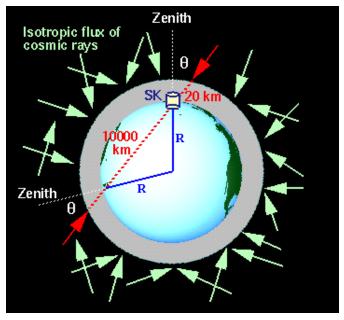

Hadron production Measurements for Long-Baseline Neutrino Beams

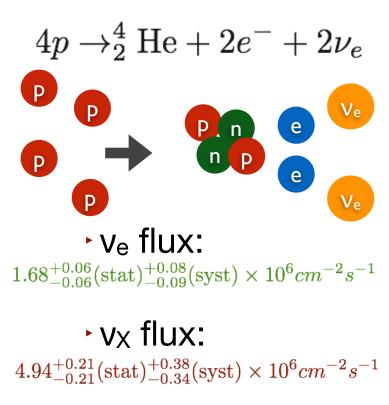

Alysia Marino, University of Colorado Boulder October 28, 2020

Outline

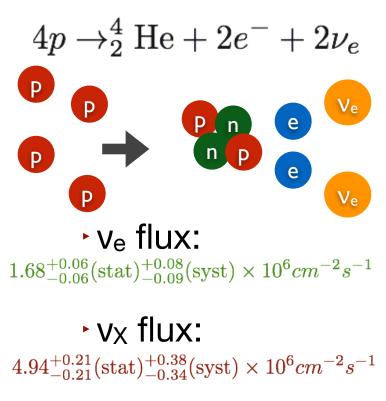
- Neutrino oscillations
- Accelerator-generated neutrino beams
- Why hadron production measurements?
 - Measurement Strategies
 - Brief overview of external data

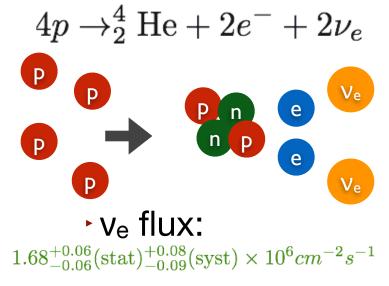
Neutrino Oscillations


Standard Model of Particles


* Each particle also has a corresponding anti-particle, eg e^+ and $\bar{\nu}$

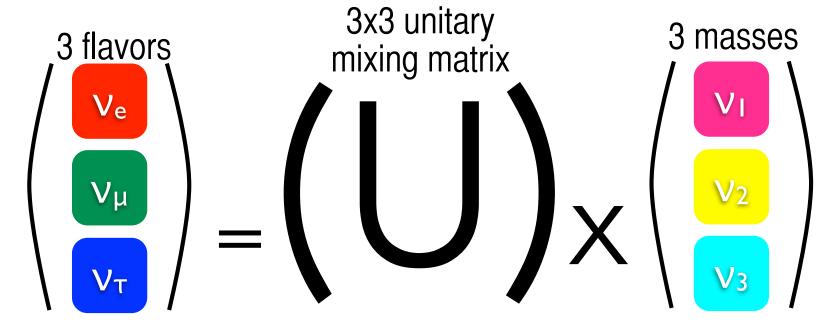
- * Atmospheric neutrinos should be symmetric about the horizon
- Super-Kamiokande reported same number of electron neutrinos, but fewer muon neutrinos from below than above


hep.bu.edu/~superk/atmnu/


- * Atmospheric neutrinos should be symmetric about the horizon
- Super-Kamiokande reported same number of electron neutrinos, but fewer muon neutrinos from below than above
- Sun produces only ν_e.
- * Sudbury Neutrino Observatory showed that solar v_e turn into other flavors.

- * Atmospheric neutrinos should be symmetric about the horizon
- Super-Kamiokande reported same number of electron neutrinos, but fewer muon neutrinos from below than above
- Sun produces only ν_e.
- * Sudbury Neutrino Observatory showed that solar v_e turn into other flavors.
- ◆ 2015 Nobel Prize to Super-K and SNO for discovery of neutrino oscillations

- * Atmospheric neutrinos should be symmetric about the horizon
- Super-Kamiokande reported same number of electron neutrinos, but fewer muon neutrinos from below than above
- Sun produces only ν_e.
- * Sudbury Neutrino Observatory showed that solar v_e turn into other flavors.
- ◆ 2015 Nobel Prize to Super-K and SNO for discovery of neutrino oscillations



▶ v_X flux:

4.94^{+0.21}_{-0.21}(stat)^{+0.38}_{-0.34}(syst) × 10⁶cm⁻²s⁻¹
• Now making more precise measurements with accelerator-generated neutrino beams and reactor anti-neutrinos.

Neutrino Mixing

 Neutrino flavor states are a mixture of neutrino mass states.

- Neutrinos are produced in pure flavor states.
- Interference between the flavor eigenstates and the mass eigenstates causes the observed flavor to oscillate over time.

Two-Flavor Mixing

• For 2 neutrino mixing this mixing matrix can be expressed as a rotation matrix, with a single **mixing** angle θ_{12}

Flavor Mixing Mass States Matrix States
$$\begin{bmatrix} \nu_{\alpha} \\ \nu_{\beta} \end{bmatrix} = \begin{bmatrix} \cos\theta_{12} & \sin\theta_{12} \\ -\sin\theta_{12} & \cos\theta_{12} \end{bmatrix} \times \begin{bmatrix} \nu_{1} \\ \nu_{2} \end{bmatrix}$$

Example: Two-flavor Oscillations

*A neutrino produced with a given **flavor** α is a mixture of neutrino mass eigenstates (1 and 2)

