

Outline

- Fixed target experiment
- NA61/SHINE detector - general overview
- Time Project Chamber
- Tracking
- Energy lost - particle identification
- Time of Flight
- Particle identification
- Projectile Spectator Detector
- Centrality of the collisions
- Vertex Detector
- V0 particle
- Beam Detectors
- Detector Upgrade

Why we need to detect particle

- Usually we can not 'see' the reaction itself, but only the end products of the reaction.
- In order to reconstruct the reaction mechanism and the properties of the involved particles, we want the maximum information about the end products
- The event - each of collisions of projectile particles

Fixed target experiment

SPS

NA61/SHINE - Experimental layout

- Large acceptance hadron spectrometer
- Beam particles measured in set of counters and position detectors
- Tracks of charged particles measured in set of TPCs: measurement of q, p and identification by energy loss measurement
- 3 Time of Flight Walls: identification via time of flight measurement
- Projectile Spectator Detector measures the forward energy which characterizes centrality of collision
- Vertex Detector (open charm measurements)
- Forward TPC-1/2/3

NA61/SHINE

Experimental

 layout
TPC - Time Projection Chamber

Time Projection Chamber
full 3D track reconstruction:

- x-y from wires and segmented cathode of MWPC
- z from drift time
- momentum resolution
space resolution + B field (multiple scattering)
- energy resolution
measure of primary ionization

Tracking

- Measure a particle's charge and momentum
- Tracking device, are in a strong magnetic field
- The signs of the charged particles can easily be read from their paths
- The momenta of particles can be calculated since the paths of particles with greater momentum bend less than those of lesser momentum.

$\mathrm{Pb}+\mathrm{Pb}$

Vertex distribution along the beam axis

$\mathrm{dE} / \mathrm{dX}$ and Momentum

$-\left\langle\frac{d E}{d x}\right\rangle=K z^{2} \frac{Z}{A} \frac{1}{\beta^{2}}\left[\frac{1}{2} \ln \frac{2 m_{e} C^{2} \beta^{2} \gamma^{2} T_{\max }}{I^{2}}-\beta^{2}-\frac{\delta(\beta \gamma)}{2}\right]$

$$
\frac{d E}{d X} \propto \frac{1}{\beta^{2}} \propto \frac{m^{2}}{p^{2}}
$$

Positive particles

Energy lost

- In each p, p_{T} bin sum of Gauss functions is fitted to the $d E / d x$ spectrum
- For each track the probability for being a hadron of specific type is calculated based on the fitted $\mathrm{dE} / \mathrm{dx}$ distribution
- Sum of these probabilities gives the mean multiplicity of the identified hadrons

Time of Flight systems (ToF)

- particle identification based only on energy loss measurement can not be performer in the crossover region of the Bethe-Bloch curves
- Based on the scintillators detectors

$$
m^{2}=p^{2}\left(\frac{c^{2} t o f^{2}}{l^{2}}-1\right)
$$

Time of

Flight systems (ToF)

190 cm

Combined PID

- tof- $d E / d x$ method estimates number of p, K, π using an energy loss and a particle time of flight measurements
- $d E / d x$ - form TPC
- Tof - from time of flight (scintillators detectors)

Centrality of the collision

before collision
after collision

Projectile Spectator Detector

- forward hadron calorimeter
- measurement of projectile spectator energy in nucleusnucleus collisions
- The central part
- 16 small modules with transverse dimension of 10×10 cm2
- weight of 120 kg each
- The outer part
- 28 large $20 \times 20 \mathrm{~cm} 2$ modules
- weight of 500 kg each

Projectile Spectator Detector

Projectile Spectator Detector

- measures the forward energy E_{F} related to the non-interacting nucleons of the beam nucleus
- Intervals in EF allow to select different centrality classes

V^{0} - method

- Method example
- Decay channel: $\Lambda \rightarrow p+\pi{ }^{-}$
- Calculation of the invariant mass from products $M_{i n v}=\sqrt{\left(E_{1}+E_{2}\right)^{2}-\left(\vec{p}_{1}+\vec{p}_{2}\right)^{2}}$

Λ mass from PDG $1115.678 \pm 0.006 \pm 0.006 \mathrm{GeV} / \mathrm{c}^{2}$

Studies of open charm measurements

Vertex detector is needed to reconstruct primary vertex and secondary vertexes with high precision

Silicon detector

- Why silicon
- Better energy resolution and high signal
- Thin detectors
- Reduced range of secondary particles
- Allows thin self supporting structures
- fast charge collection

Vertex detector

- Silicon sensors located on horizontally movable arms
- Target holder integrated

Beam detectors

d)

Set of scintillation and Cherenkov counters as well as the beam position detectors

- located upstream of the target
- provide precise timing reference,
- charge and position measurement of the incoming beam particles

Beam counters

- plastic scintillator
- precise reference time
- counts number of beam particles

Secondary beam

> A charged particle, moving though a medium at a speed which is greater than the speed of light in the medium, produces Cherenkov light.

Classical analogue: fast boat on water
かn 1 nuer $\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow$

Cherenkov detector

Beam Position Detectors

- the positions of the incoming beam particles in the transverse plane are measured by a telescope of three BPDs
- proportional chambers

Targets

Front End electronics

- Most detectors rely critically on low noise electronics. A typical Front End is shown below:

where the detector is represented by the capacitance C_{d}, bias voltage is applied through R_{b}, and the signal is coupled to the amplifier though a capacitance C_{c}. The resistance R_{s} represent all the resistances in the input path.
The preamplifier provides gain and feed a shaper which takes care of the frequency response and limits the duration of the signal.

Trigger

- system that uses criteria to rapidly decide which events in a particle detector to keep
- necessary due to real-world limitations in computing power, data storage capacity and rates
- NA61/SHINE
- flexible and robust system capable of handling and selecting different reactions using a variety of beams (pions, kaons, protons, ions)
- trigger is formed using:
- beam counters
- Cherenkov detectors
- PSD calorimeter
- four different triggers can be run simultaneously

Readout system

Detector Control System

- responsible for online monitoring and controlling of the working conditions of the detectors
- The system monitors parameters as:
- gas mixture in the TPCs
- high and low voltage

Detector upgrade during LS2

Replacement of the TPC electronics

Will increase the read-out rate by a factor of about 10 (up to 1 kHz)

