\pm0.07$	$0.45^{+0.15}_{-0.21}\pm0.15$	$-0.34^{+0.29}_{-0.27}\pm0.14$	
10.09 - 12.86	$54.0^{+10.5}_{-9.6}$	$2.24^{+0.44}_{-0.40}\pm0.19$	$0.17^{+0.17}_{-0.15}\pm0.03$	$0.43^{+0.18}_{-0.20}\pm0.03$	$0.00^{+0.20}_{-0.21}\pm0.09$	
14.18-16.00	$36.2^{+9.9}_{-8.8}$	$1.05^{+0.29}_{-0.26}\pm0.08$	$-0.15^{+0.27}_{-0.23}\pm0.07$	$0.70^{+0.16}_{-0.22}\pm0.10$	$0.16^{+0.30}_{-0.35}\pm0.09$	
>16.00	$84.4^{+11.0}_{-9.9}$	$2.04^{+0.27}_{-0.24}\pm0.16$	$0.12^{+0.15}_{-0.13}\pm0.02$	$0.66^{+0.11}_{-0.16}\pm0.04$	$-0.02^{+0.20}_{-0.21}{\pm0.09}$	
1.00-6.00	$29.42^{+8.9}_{-8.0}$	$1.49^{+0.45}_{-0.40}\pm0.12$	$0.67^{+0.23}_{-0.23}\pm0.05$	$0.26^{+0.27}_{-0.30}\pm0.07$	$0.33^{+0.37}_{-0.43}\pm0.08$	
			$B \rightarrow K \ell^+ \ell^-$			
0.00-2.00	$27.0^{+6.0}_{-5.4}$	$0.81^{+0.18}_{-0.16}\pm0.05$	_	$0.06^{+0.32}_{-0.35}\pm0.02$	$-0.33^{+0.33}_{-0.25}\pm0.08$	
2.00 - 4.30	$17.6^{+5.5}_{-4.8}$	$0.46^{+0.14}_{-0.12}\pm0.03$	_	$-0.43^{+0.38}_{-0.40}\pm0.09$	$-0.47^{+0.50}_{-0.38}\pm0.07$	
4.30 - 8.68	$39.1^{+7.5}_{-6.9}$	$1.00^{+0.19}_{-0.18}\pm0.06$	_		$-0.19^{+0.25}_{-0.21}\pm0.08$	
10.09-12.86	$22.0_{-5.5}^{+6.2}$	$0.55^{+0.16}_{-0.14}\pm0.03$	_	$-0.21^{+0.17}_{-0.15}\pm0.06$	$-0.29^{+0.37}_{-0.29}\pm0.08$	
14.18 - 16.00	$15.6^{+4.9}_{-4.3}$	$0.38^{+0.19}_{-0.12}\pm0.02$	-	$0.04^{+0.32}_{-0.26}\pm0.05$	$-0.40^{+0.61}_{-0.69}\pm0.07$	
>16.00	$40.3_{-7.5}^{+8.2}$	$0.98^{+0.20}_{-0.18}\pm0.06$	_	$0.02^{+0.11}_{-0.08}\pm0.02$		
1.00-6.00	$52.0^{+8.7}_{-8.0}$	$1.36^{+0.23}_{-0.21}\pm0.08$	_	$-0.04^{+0.13}_{-0.16}\pm0.05$	$-0.41^{+0.25}_{-0.20}\pm0.07$	

Belle: PRL 103, 171801 (2009)

Belle $B \rightarrow X_s \ell^+ \ell^-$ Results

 \blacksquare Belle reported on updated $B \rightarrow X_s \ell^+ \ell^-$ branching fraction measurements

(For M_{χ_s} < 2.0 GeV/ c^2

 $M_{l+l-} > 0.2 \text{ GeV}/c^2$

Mode	Yield	BF (x 10 ⁻⁶)	Σ
$B \rightarrow X_s e^+ e^-$	121.6 ± 19.3(stat.) ± 2.0(syst.)	4.56 ± 1.15(stat.) +0.33 (syst.)	7.0
$B \rightarrow X_s \mu^+ \mu^-$	118.5 ± 17.3(stat.) ± 1.5(syst.)	1.91 ± 1.02(stat.) $^{+0.16}_{-0.18}$ (syst.)	7.9
$B \rightarrow X_s J^+ I^-$	238.3 ± 26.4(stat.) ± 2.3(syst.)	3.33 ± 0.80 (stat.) $^{+0.19}_{-0.24}$ (syst.)	10.1

ps: BF($X_se^+e^-$) / BF($X_s\mu^+\mu^-$) = 2.39 ± 1.41