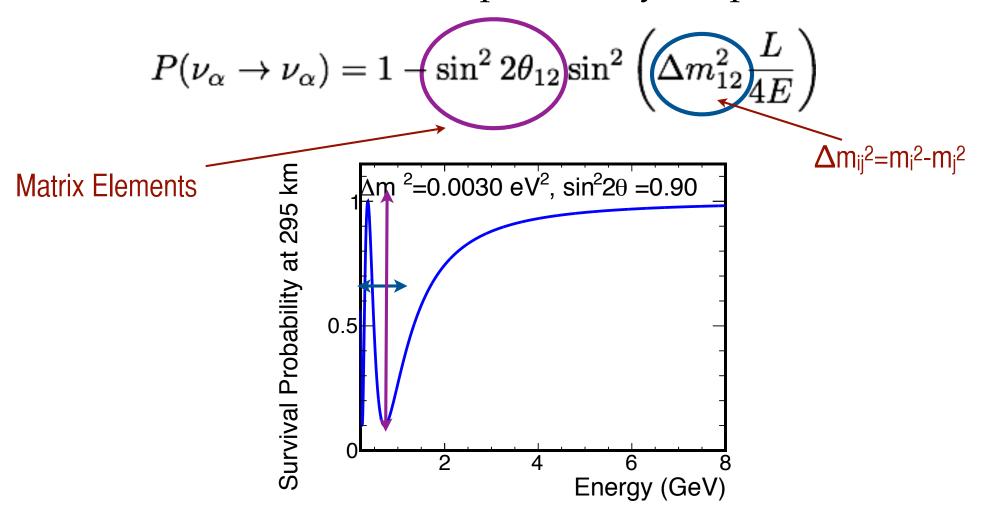
$$|\psi(t=0)\rangle = |\nu_{\alpha}\rangle = U_{\alpha 1}^* |\nu_1\rangle + U_{\alpha 2}^* |\nu_2\rangle$$

◆These evolve over time with slightly different frequencies

$$|\nu_{\alpha}(t)\rangle = U_{\alpha 1}^* |\nu_1\rangle e^{-i(E_1 t - \vec{p} \cdot \vec{x})} + U_{\alpha 2}^* |\nu_2\rangle e^{-i(E_2 t - \vec{p} \cdot \vec{x})}$$

*Since L~t for neutrinos, probability of starting with **flavor** α and later **observing flavor** β is

$$P(\nu_{\alpha} \to \nu_{\beta}) = |\langle \nu_{\beta}(L) | \nu_{\alpha} \rangle|^{2}$$


Two-Flavor Oscillations

◆ For 2 flavors, the survival probability simplifies to:

$$P(\nu_{\alpha} \rightarrow \nu_{\alpha}) = 1 - \sin^2 2\theta_{12} \sin^2 \left(\Delta m_{12}^2 \frac{L}{4E}\right)$$
 Matrix Elements
$$\frac{\Delta m^2 = 0.0030 \text{ eV}^2, \sin^2 2\theta = 0.90}{\sqrt{200 400 600 800 1000}}$$

$$\frac{-\nu_{\alpha}}{\nu_{\beta}}$$

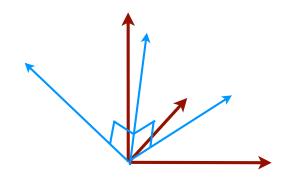
$$\frac{-\nu_{\alpha}}{\nu_{\beta}}$$
 Distance (km)

Two-Flavor Oscillations

For 2 flavors, the survival probability simplifies to:

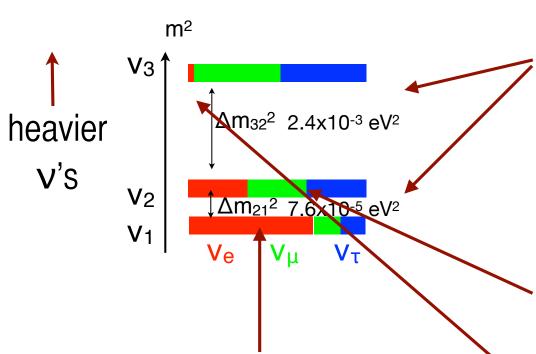
3 Flavor Neutrino Mixing

 For 3 flavors, can be described by 3 angles and a phase in the PMNS matrix


 θ_{23} and Δm^2_{32} Atmospheric/
Accelerator
neutrinos $\theta_{23} \sim 45^\circ$

 δ , θ_{13} and Δm^2_{31} reactor antineutrinos and accelerator neutrinos $\theta_{13} \sim 9^{\circ}$

 θ_{12} and Δm^2_{21} Solar neutrinos/ reactor antineutrinos $\theta_{12}\sim34^\circ$


$$U = \left[egin{array}{cccc} 1 & 0 & 0 \ 0 & c_{23} & s_{23} \ 0 & -s_{23} & c_{23} \end{array}
ight] imes \left[egin{array}{cccc} c_{13} & 0 & s_{13}e^{-i\delta} \ 0 & 1 & 0 \ -s_{13}e^{i\delta} & 0 & c_{13} \end{array}
ight] imes \left[egin{array}{cccc} c_{12} & s_{12} & 0 \ -s_{12} & c_{12} & 0 \ 0 & 0 & 1 \end{array}
ight]$$

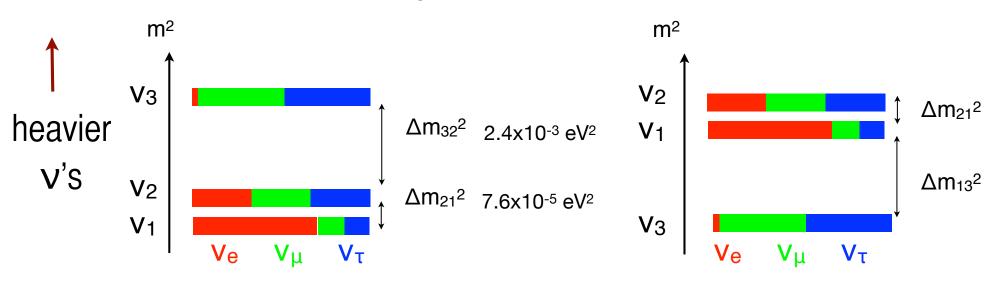
where $s_{ij} = sin(\theta_{ij})$ and $c_{ij} = cos(\theta_{ij})$

◆ Anti-v depend on U*

What We Know about Neutrino Masses and Mixings

From solar and long-distance reactor v, we know that the v₁ and v₂ have significant v_e fractions so large mixing, but angle is less than 45°

We know that atmospheric voscillate with a much a smaller L/E than solar v.


