

Double Higgs production at a muon collider: energy and precision

Dario Buttazzo

First Muon Collider Physics Potential Meeting - 16.10.2020

Double Higgs production

A High Energy Lepton Collider is a "vector boson collider"

$$\mathscr{C}_{VV} pprox rac{s}{\hat{s}} \log rac{s}{\hat{s}}$$
 Dawson, 1984

For "soft" final state $\hat{s} \sim 4m_h^2$, cross-section is enhanced as $\sigma \approx \log(s/m_h^2)$

For high partonic energies $\hat{s} \gg m_h^2$ amplitude for longitudinal W scattering grows as $\mathcal{A} \sim \hat{s}$

Naïve estimate of the reach.

Number of events: $N \sim s \log(s/m_h^2)$

assume overall efficiency $\sim 10\%$

\sqrt{s} [TeV]	L [ab ^{-1]}	σ [fb]	Nsm	$\delta\sigma \sim (N_{SM} * \text{eff})^{-1/2}$	δλ		
3	1	0.82	800	~ 10%	~ 15%		
10	10	3.1	31'000	~ 1.8%	~ 4%		
14	20	4.4	88'000	~ 1%	~ 3%		
30	90	7.4	660'000	~ 0.4%	~ 1.5%		

Cross-section dependence on $\delta\lambda$

$$\sigma = \sigma_{\rm SM} + a_1(\delta\lambda) + a_2(\delta\lambda)^2$$

• Acceptance cuts in polar angle θ and p_T of b-jets. E.g. for pT > 10 GeV, $\theta > 10^{\circ}$:

$$\begin{split} \sigma_{\rm cut}(3\,{\rm TeV}) &= 0.13 \left[1 - 0.87 (\delta\lambda) + 0.74 (\delta\lambda)^2 \right] \, {\rm fb}, & {\sf BR}(hh \to 4b) = 34\% \\ \sigma_{\rm cut}(10\,{\rm TeV}) &= 0.24 \left[1 - 0.81 (\delta\lambda) + 0.71 (\delta\lambda)^2 \right] \, {\rm fb}, & {\sf factor 10 \ loss} \\ \sigma_{\rm cut}(30\,{\rm TeV}) &= 0.27 \left[1 - 0.79 (\delta\lambda) + 0.78 (\delta\lambda)^2 \right] \, {\rm fb}. & {\sf factor 10 \ loss} \\ {\sf in \ xsec \ at \ 30 \ TeV} \end{split}$$

- Neglect backgrounds (for the moment)
- Assume signal reconstruction efficiency ε ~ 25% as CLIC [1901.05897]: mainly from invariant-mass cuts and b-tag

\sqrt{s} [TeV]	L [ab-1]	σ [fb]	N _{rec}	$\delta\sigma \sim N_{\rm rec}^{-1/2}$	δλ
3	5	0.13	170	~ 7.5%	~ 10%
10	10	0.24	630	~ 4%	~ 5%
30	90	0.74	6'300	~ 1.2%	~ 1.5%

Sensitivity to angular acceptance

- hh signal is strongly peaked in the forward region
- Contribution from trilinear coupling is more central: loss due to angular cut is less important

Sensitivity to jet p_T threshold

Jets come from Higgs decays:
 typical momentum ~ m_h/2

• No significant impact if $pT_{min} \lesssim 40-50 \text{ GeV}$

higher thresholds start to reduce the sensitivity

Backgrounds

- Backgrounds are important and cannot be neglected (see also CLIC study [1901.05897])
- Mainly VBF di-boson production: Zh & ZZ, but also WW, Wh, WZ...
 other backgrounds are easily rejected with cut on tot. inv. mass
- Precise invariant mass reconstruction is crucial to isolate signal
 - resolution on Z inv. mass ~ 6–7% at 3 TeV [CLICdp-Note-2018-004]
 - for Higgs energy resolution is worse: 10% on jet energy, ~ 15% on inv. mass (neutrinos in semi-leptonic b decay, too forward tracks missed)

thanks to Philipp

for discussion

what happens at muon collider?

Backgrounds

(Very!) simplified background analysis (at parton level!)

