Standard Model Theory of Neutron & Nuclear Beta Decay

(Electroweak Radiative Corrections)

William J. Marciano
September 8, 2010
University of Warwick
England

Refs: A. Sirlin RMP <u>50</u>, 573 (1978) + earlier work
WJM & A. Sirlin, PRL <u>56</u>, 22 (1986); ibid <u>96</u>, 032002 (2006)
A. Czarnecki, WJM, A. Sirlin, PRD <u>70</u>, 093006 (2004)

 $SU(2)_L xU(1)_Y$ Standard Model Electroweak Radiative Corrections to $\mu \rightarrow e \overline{\nu}_e \nu_\mu$ and $n \rightarrow p e \overline{\nu}_e$ both Infinite but renormalized using $(G_F^0 \rightarrow G_\mu)$

Quark mixing divergences absorbed in V_{ud}→V_{ud} maintaining Unitarity

The CKM Quark Mixing Matrix:

$$\begin{cases} V_{ud} V_{us} V_{ub} \\ V^{CKM} = \begin{bmatrix} V_{cd} V_{cs} V_{cb} \end{bmatrix} & 3x3 \underline{Unitary} Matrix \\ V_{td} V_{ts} V_{tb} \end{bmatrix}$$

$$\underline{Unitarity} \rightarrow |V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$$

Any "Apparent" Deviation from 1 Implies "New Physics" at the tree or quantum loop level

Short-distance behavior of μ and β decays differ due to weak hypercharges of $\mu_L(Y=-1)$ and $d_L(Y=+1/3)$

Nevertheless, the ratio of τ_n and τ_μ is finite and calculable

- Muon Decay $\Gamma_0(\mu \to e \nu \nu) = F(m_e^2/m_\mu^2)G_F^2 m_\mu^5/192\pi^3 = 1/\tau_\mu^0$
- Neutron Decay $\Gamma_0(n \rightarrow pev) = fG_F^0|V_{ud}^0|^2m_e^5(1+3g_A^2)/2\pi^3 = 1/\tau_n^0$

 $F(x)=1-8x+8x^3-x^4-12x^2Inx$ Phase Space Factor

<u>f=1.6887</u> phase space factor, including Fermi function(~5.6%), proton recoil, finite nucleon size... Uncertainty<10⁻⁴

Other Effects: Weak Magnetism, Induced Pseudoscalar etc. negligible

 g_A and τ_n important for Unitarity test, solar neutrino flux, primordial abundances, spin content of proton, Goldberger-Treiman/Muon Capture, Bjorken Sum Rule, lattice benchmark...

Must be precisely determined!

Electroweak Radiative Corrections to Muon Decay

Virtual One Loop Corrections + Inclusive Bremsstrahlung Absorb Ultraviolet divergences and some <u>finite parts</u> in $G^0_F = g_0^2/4\sqrt{2}m^2_{W0} \rightarrow G_{\mu}$ $\tau_{\mu}^{-1} = \Gamma(\mu^+ \rightarrow e^+ \nu_e \bar{\nu}_{\mu}(\gamma)) \equiv F(m_e^2/m_{\mu}^2) G_{\mu}^2 m_{\mu}^5 [1+RC]/192\pi^3$

RC = $\alpha/2\pi(25/4-\pi^2)(1+\alpha/\pi[2/3ln(m_{\mu}/m_e)-3.7)...]$ Fermi Th. Other SM and "New Physics" radiative corrections absorbed into G_{μ} . Eg. Top Mass, Higgs Mass, Technicolor, Susy,W*...

MuLAN & FAST experiments at PSI:

New World Ave. τ_{u+} 1ppm! gives

G_μ=1.166361x10⁻⁵**GeV**⁻² precise & important

(see P. Debevec's talk)

Loop and Tree Level Corrections to Muon Decay

+ . . .

Electroweak Radiative Corrections to Neutron Beta Decay

Include Virtual Corrections + Inclusive Bremsstrahlung

Normalize using G_{μ} from the muon lifetime

Absorbs Ultraviolet Divergences & some finite parts

$$1/\tau_n = fG_{\mu}^2 |V_{ud}|^2 m_e^5 (1 + 3g_A^2) (1 + RC) / 2\pi^3$$

<u>f=1.6887</u> (Includes Fermi Function)

RC calculated for (Conserved) Vector Current since it is not renormalized by strong interaction at zero momentum transfer.