→Two different ∆m² scales

From atmospheric and accelerator v_{μ} we know that v_2 and v_3 have significant v_{μ} and v_{τ} fractions. Mixing large, so θ_{23} nearly 45°.

From short-distance reactor v we know that v_3 has a small v_e fraction. θ_{13} angle is only $\sim 9^\circ$

Neutrino Masses

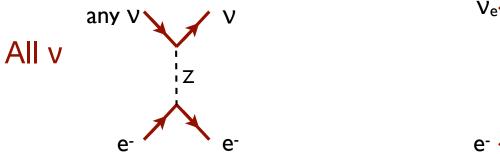
 Two different mass difference orders are possible "Normal" Ordering "Inverted" Ordering

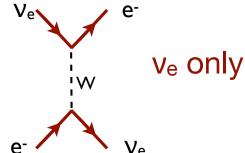
* Sign of Δm_{21}^2 is known due to effects in the Sun, but sign of Δm_{32}^2 isn't, so two possible orderings of masses

Three-Flavor Mixing in Vacuum with $\delta=0$

- ◆ L/E scale relevant for recent accelerator beams oscillation effects are dominated by $m_3 \leftrightarrow m_2$ and $m_3 \leftrightarrow m_1$ mixing
- v_{μ} Disappearance in a v_{μ} Beam

$$P(\nu_{\mu} \to \nu_{\mu}) \simeq 1 - \sin^2 2\theta_{23} \cdot \sin^2 (\Delta m_{32}^2 L/4E)$$


+ v_e Appearance in a v_μ Beam


$$P(\nu_{\mu} \to \nu_{e}) \simeq \sin^{2} 2\theta_{13} \cdot \sin^{2} \theta_{23} \cdot \sin^{2} (\Delta m_{31}^{2} L/4E)$$

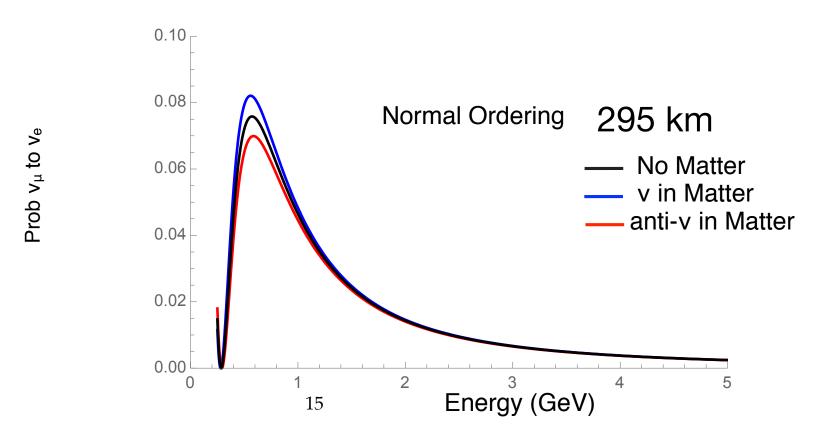
Precision measurements require 3 flavor fits

Neutrino Oscillations in Matter

- * Matter has e-, and few μ- or τ-
- * Additional processes for v_e and anti- v_e scattering on e^-

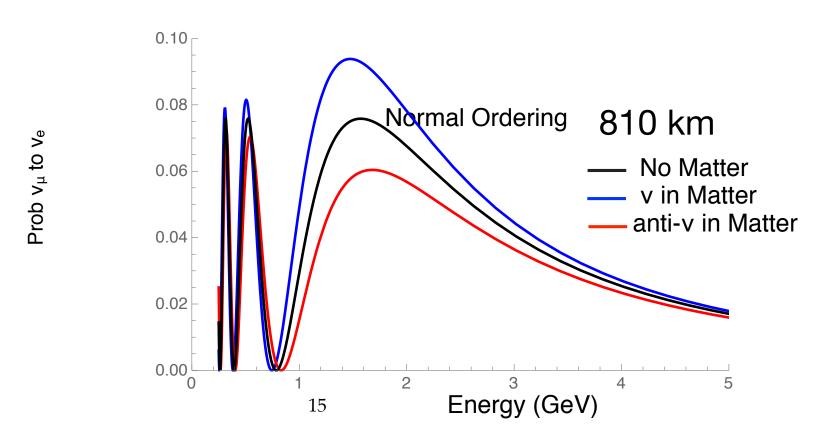
Modifies apparent oscillation probabilities

$$P(\nu_{\mu} \to \nu_{e}) \simeq \sin^{2} 2\theta_{13} \cdot \frac{\sin^{2} \theta_{23}}{(A-1)^{2}} \cdot \sin^{2} ((A-1)\Delta m_{31}^{2} L/4E)$$


where
$$A = \sqrt{2}G_F N_e \frac{2E}{\Delta m_{31}^2}$$

→ Effect increases with E and N_e

Depends on mass ordering


Matter Effects

- Additionally matter effects change sign for antineutrinos
- So in the normal ordering the appearance probability increases for neutrinos and decreases for anti-neutrinos.

Matter Effects

- Additionally matter effects change sign for antineutrinos
- So in the normal ordering the appearance probability increases for neutrinos and decreases for anti-neutrinos.

