

Cosmic rays

Astrophysics:

Origin of features? Acceleration?

(Unger 2006)

Particle physics:

$$\sqrt{s_{pp}} > 100 \, \mathrm{TeV}$$

CRs through extensive air showers

CR air shower observables

- * particles at (under)ground
- * energy deposit along path

Example: Pierre Auger Observatory

Air shower development: the start

UHE interaction (~100 TeV)

- Hadronic!
- Exotic?
 - Black holes?
 - Fireball?
 - Chiral symmetry?

- **UHE secondaries** (~100 TeV)
- Pions, kaons, charmed ...
- New (exotic) particles?
- Lorentz invariance?

EAS according to the Standard Model

Hadronic interaction: π^{\pm}, π^{0}

$$\pi^{\pm} \to \mu^{\pm} + \nu_{\mu}$$
 $c\tau_{\pi^{\pm}} = 7.8 \,\mathrm{m}$

$$\pi^{0} \to \gamma\gamma$$
 $c\tau_{\pi^{0}} = 25 \,\mathrm{nm}$

Successive interactions:

EM cascade

hadronic cascade

EM cascade

Ionisation (continuous energy loss)

Equal sharing of energy

All with same interaction length

Multiplicity: 2

Etc.

$$N_i = 2^i \qquad E_i = \frac{E_0}{2^i}$$

 $E_i \leq E_{crit}$ Until continuous energy loss dominant

$$n_{crit} = \ln \left(\frac{E_0}{E_{crit}} \right)$$
 'generation z'

$$X_{\rm max}^{\rm (EM)} \sim \lambda_e \ln \left(\frac{E}{E_{crit}}\right)$$

Hadronic cascade

Assume pions only

 $n_{\rm ch} : n_{\rm tot} = 2 : 3$

Equal sharing of energy

Multiplicity: fixed $n_{\rm ch} = (2/3) n_{\rm tot}$

(Matthews 2005)

$$N_i = n_{\rm ch}^i$$

$$N_i = n_{\rm ch}^i \qquad E_i = \frac{E_0}{n_{\rm tot}^i}$$

$$E_{\text{ch},i} = (2/3)^i E_0$$

$$E_{\text{ch},i} = (2/3)^i E_0$$
 $E_{\text{neutral},i} = (1 - (2/3)^i) E_0$

Until pions likely decay $E_i = E_{crit,\pi}$

$$\langle N_{\mu} \rangle = \left(\frac{E_0}{E_{
m dec}}\right)^{eta} , \ eta = \frac{\ln n_{
m ch}}{\ln n_{
m tot}}$$

$$\beta \approx 0.82 \dots 0.94$$

Hadronic cascade

Assume pions only
$$n_{\rm ch}:n_{\rm tot}=2:3$$

All with same energy

Multiplicity: fixed
$$n_{\rm ch} = (2/3) \, n_{\rm tot}$$

(Matthews 2006)

$$X_{\text{max}}^{(\text{had})}(E_0) = \lambda_{\text{int}} + X_{\text{max}}^{(\text{EM})}(E_0/(2n_{\text{tot}}))$$

 $\sim \lambda_{\text{int}} + \ln\left(\frac{E_0}{2n_{\text{tot}}E_{crit}}\right)$

$$X_{\max}(E_0) \sim \ln(E_0)$$

Primary mass dependence

$$\langle X_{\text{max}}^{(\text{p})}(E_0) \rangle = \mathcal{D} \ln(E_0) \qquad \langle N_{\mu}^{(\text{p})}(E_0) \rangle = \mathcal{C} E_0^{\beta}$$

Superposition

nucleus A with $E_0 \rightarrow A \times \text{proton with } E_0/A$

$$\langle X_{\max}(E_0, A) \rangle = \mathcal{D} \ln \left(\frac{E_0}{A} \right)$$
 $\langle N_{\mu}(E_0, A) \rangle = A \times \mathcal{C} \left(\frac{E_0}{A} \right)^{\beta}$
$$= A^{1-\beta} \langle N_{\mu}^{(p)}(E_0) \rangle$$

Summary: EAS according to the Standard Model

Measurement of Xmax and Nmu

Fix primary energy and compare

$$X_{\rm max} \sim \ln(E/A)$$

$$\ln N_{\mu} \sim (1 - \beta) \ln A$$
$$\sim X_{\text{max}}$$

EAS according to the Standard Model?

 $X_{\rm max} \sim \ln(E/A)$

 $N_{\mu} \sim E^{\beta} A^{1-\beta}$

Whats going on?

- 1) First interaction Beyond SM?
- 2) SM predictions correct?

Interactions in air showers

energy of last hadron interaction

A way to get more muons

 π^{\pm} subshower

$$N_{\mu} \sim E^{\beta} A^{1-\beta}$$

increase $\pi^{\pm}:\pi^{0}$

$$\pi^+ + p \rightarrow \text{leading} + X$$

leading: $\pi(\text{spin} - 0)$ or $\rho(\text{spin} - 1)$

$$\rho^0 \to \pi^{\pm}$$
$$\pi^0 \to 2\gamma$$

$$\pi^0 \to 2\gamma$$

Rho mesons in NA61

Effect on muons in EAS

Muon data vs. post-LHC models

Universal rho meson enhancement.
Probably overestimated.

Close remaining gap \rightarrow motivate larger $\pi^{\pm}:\pi^{0}$

- * QGP effects?
- * Kaon interactions?

More from NA61

NA61 & Sibyll:

- * forward kaons,
- * forward antiprotons underestimated
- * central pions overestimated
- → work for post-NA61 Sibyll

So far:
$$\pi^- + C$$

Needed / Possible? :
$$K^{\pm} + C \rightarrow \pi, K, p, \bar{p}$$

Diffraction in
$$\pi^- + C$$

BSM physics for the muon puzzle?

Sivi predictions

BSM not needed!

Summary

- * EAS produce more muons than anticipated by interaction model —> muon puzzle
- * Muon production in EAS sensitive to broad spectrum of particle interactions
- * Probably no exotic physics needed to explain muon puzzle
 - * More accurate implementation of SM physics needed (NA61,LHCf tunes)
 - * More accelerator data to validate models needed (NA61: kaon interactions!)

Bibliography

Full shower

At the ground: more mixed