Same RC used to **define** g_A : [A(g_A)=(1.001)A^{exp}]

RC=
$$\alpha/2\pi[\overline{g}(E_m)+3\ln(m_z/m_p)+\ln(m_z/m_A)+2C+A_{QCD}]$$
 + higher order

g(E_e)=Universal Sirlin Function (1967) from Vector Current

```
\alpha/2\pi \ \overline{g}(E_m=1.292579 \text{MeV})=0.015056 long distance loops and brem. averaged over the decay spectrum. Independent of Strong Int. up to O(E_e/m_P) g(E_e) also applies to Nuclei A. Sirlin (1967)
```

```
3\alpha/2\pi ln(m_Z/m_p) short-distance (Vector) log <u>not</u> renormalized by strong int. 

[\alpha/2\pi [ln(m_Z/m_A)+2C+A_{QCD}] Induced by axial-current loop Includes hadronic uncertainty 

m_A=1.2 GeV long/short distance matching scale (<u>factor 2 unc.</u>) 

C=0.8g_A(\mu_N+\mu_p)=0.891 (long distance \gamma W Box diagram) WJM&A.Sirlin(1986) 

A_{QCD}=-\alpha_s/\pi (ln(m_Z/m_A)+cons)=-0.34 QCD Correction
```

[α/πln(m_Z/m)]ⁿ leading logs summed via renormalization group, Next to leading short distance logs~-0.0001, and -α²ln(m_p/m_e)=-0.00043 estimated (for neutron decay) Czarnecki, WJM, Sirlin (2004) 1+RC=1.0390(8) main unc. from m_A matching short and long distance γW (VA) Box

γW Box Diagram

Weak Axial-Vector Induced Radiative Corrections

$$RC = \frac{\alpha}{4\pi} \int_{0}^{\infty} dQ^{2} \frac{m_{W}^{2}}{Q^{2} + m_{W}^{2}} F(Q^{2})$$

Large
$$Q^2$$
 $F(Q^2) = \frac{1}{Q^2} \left[1 - \frac{\alpha_3(Q^2)}{77} + \dots \right] + O(\frac{1}{Q^4})$

Small Q2 + Nucleon Form Factors

2006 Improvement WJM & A. Sirlin

- 1.) Use large N_{QCD} Interpolator to connect long-short distances
- 2.) Relate neutron beta decay to Bjorken Sum Rule ($N_F=3$)

```
\begin{array}{c} 1\text{-}\alpha_s/\pi \rightarrow \ 1\text{-}\alpha_s(Q^2)/\pi\text{-}3.583(\alpha_s(Q^2)/\pi)^2\text{-}20.212(\alpha_s(Q^2)/\pi)^3\\ \text{-}175.7\ (\alpha_s(Q^2)/\pi)^4\ (Recent \ Baikov,Chetyrkin \ and \ Kuhn)\\ \text{Negligible Effect} \end{array}
```

The extra QCD corrections lead to a matching between short and long distance corrections at about Q²=(0.8GeV)² Very little change in size of RC, but uncertainties reduced by at least a factor of 2!

(Both Prescriptions Agree)

1+RC= $1.0390(8) \rightarrow \underline{1.03886(39)}$ for Neutron Beta Decay Reduction by 1.4×10^{-4} (Same for $0^+ \rightarrow 0^+$ beta decays)

RC Error Budget

- 1) Neglected Two Loop Effects: ±0.0001 conservative
- 2) Long Distance $\alpha / \pi C \sim \alpha / \pi (0.75g_A(\mu_N + \mu_P)) = 0.0020$ Assumed Uncertainty $\pm 10\% \rightarrow \pm 0.0002$ reasonable?
- 3) Long-Short Distance Loop Matching: 0.8GeV<Q<1.5GeV ±100% → ±0.0003 conservative

Total RC Error $\pm 0.00038 \rightarrow \Delta V_{ud} = \pm 0.00019$

More Aggressive Analysis →ΔV_{ud}=±0.00013 (1/2 conservative)

Superallowed (0⁺→0⁺) Beta Decays & V_{ud}

RC same as in Neutron Decay but with $\overline{g}(E_m)$ averaged Nuclear decay spectrum, C modified by Nucleon-Nucleon Interactions and +Z α^2 In(m_p/m_e) corrections (opposite sign from neutron)

$$ft = |V_{ud}|^2 (2984.5s)(1+RC)(1+NP corr.)$$

Nuclear Physics (NP) isospin breaking effects (Hardy & Towner Calculations: See later critique)

ft values + RC for 13 precisely measured nuclei found to be consistent with CVC: Average $\rightarrow V_{ud}$

Superallowed Nuclear Beta Decays

RC Uncertainty-Same as Neutron Decay

Nuclear Unc. - Significantly Reduced (2006-08)

Nuclear Coulomb Corrections Improved

 $|V_{ud}| = 0.97425(11)_{Nuc}(19)_{RC}$

(2008 Hardy and Towner <u>Update</u>)

(0.97418((13)(14)(19) in PDG08)

(0.97377(11)(15)(19) in PDG06)

(0.97340(80) in 2004) Factor of 3 worse

The Kaon Revolution of 2004-2005

(Starting with BNL E865) +FNAL, Frascati & CERN BR(K→πeν) increased by ≈6%!