Impact of 8

- There are additional terms in the oscillation probability that depend on $-\sin(\delta)$ for neutrinos and $\sin(\delta)$ for antineutrinos.
- This will lead to **differences** in $P(\nu_{\mu} \rightarrow \nu_{e})$ compared to even in vacuum $P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e})$

Effect of value of δ

Normal Ordering

$$\delta_{CP} = -3.14$$

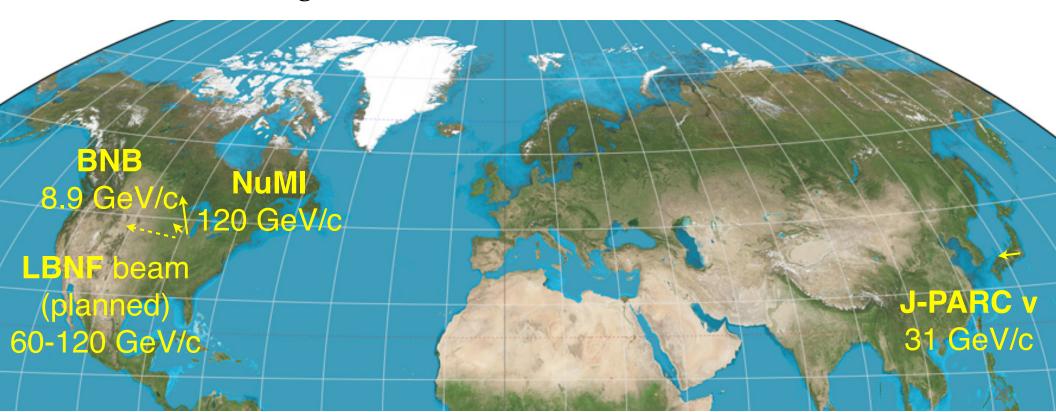
CP Symmetry

- **C:** Charge conjugation
 - Replace all particles with antiparticles
- **P:** Parity
 - Invert all spatial coords (x→-x, etc)
 - Converts right-handed particles to left-handed particles
- Weak interaction violates C and P symmetry, but if CP is a good symmetry left-handed neutrinos and right-handed anti-neutrinos should have identical physics

C transformation

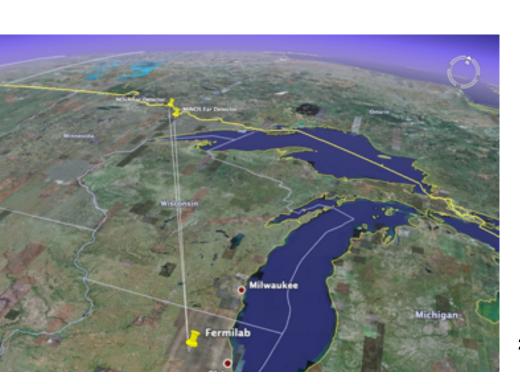
P transformation

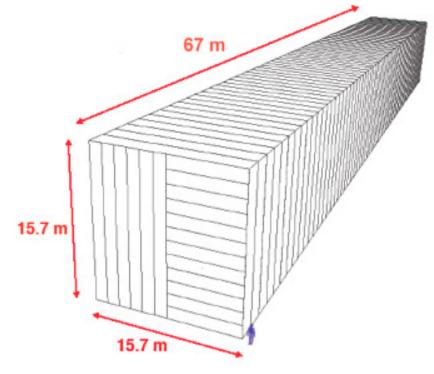
CP transformation


Big Questions to Answer with Long-Baseline Neutrino Beams

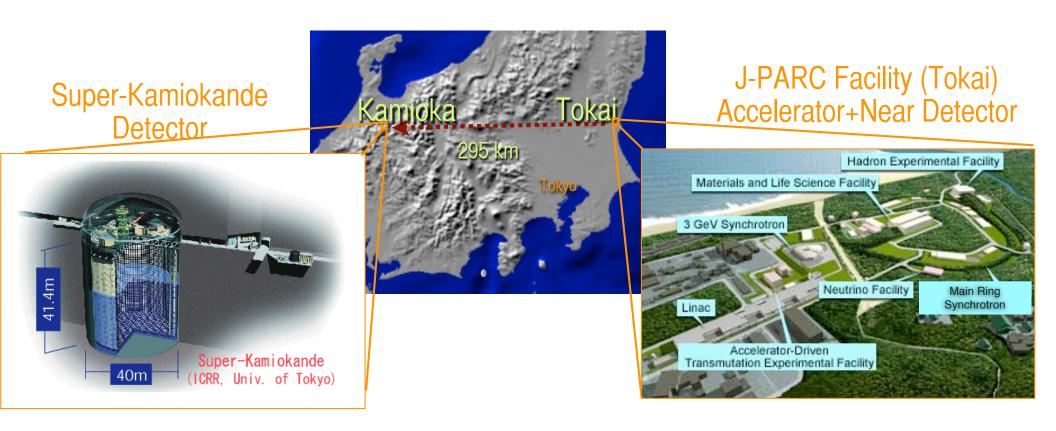
- Is the mass ordering normal or inverted?
- Is θ_{23} exactly 45 degrees?
- Is the mixing matrix different for neutrinos and anti-neutrinos?
 - Is $\sin(\delta)=0$?
 - CP Violation w leptons?
- * Is the mixing matrix unitary?

