

CERN SPS/H2 beam line: Providing particles for NA61/SHINE

120 GeV/c protons 2018

N. Charitonidis (CERN, EN-EA)

October 2020

Presentation outline

- Introduction
 – CERN accelerator complex
 - LHC & Injectors
 - SPS and North Area
- H2 beam line for NA61
 - Beam line Operational Principles
- Summary & Future

CERN accelerator complex

HiRadMat - High-Radiation to Materials

The CERN accelerator complex Complexe des accélérateurs du CERN

- A "complex" complex of machines that produce, accelerate, transport or collide particles with fixed targets or with other beams.
 - Machines that collide beams are referred to as "colliders"
 - LHC the largest collider constructed up-todate!

Since the largest machine is the LHC, the accelerators that "inject" LHC with particles may be referred to as "injectors"

CERN accelerator complex

The CERN accelerator complex Complexe des accélérateurs du CERN CMS LHC 2010 (27 km) North Area ALICE LHCb SPS 1976 (7 km) / AWAKE ATLAS **HiRadMat** AD ELENA **ISOLDE** BOOSTER REX/HIE n_TOF East Area LEIR ▶ RIBs (Radioactive Ion Beams)

LHC - Large Hadron Collider // SPS - Super Proton Synchrotron // PS - Proton Synchrotron // AD - Antiproton Decelerator // CLEAR - CERN Linear Electron Accelerator for Research // AWAKE - Advanced WAKefield Experiment // ISOLDE - Isotope Separator OnLine // REX/HIE - Radioactive Experiment/High Intensity and Energy ISOLDE // LEIR - Low Energy Ion Ring // LINAC - LINear Accelerator // n_TOF - Neutrons Time Of Flight // HiRadMat - High-Radiation to Materials

Protons

- Linac4 → Booster → PS → SPS → LHC
- Increasing momentum from eV/c → TeV/c
- LHC collides beams at 13 TeV/c center of mass → Plans for the future to collide at 14 TeV* and higher in the future.

* 1.5 TeV/c : The kinetic energy of a mosquito moving....

Large LHC Experiments

The CERN's Secondary Beam Areas

- All the injectors the particles circulating are protons (for most part of the year) or various species of ions for a few weeks / year.
 - SPS a <u>fixed momentum</u> of 450 GeV/c protons
 - PS a <u>fixed momentum</u> of 24 GeV/c protons
- Fixed Target Experiments (like NA61/SHINE) are studying interactions of different particles, with variable energies!
- Also: All the complex LHC experiments need different particles and different energies to calibrate properly their detectors.
- → CERN Secondary Beam Lines Facilities where all kinds of particles can be available, on a wide-range of momenta and conditions.

North Area Secondary Beam Lines

Since then, very exciting physics program with very important physics results:

Experiment	Publications (INSPIRE – 2020)
NA58 (COMPASS)	1016
NA61 (SHINE)	415
NA62	229
NA63	9
NA64	8
NA65 (DsTAU)	8
DUNE	68

First Beam Profiles

North Area Secondary Beam Lines

CERN accelerator complex

HiRadMat - High-Radiation to Materials

- Protons from SPS are extracted towards the North Area Targets via the transfer line TT20.
- The 400 GeV/c beam is impinging to 3 different targets in order to produce the secondary particles that the various experiments need.
- The H2 line that serves NA61 starts from the "T2" target.

Secondary Particle Production

Using that very simple principle, and extracting the 400 GeV/c proton beam from SPS we produce secondary particles that subsequently are selected and transported to the various experiments (including NA61/SHINE)

North Area Secondary Beam Lines

The 400 GeV/c primary beam from SPS is *slowly* extracted onto *3 'primary'*

targets

- Spill duration approx. 5 seconds
- Usually: 2 cycles / SPS supercycle for NA
- Cycle length / repetition frequency dependent on the physics program of all the facilities served by SPS plus the filling of LHC

Beams in the TCC2 target station

29-Oct-20

Schematic of the beam lines & experimental areas in EHN 1 Top view of b. 887 @ CERN, Prevessin

The H2 beam line of CERN – North Area

H2: A precise (2% dp/p acceptance), robust, flexible magnetic spectrometer EHN1 Building

H2 optics

For each NA61 application, different tuning may be necessary!

Collimators

- Acceptance collimators Define the shape and the intensity of the beam
 - Located at the points that the beam envelope is large, allowing to define the angular aperture of the beam ("acceptance")

Cleaning collimators

 A repetition of an earlier acceptance collimator in order to *clean* the secondaries created at the edges of the earlier collimators

Possibilities of H2 beam line

- Any energy of hadrons or electrons possible between ~10 – 400 GeV/c
- Positive or negative charge
- High (10⁷) or low (100) particles/spill
- Variable spot size and variable "waist"

Limitations and future of H2 beam line

- Designed in the 1970s "The 300 GeV/c working group"
 - Lower energies not favored
 - < 10 GeV impossible (also length-wise)
 - Production usually maximum @ p_T = 0.3 GeV/c
 - Large angles → Large spot-sizes & lower rate

CERN/SPC/299 11 December, 1970

ORGANISATION EUROPÉENNE POUR LA RECHERCHE NUCLÉAIRE

CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

A DESIGN OF THE EUROPEAN 300 GeV RESEARCH FACILITIES

Chapter 1

A NA61-CERN working group is studying this possibility for beams < 10 GeV/c

Conclusions

- An excellent collaboration between CERN and NA61 in the last years, and the optimization of H2 beam line towards serving NA61 physics goals will continue.
- Many ideas for exciting physics- Looking forward for the restart in 2021!
- In case if questions on the beam line or the accelerator chain please don't hesitate to contact me!