- ► Include all VV → VV processes (Zhvv, ZZvv, WWvv, Whv, WZv)
- Apply gaussian smearing to jets, assuming 15% energy resolution
- Reconstruct bosons by pairing jets with minimal |m(j₁j₂) m(j₃j₄)|

 Optimize cuts to reject bkg: dijet inv. mass, n. of b-tags

 $M_{hh} > 105 \text{ GeV},$

$$n_b = 3.2$$

 $\varepsilon_{sig} = 27\%$

NB: all this should be done properly (and has been done, for CLIC), with a detector simulation

Backgrounds

One can now repeat the analysis for different jet energy resolutions:

... and different energies:

no real gain using only central events...

Optimize cuts to reject bkg:

 $M_{hh} > 105 \text{ GeV},$

 $n_b = 2.8$ $\varepsilon_{sig} = 32\%$

result very similar to 3 TeV

+ *hhh* coupling is affected by two operators in SMEFT: $\mathcal{O}_H = \frac{1}{2} \left(\partial_\mu |H|^2 \right)^2 \qquad \mathcal{O}_6 = -\lambda |H|^6$

$$g_{hhh} = g_{hhh}^{\rm SM} \left(1 + v^2 \left(c_6 - \frac{3}{2} c_H \right) \right)$$
$$g_{hWW} = g_{hWW}^{\rm SM} \left(1 - v^2 \frac{c_H}{2} \right)$$

trilinear coupling

O_H also affects single Higgs couplings universally

$$\sigma = \sigma_{\rm SM} + a_1 c_6 + a_2 c_6^2 + b_1 c_H + b_2 c_H^2 + d_2 c_H c_6$$

large degeneracy: coefficients not determined in general

+ *hhh* coupling is affected by two operators in SMEFT: $\mathcal{O}_H = \frac{1}{2} \left(\partial_\mu |H|^2 \right)^2 \qquad \mathcal{O}_6 = -\lambda |H|^6$

$$g_{hhh} = g_{hhh}^{\rm SM} \left(1 + v^2 \left(c_6 - \frac{3}{2} c_H \right) \right)$$
$$g_{hWW} = g_{hWW}^{\rm SM} \left(1 - v^2 \frac{c_H}{2} \right)$$

trilinear coupling

O_H also affects single Higgs couplings universally

$$\sigma = \sigma_{\rm SM} + a_1 c_6 + a_2 c_6^2 + b_1 c_H + b_2 c_H^2 + d_2 c_H c_6$$

large degeneracy: coefficients not determined in general

c_H can be constrained from Higgs couplings (but indirect measurement) $\Delta g_{hWW} \propto v^2/f^2 \lesssim 10^{-3}$

Double Higgs at high mass

High energy $VV \rightarrow hh$ at 3 TeV CLIC:

 $\xi = c_H v^2 \lesssim 0.01$ Contino et al. 1309.7038

not able to compete with single Higgs, $\xi \sim \text{few}^* 10^{-3}$

hh at high mass

- + E = 3 TeV, \mathcal{L} = 3 ab⁻¹: $\xi = c_H v^2 ≤ 0.01$ Contino et al. 1309.7038
- Rescale to higher energies: $\xi \propto \frac{1}{E^2} \frac{1}{\sqrt{N_{\text{bkg}}}} \propto \frac{1}{E^2} \frac{1}{\sqrt{\mathcal{L}/E^2}} = \frac{1}{E\sqrt{\mathcal{L}}}$

(assumption: cuts rescaled with E, and bkg composition unchanged)

High-energy WW $\rightarrow hh$ becomes more sensitive than Higgs pole physics at energies > 14 TeV

$$\sqrt{s} = 14 \,\text{TeV}, \ \mathcal{L} = 20 \,\text{fb}^{-1}$$

 $\xi < 10^{-3} \qquad c_H^{-1/2} > 8 \,\text{TeV}$

$$\sqrt{s} = 30 \,\text{TeV}, \ \mathcal{L} = 90 \,\text{fb}^{-1}$$

 $\xi < 2 \times 10^{-4} \ c_H^{-1/2} > 17 \,\text{TeV}$

hh at high mass

- Simulate hh events in high-p_T / high-mass region
- Choose p_T and M_{hh} cuts to optimize sensitivity to c_H
- Very boosted Higgses: tag them as a single h-jet, without reconstructing the 4 b's.