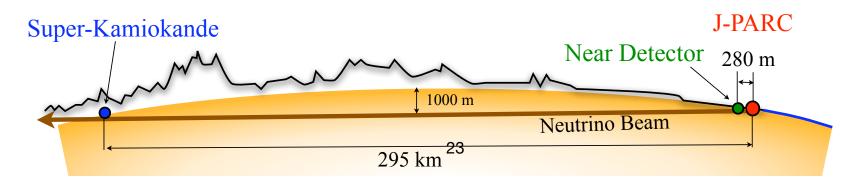
Neutrino Experiments


Current Neutrino Beams


- Current long-baseline experiments:
 - T2K using J-PARC neutrino beam
 - NOvA using NuMI beam
- ◆ Future long-baseline experiments:
 - Hyper-Kamiokande using J-PARC neutrino beam
 - DUNE using the LBNF beam

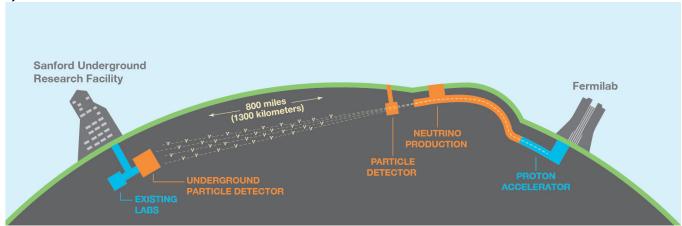
NOνA


- Off-axis from NuMI beam
- * 810 km baseline
- * Active liquid scintillator detectors, 14 kton far det



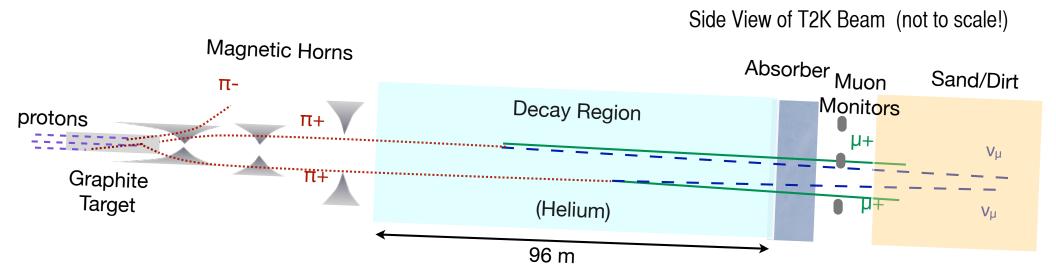
T2K: Tokai-to-Kamioka

Long-baseline neutrino experiment in Japan with 295 km baseline



Future Long-Baseline Neutrino Experiments

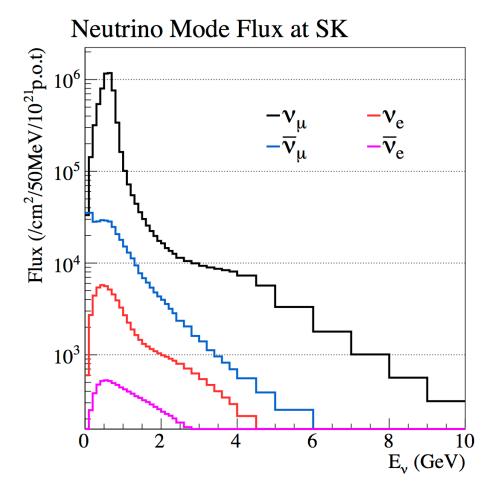
- + Hyper-Kamiokande:
 - New far detector in Japan
- 1200km 1000km 800km 600km 400km JD 200km J-PARC

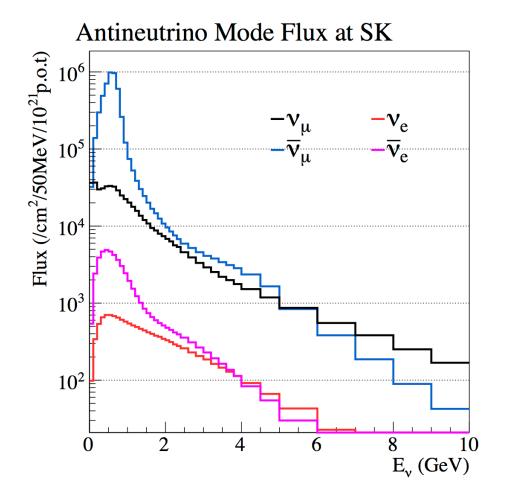

PTEP 2018 (2018) no.6, 063C018 2.5 at HK

- Possibility for other detectors at longer-baselines
- Deep Underground Neutrino Experiment (DUNE)
 - New LBNF beamline from Fermilab to SURF in Lead,SD

Neutrino Production (Using T2K as an example)

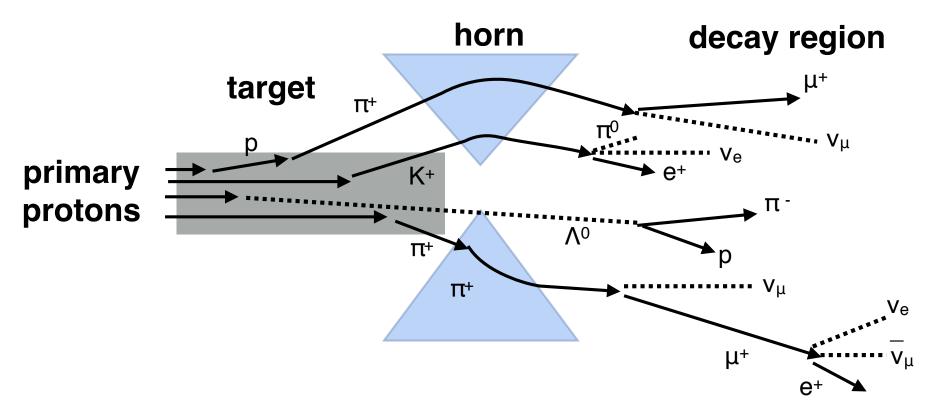
How to Make a Beam of v: T2K Beam


- 30 GeV p's strike graphite target, producing π 's and K's
- 3 magnetic horns focus π^+ and K^+ in desired direction
- π 's and K's to decay to μ 's and ν 's
- Dirt will stop μs; vs continue through the earth
- •T2K Beam is ~95% ν_{μ} , 4% ν_{μ} , 1% ν_{e}
- Can make a $\overline{\nu_{\mu}}$ beam by changing sign of horn current


Accelerator used by T2K * Protons accelerated to 30 GeV at J-PARC

- → Designed for 3.3x10¹⁴ protons per pulse
- + Pulse is 5.2 μsec, 1 pulse every ~2.5 sec

Neutrino Flux Example: T2K



Pause for Questions

Hadron Production Measurements for Neutrino Experiments

Neutrino Production

- * For accelerator-based and atmospheric neutrino sources neutrino production processes are complex.
 - Hadron production in beamline interactions typically dominates the flux uncertainty

Why Hadron Production Measurements?

