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    Definition here: 

Cosmic charged particles with energies up to the PeV.      
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A - Charged cosmic-ray observables at Earth:

    

Energy Composition Direction

I – Detection and observables
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I – Detection and observables

B – Direct detection experiments  :

    

D.V. Skobeltsyn near his cloud chamber (1924)

CR observations lead to particle discoveries :

->  C.D. Anderson : positron and muon (1932, 1936)
->  C. Powell : charged pions (1947)
->  G.D.Rochester, C.C.Butler : strange particles (1947-1950) 

V. Hess (1912)
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I – Detection and observables

B – Direct detection experiments  :

    

D.V. Skobeltsyn near his cloud chamber (1924)

CR observations lead to particle discoveries :

->  C.D. Anderson : positron and muon (1932, 1936)
->  C. Powell : charged pions (1947)
->  G.D.Rochester, C.C.Butler : strange particles (1947-1950) 

V. Hess (1912)

Sensitive to sub-products of interactions of CR with the atmosphere !



  9

7

I – Detection and observables

B – Direct detection experiments :

    

Garzón et al,  XXV ECRS 2016 Proceedings
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I – Detection and observables

B – Direct detection experiments :

    

PAMELA (2006)
-Spectrometer !
- CR nuclei 1 GeV – 1.2 TeV 

Some satelites ... (~500km)

DAMPE (2015)
- CR nuclei 50 GeV – 500 TeV

NUCLEON (2014)
- CR nuclei 100 GeV – 1 PeV

VOYAGER (1977)
- Distance : 151 AU !
- CR nuclei 5 MeV – 500 MeV
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I – Detection and observables

B – Direct detection experiments :

    
Some detectors onboard ISS ... (~400km)

CALET (2015)
- CR nuclei 10 GeV – 1 PeV

AMS-02 (2011)
- Spectrometer !
- CR nuclei 1 GeV – 1.9 TeV
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I – Detection and observables

B – Direct detection experiments :

    
Some detectors onboard ISS ... (~400km)

CALET (2015)AMS-02 (2011)
-Spectrometer !

Exemple : AMS-02 event 
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C – Main features in cosmic-ray observables at Earth:

    

Energy Composition Direction

I – Detection and observables
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C – Main features in cosmic-ray observables at Earth:

    

Composition

I – Detection and observables

Protons: 85 % / Helium 12.5 % / Heavier nuclei 1 %
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C – Main features in cosmic-ray observables at Earth:

    

Composition

I – Detection and observables

Protons: 85 % / Helium 12.5 % / Heavier nuclei 1 %
        Electrons 1.5 %
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C – Main features in cosmic-ray observables at Earth:

    

Composition

I – Detection and observables

1 positron / 10^3 protons !     1 antiproton / 10^4 protons !! 

Antiparticles !
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C – Main features in cosmic-ray observables at Earth:

    

Composition

I – Detection and observables

Secondary cosmic-rays!

Collaboration ACE.,  Nuclear Physics A, Vol. 758 (2005) 
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C – Main features in cosmic-ray observables at Earth:

    

Composition

I – Detection and observables

Secondary cosmic-rays!

Collaboration ACE.,  Nuclear Physics A, Vol. 758 (2005) 

Li/Be/B
« SubFe »

Produced by spallation of heavier nuclei
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C – Main features in cosmic-ray observables at Earth:

    

Direction

I – Detection and observables

M A Velasco et al. TAUP 2019
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C – Main features in cosmic-ray observables at Earth:

    

I – Detection and observables

M. Ahlers & P. Mertsch (PPNP, 2016)

Direction

-> CRs arrival direction is 
quasi-isotrope.
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    I – Detection and observables  
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A – The energetic argument..

    

II – Sources

Cosmic ray energy density is large! 

Thermal pressure of gas in clouds

Starlight density

Magnetic fields

Gas kinetic motion

Cosmic-rays 
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A – The energetic argument..

    

II – Sources

Cosmic ray energy density is large! 

Thermal pressure of gas in clouds

Starlight density

Magnetic fields

Gas kinetic motion

Cosmic-rays 

F. Zwicky                   W. Baade

W. Baade and F. Zwicky Phys. Rev. 46, 76  (1934)

were the first to postulate that SNR 
could be possible sources of CRs.

Argument worked out in:  V. L. Ginzburg, S. I. Syrovatskii, The origin of cosmic rays, (1969).