All Major K_L BRs Changed! ε_K changed by 3.7σ!

Now Based on: $\Gamma(K \rightarrow \pi l \nu)_{exp} \& \Gamma(K \rightarrow \mu \nu) / \Gamma(\pi \rightarrow \mu \nu)_{exp}$ + Lattice Matrix Elements $f_{+}(0) = 0.960(5) \& f_{K}/f_{\pi} = 1.193(6)$

2010 Flavianet Analysis Currently:

 $|V_{us}| = 0.2253(13)$ from $K \rightarrow \pi l \nu$ Vector

 $|V_{us}| = 0.2252(13)$ from K $\rightarrow \mu\nu$ Axial-Vector

 $|V_{us}| = 0.2253(9)$ Kaon Average (was ~0.220 pre 2004)

(Watch for lattice updates)

CURRENT STATUS of CKM Unitarity

$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 0.9999(4)_{Vud}(4)_{Vus}$$

= 0.9999(6)

Outstanding Agreement With Unitarity

Confirms CVC & SM Radiative Corrections:

 $2\alpha \ln(m_Z/m_p)/\pi+... \approx +3.6\%$ at 60 sigma level!

Naively Fits $m_7 = 90(7)$ GeV vs 91.1875GeV (Direct)

Comparison of G_{μ} with other measurements (normalization) constrains or unveils "New Physics"

New Physics Constraints-Implications:

Exotic Muon Decays, W*bosons, SUSY, Technicolor,

Z' Bosons, H±, Heavy Quark/Lepton Mixing...

Recent Superallowed Beta Decay Issue

Isospin Breaking Coulomb Corrections of Hardy and Towner <u>questioned</u>
 by: <u>G. Miller & A. Schwenk</u>

N. Auerbach

H. Liang et al.

Hardy and Towner (1- δ_c) correction increases V_{ud} δ_c ~0.2-1.6% Correction

Recent Claims δ_{c} is smaller due to nuclear radial excitations smaller V_{ud} =0.97425 \rightarrow 0.9730 (Liang, Giai, Meng) $|V_{ud}|^2+|V_{us}|^2+|V_{ub}|^2$ reduced to (roughly) <u>0.9975?</u> Unitarity Lost?

Issue needs "complete" quantitative resolution (see talk by I. Towner)

Neutron Decay (n→pe√) & V_{ud}

$$|V_{ud}|^2 = \underline{4908.7(1.9)sec} \qquad (V\&A\ Interactions)$$

$$\tau_n(1+3g_A^2)$$
Measure τ_n and $g_A = G_A/G_V$ (decay asymmetries)
$$2008\ \underline{PDG}\ \tau_n^{\ ave} = 885.7(8)sec,\ g_A^{\ ave} = 1.2695(29)$$

$$\rightarrow |V_{ud}|^{\ ave} = 0.9746(4)_{\tau n}(18)_{gA}(2)_{RC}\ reasonable\ but\ ...$$
More recent $\underline{878.5(8)sec?}\ \&\ g_A \approx \underline{1.2750(9)}$

$$\rightarrow |V_{ud}| = \underline{0.9751(4)_{\tau n}(6)_{gA}(2)_{RC}}\ also\ reasonable\ (Are\ \tau_n\ \&\ g_A\ both\ shifting?)$$
History $g_A = 1.18 \rightarrow 1.23 \rightarrow 1.25 \rightarrow 1.26 \rightarrow 1.27 \rightarrow ?$

$$0^+ \rightarrow 0^+\ Nuclear\ Beta\ V_{ud} = 0.97425(22) + \tau_n = \underline{878.5(8)sec}$$

$$\rightarrow g_A \approx \underline{1.2763(8)}!$$

Many New τ_n & g_A Experiments Planned

Conclusion

- 1) <u>Current Exps & Th:</u> |V_{ud}|²+|V_{us}|²+|V_{ub}|²=0.9999(4)_{Vud}(4)_{Vus} Great Unitarity Test & Sucess→ No New Physics! Nuclear Isospin Breaking? Needs Resolution Radiative Corrections Stable (<u>Unchallenged!</u>)
- 2) Neutron Decay: $|V_{ud}| = [4908.7(1.9)s/\tau_n(1+3g_A^2)]^{1/2}$ clean & precise Neutron Lifetime Controversy (6 σ discrepancy) $\tau_n^{PDG} = 885.7(8)s$ vs $\tau_n = 878.5(8)s$ Needs Resolution g_A larger? Perkeoll $\rightarrow 1.2750(9)$ vs $g_A^{PDG} = 1.2695(29)$ Larger g_A & smaller $\tau_n \rightarrow$ Unitarity, solar neutrino flux, primordial nuclear abundances, proton spin, Goldberger-Treiman/Muon Capture, Bjorken Sum Rule, lattice calculation benchmark...

 V_{ud} , τ_n and g_A must be precisely determined!