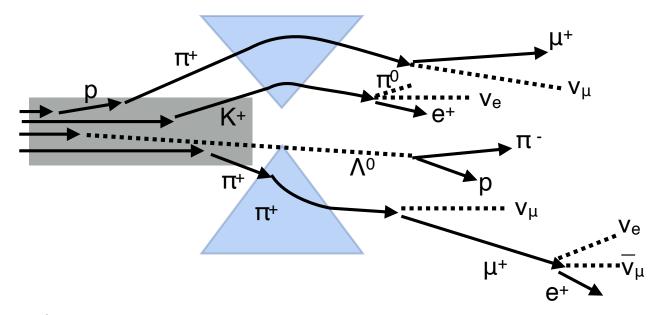
- Neutrino flux not well-modeled by Monte Carlo simulations
 - But with more measurements the model predictions keep improving
- ◆ Important to <u>understand neutrino source</u> when making measurements of flavor oscillation
- Neutrino interaction measurements and other near detector physics require precise independent flux constraints

Hadron Production Measurement Strategies

- + In Situ measurements:
 - Direct hadron production measurements in beamline
 - Muon monitors
 - Very challenging detector environment!
- **+ External hadron production** measurements:
 - Thin targets (few % of λ)
 - Thick or replica targets ($>\sim \lambda$)

2 cm C target

T2K replica target

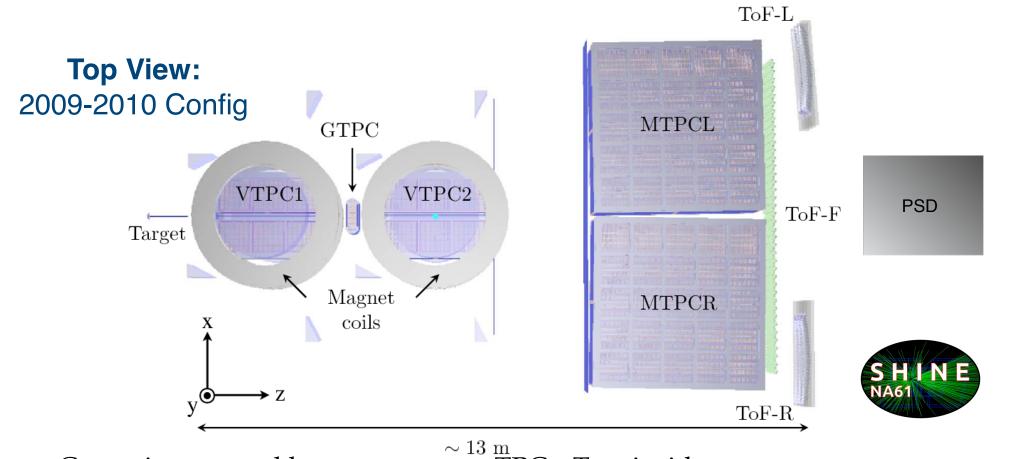


External Measurement Needs

- * Total **cross section** measurements help to model the interaction probabilities in the beamline materials
- Also need particle production spectra
 - Often reported in bins of hadron (p, θ) or (x_F, p_T) where $x_F = 2p_L^*/\sqrt{s}$
- Some existing single-arm spectrometer measurements
- More recently there are dedicated hadron production experiments using large acceptance tracking detectors

Secondary Interactions and Beyond

 Secondary and tertiary interactions often significant, so want not just primary proton data, but also thick target data and lower energy hadron data to constrain reinteractions

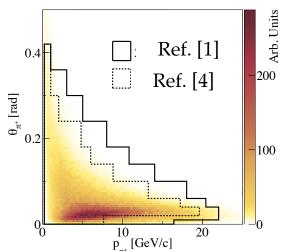

- In T2K ~1.4 hadronic interactions per v_{μ} in neutrino mode
- In NOvA, ~1.5-1.6 hadronic interactions per ν_{μ} in neutrino mode for $E_{\nu} > 1$ GeV, even more at lower energies

Key Thin Target Data below 25 GeV/c

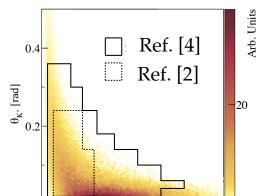
Reaction	Experiment	Particles Measured	Reference
8.9 GeV/c p + thin Be	HARP	π+	Eur. Phys J C 52 (2007) 29
6.4, 12.3, and 17.5 GeV/c p + thin Be	BNL E910	π±	Phys. Rev. C 77 (2008) 015209
12.9 GeV/c p + thin Al	HARP	π^+	Nucl. Phys. B 732 (2006) 1
12 GeV/c p and π^{\pm} + C	HARP	π±	Astr. Phys. 29 (2008) 257
19.2 GeV/c p on p,Be, Al, Cu, Pb	Allaby et al	p,pbar, π ^{±,} K [±]	Tech. Rep. 70-12 (CERN, 1970)
24 GeV/c p on Be, Al, Cu, Pb	Eichten et al (CERN-Rome)	p,pbar, π ^{±,} K [±]	Nucl. Phys. B44, 333 (1972)

NA61/SHINE Experiment

- SPS Heavy Ion and Neutrino Experiment: Fixed target experiment at CERN SPS
- Primary 400 GeV/c p beam, Secondary hadron beams ~26 to 160 GeV/c