A conversion of about 10% of the SNR energy into particle 
acceleration is sufficient to accomodate CR energetics

10% of
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B – Observation of SNRs

    

II – Sources

Non thermal emissions 

Gamma rays 

Collaboration, H. E. S. S.,  A&A 612, A6 (2018).

X-rays

Chandra observation of Tycho SNIa
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B – Observation of SNRs

    

II – Sources

Non thermal emissions 

Gamma rays 

Collaboration, H. E. S. S.,  A&A 612, A6 (2018).

X-rays

Chandra observation of Tycho SNIa
Funk, S. (2015). An. Rev. of Nuc. and Part. Sci., 65, 245-277.

- Pion decay from p-p colisions. 
- IC and Synchrotron form high-energy electrons.

Infered spectrum of accelerated particles:

Consistent with the theory of Diffusive shock acceleration (DSA)
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A – Diffusion 

    

III - Transport

Some observations supporting diffusion:

Perseus Double Cluster, visible light.

1- Isotropy of arrival directions
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A – Diffusion 

    

III - Transport

1- Isotropy of arrival directions

Some observations supporting diffusion..

M. Ahlers & P. Mertsch (PPNP, 2016)



  

26

A – Diffusion 

    

III - Transport

Some observations supporting diffusion..

M. Ahlers & P. Mertsch (PPNP, 2016)

Diffusive transport

1- Isotropy of arrival directions
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C – Main features in cosmic-ray observables at Earth:

    

Composition

I – Detection and observables

Secondary cosmic-rays!

Collaboration ACE.,  Nuclear Physics A, Vol. 758 (2005) 

Li/Be/B
« SubFe »

Produced by spallation of heavier nuclei

Reminder



  

A – Diffusion 

    

III - Transport

~20 kpc~20 kpc
2- Abundance of light elements

~0.2 kpc

 Milky Way  modelling

edge-on

face-on

27
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A – Diffusion 

    

III - Transport

2- Abundance of light elements

 Milky Way  modelling

Cylindrical box with typical escape time:   

#part.cm -3
#part.cm     .s

-3 -1

@ 1GeV :

Cosmic rays are confined in the Galactic volume!

They undergo a random walk scattering on the magnetic turbulence. 

27



  

A – Diffusion 

    

III - Transport

2- Abundance of light elements

 Milky Way  modelling

Galactic volume: what is the size of the box?

Assuming diffusion in the box: 

   

 The smallest sacle defines the escape time.  

27



  

A – Diffusion 

    

III - Transport

2- Abundance of light elements

 Milky Way diffusive halo

Galactic volume: what is the size of the box?

Assuming diffusion in the box: 

   

Size of the box given by long-lived radioisotopes:

   

Evoli et al.  PRD 101, 023013 (2020) 
Weinrich et al. A&A 639, A74 (2020)

Data on radioactive Be give:

   

27
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Not to scale!

20 kpc
0.2 kpc
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Cosmic rays follow a random motion 
in a large volume around the Galaxy!

20 kpc
~10

 kpc



  

29

A – Diffusion 

    

III - Transport

Galactic diffusive halo:   Consistent with the observation of other galaxies..

Max Planck Institute for radio astronomy. (taken from M Krause arxiv 0806.2060 and 0810.2923) 

NCG 4631

..extended synchrotron emission over kpc distances!

NCG 891
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A – Diffusion 

    

III - Transport

The escape time is a function of the energy.

Collaboration, H. E. S. S.,  A&A 612, A6 (2018).

@ 1GeV :

Quasi-linear theory

K(E) propto R^\delta

Quasi-linear theory 
prediction

when

CRs scatter on the waves of a turbulent spectrum:

For a Kolmogorov spectrum

For a Kolmogorov spectrum

Jokipii, Astrophys.J. 146 480 (1966)
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B – Transport equation

    

III - Transport

Steady state!
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B – Transport equation

    

III - Transport

Steady state!

Diffusion Convection Energy losses Reacceleration

Destruction Decay Source Spallation  Decay

Can be solved numerically (e.g. GALPROP or DRAGON codes) or semi-analytically (USINE code)

Predict the CR density in the Galaxy and compare with observations
in order to understand the sources and the transport.  
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B – Transport equation

    

III - Transport

Steady state!