We assume a boosted-H tagging efficiency ~ 50%

 $c_H \times \xi$

CLICdp

L=4 ab⁻¹,e⁻ pol -80%

Resonance searches

VBF resonance production cross-section

enhanced if the resonance is light

Example: scalar production

$$\mu^+\mu^- \to \phi \nu \nu, \quad \phi \to hh, W^+W^-, ZZ$$

It's like a heavy Higgs with narrow width + *hh* decay

$$\sigma(\ell^+\ell^- \to h\nu\bar{\nu}) \approx \frac{g^4}{256\pi^3 v^2} \Big[\log\frac{s}{m_h^2} - 2\Big]$$

cross-section grows at high energy due to longitudinal W-fusion

Resonant hh & VV searches

Main decay channels: $\phi \rightarrow hh$, WW, ZZ.

 $BR_{\phi \to VV} \approx 1 - BR_{\phi \to hh}$ VV and hh channels are complementary

Cut & count experiment around resonance

- Very small background at high masses, the error is dominated by statistics In the limit of no bkg: $[\sigma_{95\%} \times BR] \simeq 3/\mathcal{L}$
- Parton-level analysis for $\phi \rightarrow hh(4b)$:

Identification cut: $m_{4b} = m_{\phi} \pm 15\%$ b-tag efficiency 30%

(validated with simulation at 3 TeV CLIC)

Example: scalar singlet

Compare the reach of very high energy lepton & hadron colliders

Example: scalar singlet

Compare the reach of very high energy lepton & hadron colliders

For this class of models, a high-energy $\mu^+\mu^-$ collider has an amazing reach if compared to single Higgs meas. or direct searches at a 100 TeV pp collider ¹⁶

Summary

Backup

Cross-sections

+ Total cross-section (acceptance $\theta > 10^{\circ} \& pT > 10 GeV$):

 $\sigma_{3 \,\mathrm{TeV}} = \left[0.13 + 0.51 \, c_H \, v^2 - 0.11 \, c_6 \, v^2 + 3.5 \, c_H^2 v^4 + 0.10 \, c_6^2 v^4 - 0.73 \, c_H \, c_6 \, v^4 \right] \,\mathrm{fb},$ $\sigma_{10 \,\mathrm{TeV}} = \left[0.24 + 1.73 \, c_H \, v^2 - 0.19 \, c_6 \, v^2 + 46.9 \, c_H^2 v^4 + 0.17 \, c_6^2 v^4 - 2.01 \, c_H \, c_6 \, v^4 \right] \,\mathrm{fb},$ $\sigma_{30 \,\mathrm{TeV}} = \left[0.27 + 3.48 \, c_H \, v^2 - 0.21 \, c_6 \, v^2 + 376.7 \, c_H^2 v^4 + 0.21 \, c_6^2 v^4 - 3.74 \, c_H \, c_6 \, v^4 \right] \,\mathrm{fb}.$

+ High-mass:

\sqrt{s}	M_{hh} cut	$p_{T,h}$ cut	$\sigma(\mu^+\mu^- \to hh\nu\nu)$ [fb]
$3 { m TeV}$	$250 { m ~GeV}$	$150 { m GeV}$	$0.01 + 0.98 c_H v^2 - 0.09 c_6 v^2 + 10.2 c_H^2 v^4 + 0.08 c_6^2 v^4 - 1.26 c_H c_6 v^4$
$6 { m TeV}$	$680~{\rm GeV}$	$300 { m ~GeV}$	$0.05 + 1.49 c_H v^2 - 0.04 c_6 v^2 + 44.4 c_H^2 v^4 + 0.03 c_6^2 v^4 - 1.61 c_H c_6 v^4$
$14 { m TeV}$	$1500 { m ~GeV}$	$690~{\rm GeV}$	$0.01 + 1.78 c_H v^2 - 0.01 c_6 v^2 + 254.3 c_H^2 v^4 + 0.007 c_6^2 v^4 - 1.88 c_H c_6 v^4$
$30 { m TeV}$	$2800 { m ~GeV}$	$1360 { m ~GeV}$	$ 0.005 + 2.11 c_H v^2 - 0.003 c_6 v^2 + 1214 c_H^2 v^4 + 0.002 c_6^2 v^4 - 2.2 c_H c_6 v^4 $

Resonant $hh \rightarrow 4b$ at CLIC

Main backgrounds: *hh*, *ZZ*, *Zh*. We simulate the full process $e^+e^- \rightarrow 4b + 2v$