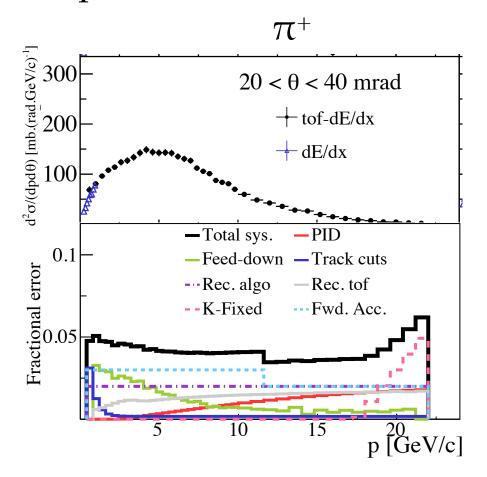
◆ Comprises several large acceptance TPCs, Two inside magnets

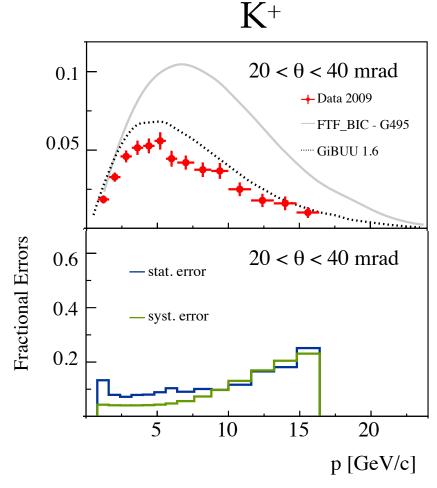

NA61/SHINE Thin Target Data 31-60 GeV

Reaction	Particles Measured	Reference
31 GeV/c p + C	π±	[1] Phys. Rev. C84 (2011) 034604
31 GeV/c p + C	K ⁺	[2] Phys. Rev. C85 (2012) 035210
31 GeV/c p + C	$K_0^{\rm s}$, Λ	[3] Phys.Rev. C89 (2014) 025205
31 GeV/c p + C	π^{\pm} , K^{\pm} , K^0 s, Λ , p	[4] Eur.Phys.J. C 76 (2016) 84
60 GeV/c π++C, p+Be	π^{\pm} , K^{\pm} , K^0 s, Λ , p	[5] Phys.Rev.D 100 (2019) 11, 112004
60 GeV/c p+C, p+Be, p+Al	π^{\pm} , K^{\pm} , K^0 s, Λ , p	in progress

π + Coverage

Colors indicate relative contribution to T2K neutrino flux at SK in neutrino mode




10 p_{K+} [GeV/c] 20

K+ Coverage

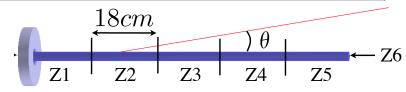
Thin Target Results

• Sample slices for π^+ and K⁺ for 20-40 mrad

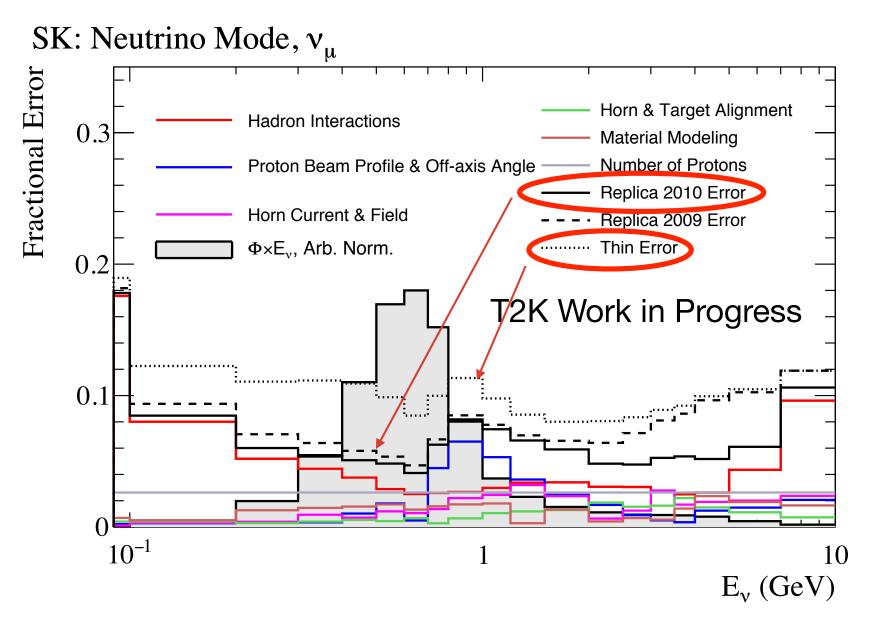
Key data at 120-160 GeV/c

Reaction	Experiment	Particles Measured	Reference
58, 84, 120 GeV/c p + various thin targets	E907/MIPP	n	Phys.Rev. D83 (2011) 012002
120 GeV/c p + NuMI low energy target	E907/MIPP	π^{\pm}	Phys.Rev. D 90 (2014) 032001
158 GeV/c p +C	NA49	π^{\pm}	Eur.Phys.J. C 49 (2007) 897
158 GeV/c p +C	NA49	p, pbar, n, d, t	Eur.Phys.J. C 73 (2013) 2364
120 GeV/c p +C	NA61		in progress

Key Data at 400-450 GeV/c


Reaction	Experiment	Particles Measured	Reference
400 GeV/c p + 10-50 cm Be target	NA20	π±, K±,p,pbar	CERN Tech. Rept. 80-70 (1980)
450 GeV/c p + 10 cm Be target	NA56/SPY	K/π ratio	Phys. Lett. B 420 (1998) 225
450 GeV/c p + 10 cm Be target	NA56/SPY	π±	Phys. Lett. B 425 (1998) 208
450 GeV/c p + Be target	NA56/SPY	π±, K±,p,pbar	Eur. Jour. Phys. C 10 (1999) 605

 Most of existing data just covers the interactions of protons, and not re-interactions of pions, kaons, etc.