-Fixed by “Laboratory” experiments or simulations

-Fixed by cosmic ray fluxes, depends on the phenomenology
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C – Transport parameters

    

III - Transport

Secondary cosmic-rays!

Collaboration ACE.,  Nuclear Physics A, Vol. 758 (2005) 
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C – Transport parameters

    

III - Transport

Secondary cosmic-rays!

Li/Be/B

« SubFe »

Collaboration ACE.,  Nuclear Physics A, Vol. 758 (2005) 

Produced by spallation of heavier nuclei
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C – Transport parameters

    

III - Transport

Steady state!

Solving this equation in a 1D geometry for a two nuclei system (B and C) leads to  
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We solve semi-analytically the famous propagation equation in a 1D geometry:

Low-rigidity Intermediate-rigidity High-rigidity

C – Transport parameters

III - Transport
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C – Transport parameters

III - Transport

YG et al. Phys. Rev. D 99, 123028 (2019) 
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C – Transport parameters

III - Transport

YG et al. Phys. Rev. D 99, 123028 (2019), Derome et al. A&A 627, A158 (2019), Weinrich et al. A&A 639, A74 (2020), 
Weinrich, YG et al. A&A 639, A131 (2020).    
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D – Why are these transport parameters interesting? 

III - Transport

  → Precise estimation is needed, one of the limitation comes 
from nuclear cross-sections.

Learn about the physics of the Galaxy:

 → Galactic Halo Turbulence properties.

 → Dynamic of the CRs and the gas.
 

 → To be compared with other observables.

Learn about exotic physics:

 → Compute predictions of secondaries 
antiparticles! 



  

38

D – Why are these transport parameters interesting? 

III - Transport

  → Precise estimation is needed, one of the limitation comes 
from nuclear cross-sections.

Learn about the physics of the Galaxy:

 → Galactic Halo Turbulence properties.

 → Dynamic of the CRs and the gas.
 

 → To be compared with other observables.

Learn about exotic physics:

 → Compute predictions of secondaries 
antiparticles! 



  

39

 Sources 

 Detection 

Transport



  

    I – Detection and observables  

   II – Sources  

  III – Transport

  IV – Some nuclear physics!

40



  

41

The case of the B/C..

IV – Some nuclear physics! 

AMS-02 data precision is close to the % level.
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Secondary cosmic rays: the boron 

30 %  +  70 %

IV – Some nuclear physics! 



  

42

IV – Some nuclear physics! 

Secondary cosmic rays: the boron 

30 %  +  70 %

Measured by 
detectors

Measured isotopic flux
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IV – Some nuclear physics! 

Secondary cosmic rays: the boron 

30 %  +  70 %

Measured by 
detectors

Measured isotopic flux

e.g. 

Measured up to 
few percent! Inputs!

Constraints on 
CR propagation 

parameters 
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IV – Some nuclear physics! 

Secondary cosmic rays: the boron 

30 %  +  70 %

Measured by 
detectors

Measured isotopic flux

e.g. 

Measured up to 
few percent! Inputs!.. large uncertainties
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IV – Some nuclear physics! 

Yoann Genolini6

Secondary cosmic rays: the boron 

30 %  +  70 %

Measured by 
detectors

1 2

Measured isotopic flux

e.g. 

Theoretical prediction in 
slab diffusion geometry

YG, Maurin, Moskalenko, Unger 
PhysRevC. 98,034611
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IV – Some nuclear physics! 

Yoann Genolini6

Secondary cosmic rays: the boron 

30 %  +  70 %

Measured by 
detectors

1 2

Measured isotopic flux

e.g. 

Theoretical prediction in 
slab diffusion geometry

Only one data point above 1GeV

Flat extrapolation at larger energies

Inconsistencies in data an 
approaches translate into 

different cross section modeling:

Webber 98, Webber 03, Galprop 12, ST98...

Estimated uncertainty: 
15-25 %
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IV – Some nuclear physics! 

M. Unger (NA61/SHINE Collaboration) Pos ICRC (2019) 446
. PoS(ICRC2019)446

NA61 is already taking data!

https://pos.sissa.it/358/446/
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Take home messages!

 → Galactic cosmic rays are mesured with unprecedented precision.

Energy Composition Direction

 → New physics may arise from a detailed interpretation of these observables.

Keys ingredients to further improve the analyses:

 → Experimental covariance from the collaborations.

 → Reduce the uncertainties on spallation cross sections.
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