

- Fixed target experiment
- NA61/SHINE detector general overview
- Time Project Chamber
 - Tracking
 - Energy lost particle identification
- Time of Flight
 - Particle identification
- Projectile Spectator Detector
 - Centrality of the collisions
- Vertex Detector
 - V0 particle
- Beam Detectors
- Detector Upgrade

Why we need to detect particle

- Usually we can not 'see' the reaction itself, but only the end products of the reaction.
- In order to reconstruct the reaction mechanism and the properties of the involved particles, we want the maximum information about the end products
- The event each of collisions of projectile particles

Fixed target experiment

SPS

NA61/SHINE - Experimental layout

- Large acceptance hadron spectrometer
- Beam particles measured in set of counters and position detectors
- Tracks of charged particles measured in set of TPCs: measurement of q, p and identification by energy loss measurement
- 3 Time of Flight Walls: identification via time of flight measurement
- Projectile Spectator Detector measures the forward energy which characterizes centrality of collision
- Vertex Detector (open charm measurements)
- Forward TPC-1/2/3

NA61/SHINE

Experimental layout

TPC - Time Projection Chamber

Time Projection Chamber full 3D track reconstruction:

- x-y from wires and segmented cathode of MWPC
- z from drift time
- momentum resolution
 space resolution + B field
 (multiple scattering)
- energy resolution
 measure of primary ionization

Tracking

- Measure a particle's charge and momentum
 - Tracking device, are in a strong magnetic field
 - The signs of the charged particles can easily be read from their paths
 - The momenta of particles can be calculated since the paths of particles with greater momentum bend less than those of lesser momentum.

Pb+Pb

Vertex distribution along the beam axis

dE/dX and Momentum

$$-\left\langle \frac{dE}{dx}\right\rangle = K z^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \ln \frac{2m_e c^2 \beta^2 \gamma^2 T_{max}}{I^2} - \beta^2 - \frac{\delta(\beta \gamma)}{2} \right]$$

$$\frac{dE}{dX} \propto \frac{1}{\beta^2} \propto \frac{m^2}{p^2}$$

Positive particles

- In each p, p_T bin sum of Gauss functions is fitted to the dE/dx spectrum
- For each track the probability for being a hadron of specific type is calculated based on the fitted dE/dx distribution
- Sum of these probabilities gives the mean multiplicity of the identified hadrons

q x p [GeV/c]

Time of Flight systems (ToF)

- particle identification based only on energy loss measurement can not be performer in the crossover region of the Bethe-Bloch curves
- Based on the scintillators detectors

$$m^2 = p^2 \left(\frac{c^2 tof^2}{l^2} - 1 \right)$$

Time of Flight systems (ToF)

Combined PID

- tof-dE/dx method estimates number of p, K, π using an energy loss and a particle time of flight measurements
- dE/dx form TPC
- *Tof* from time of flight (scintillators detectors)

Centrality of the collision

Projectile Spectator Detector

- forward hadron calorimeter
- measurement of projectile spectator energy in nucleusnucleus collisions

Projectile Spectator Detector

- The central part
 - 16 small modules with transverse dimension of 10x10 cm2
 - weight of 120 kg each
- The outer part
 - 28 large 20x20 cm2 modules
 - weight of 500 kg each

Projectile Spectator Detector

- measures the forward energy E_F related to the non-interacting nucleons of the beam nucleus
- Intervals in EF allow to select different centrality classes

V^0 – method

- Method example
 - Decay channel: $\Lambda \rightarrow p + \pi^-$
 - Calculation of the invariant mass from products

$$M_{inv} = \sqrt{(E_1 + E_2)^2 - (\vec{p}_1 + \vec{p}_2)^2}$$

 Λ mass from PDG 1115.678±0.006±0.006 GeV/c²

Studies of open charm measurements

Vertex detector is needed to reconstruct primary vertex and secondary vertexes with high precision

Silicon detector

- Why silicon
 - Better energy resolution and high signal
 - Thin detectors
 - Reduced range of secondary particles
 - Allows thin self supporting structures
 - fast charge collection

Vertex detector

- Silicon sensors located on horizontally movable arms
- Target holder integrated

Beam detectors

Set of scintillation and Cherenkov counters as well as the beam position detectors

- located upstream of the target
- provide precise timing reference,
- charge and position measurement of the incoming beam particles

Beam counters

- plastic scintillator
- precise reference time
- counts number of beam particles

Secondary beam

Cherenkov detector

Beam Position Detectors

 the positions of the incoming beam particles in the transverse plane are measured by a telescope of three BPDs

proportional chambers

Targets

Front End electronics

 Most detectors rely critically on low noise electronics. A typical Front End is shown below:

where the detector is represented by the capacitance C_d , bias voltage is applied through R_b , and the signal is coupled to the amplifier though a capacitance C_c . The resistance R_s represent all the resistances in the input path.

The preamplifier provides gain and feed a shaper which takes care of the frequency response and limits the duration of the signal.

Trigger

- system that uses criteria to rapidly decide which events in a particle detector to keep
- necessary due to real-world limitations in computing power, data storage capacity and rates
- NA61/SHINE
- flexible and robust system capable of handling and selecting different reactions using a variety of beams (pions, kaons, protons, ions)
- trigger is formed using:
 - beam counters
 - Cherenkov detectors
 - PSD calorimeter
- four different triggers can be run simultaneously

Readout system

Detector Control System

- responsible for online monitoring and controlling of the working conditions of the detectors
- The system monitors parameters as:
 - gas mixture in the TPCs
 - high and low voltage

Detector upgrade during LS2

Replacement of the TPC electronics

Will increase the read-out rate by a factor of about 10 (up to 1 kHz)