Thick Target Data at 31 GeV/c

Reaction	Particles Measured	Reference
31 GeV/c p + T2K replica target	π+	Nucl.Instrum.Meth. A701 (2013) 99-114
31 GeV/c p + T2K replica target	π±	Eur.Phys.J. C76 (2016) no.11, 617
31 GeV/c p + T2K replica target	π±,K±,p	Eur.Phys.J.C 79 (2019)2, 100
31 GeV/c p + T2K replica target	p total cross section	CERN-EP-DRAFT-NA61-2020-007

+ Differential yields in $(p,\theta,z_{\text{target}})$

Improvements with Replica Data

Application of NA61data to T2K

- * Thin target weights: Where available reweight each interaction by $W(p,\theta) = \frac{N(p,\theta)_{Data}}{N(p,\theta)_{MC}}$
 - Can apply scaling for different materials and momenta
- * Replica target data: Reweight particles exiting the target by $W(p, \theta, z) = \frac{N(p, \theta, z)_{Data}}{N(p, \theta, z)_{MC}}$

Sanford-Wang Parameterization

- ◆ J. R. Sanford and C. L. Wang, "Empirical formulas for particle production in p—Be collisions between 10 and 35 BeV/c", Brookhaven National Laboratory, AGS internal report, (1967), unpublished
- Depends on p_{beam} , p,θ of hadron

Reproduced from Phys.Rev. C80 (2009) 035208

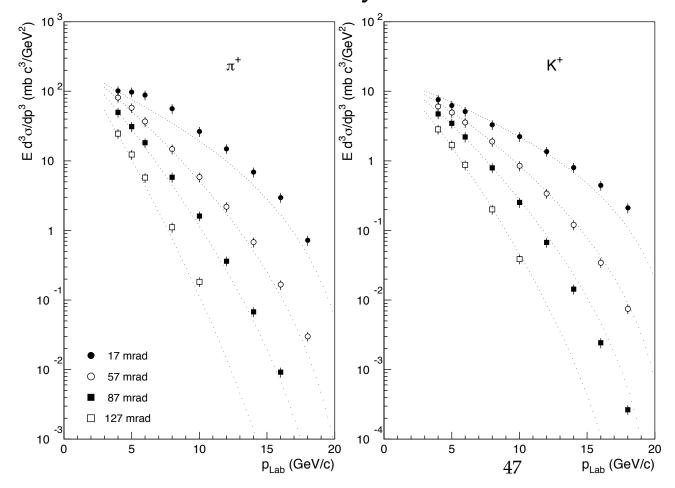
• 8 free parameters for π

$$\frac{d^2\sigma(pA \to \pi^{\pm}X)}{dpd\Omega} = c_1 \exp[B]p^{c_2}(1 - \frac{p}{p_{\text{beam}}})$$

where:

$$B = -c_3 \frac{p^{c_4}}{p_{\text{beam}}^{c_5}} - c_6 \theta (p - c_7 p_{\text{beam}} \cos^{c_8} \theta)$$

BMPT Parameterization


- ◆ From M. Bonesini, A. Marchionni, F. Pietropaolo, T. Tabarelli de Fatis, Eur. Phys. J. C 20, 13 (2001)
- → Fits include data from 400 GeV and 450 GeV data.

For π^+ and K^+ $(E \times \frac{d^3\sigma}{dp^3}) = A(1-x_R)^\alpha (1+Bx_R) x_R^{-\beta} \times \\ (1+a'(x_R)p_T+b'(x_R)p_T^2) e^{-a'(x_R)p_T}$ where $a'(x_R)=a/x_R^\gamma$ and $b'(x_R)=a^2/2x_R^\delta$.

Paper also discusses p/pbar/π-/K-/K⁰ production, A scaling, momentum scaling, long targets

Scaling of Hadron Production Above ~30 GeV

- * Feynman argued that invariant cross section $(E \frac{d^3 \sigma}{d^3 p})$ should be more or less constant with p_T and x_F , where $x_F = 2p_L^*/\sqrt{s}$
- Others have scaled by $x_R = E^*/E_{max}^*$

From Eur. Phys. J. C **20**, 13 (2001)

Dashed = fit to 400 and 450 GeV p + Be data scaled in p_T and x_R Points = data for 24 GeV p + Be interactions

Scaling for A of materials

From BMPT:

 $lpha_1$

 α_2

$$E\frac{d^3\sigma^{hA_1}}{dp^3} = \left(\frac{A_1}{A_2}\right)^{\alpha} \cdot E\frac{d^3\sigma^{hA_2}}{dp^3}.$$

• Scales as a power law of degree α which depends on x_F ,

$$\mathbf{p}_{\mathrm{T}} \qquad \alpha(x_F) = (0.74 - 0.55 \cdot x_F + 0.26 \cdot x_F^2) \cdot (0.98 + 0.21 \cdot p_T^2) \quad (10)$$

* At lower energies HARP data (Phys.Rev. C80 (2009) 035208) has shown that for the Sanford-Wang parameterization a correction of $corr = (A/A_{Be})^{\alpha}$ where $\alpha = \alpha_0 + \alpha_1 \times x_F + \alpha_2 \times x_F^2$ $\alpha_0 = (0.69 \pm 0.04) = (0.72 \pm 0.04)$

 $(-0.91 \pm 0.21) \ (-1.36 \pm 0.20)$

 $(0.34 \pm 0.21)_{48} \ (2.18 \pm 0.21)$

Summary

- * Lots of progress over the past 5 years in understanding hadron production uncertainties and their impact on neutrino flux uncertainties.
- * Increasingly measurements are available with uncertainties at the few % level
- More measurements that can have a major impact on the T2K, NuMI, and LBNF fluxes expected over the next few years
- * These experiments are crucial for reaching the scientific goals of next-generation neutrino beam experiments

Thanks!

Supported in part by

Office of