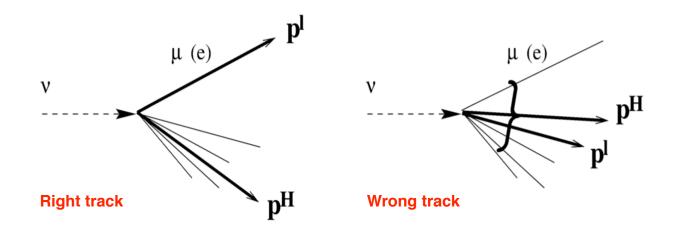
Kinematic Tagging of Muons in STT

B. Guo and R. Petti

University of South Carolina, Columbia SC, USA


DUNE ND meeting October 09, 2020

KINEMATIC VARIABLES

 Kinematic tagging must discriminate between the true μ[±] track and wrong h[±] track inside the SAME CC event: total visible momentum is constant (3 constraints).

Consider 4 kinematic variables for muon tagging:

- p_T^l : transverse momentum of the track candidate;
- $\theta_{\nu l}$: angle of the track candidate with respect to beam direction;
- y_{Bj} : ratio between the energy of the "hadron system" (visible energy minus track energy) and the total visible energy;
- R_{Q_T} : ratio between the transverse size of the of the "hadron system" $\langle Q_T^2 \rangle_H$ and that of the full event $\langle Q_T^2 \rangle$, where Q_T component of the track momentum perpendicular to the total visible momentum.

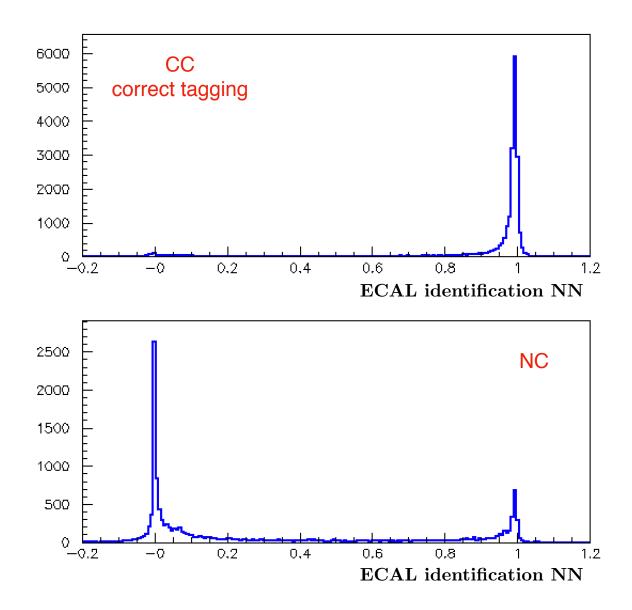
Roberto Petti

KINEMATIC TAGGING OF μ^- AND μ^+

- From reconstructed momentum vector determine if the track will reach outer yoke:
 (i) sample reaching outer yoke; (ii) sample NOT reaching outer yoke.
- Veto tracks interacting within STT volume (both μ^- and μ^+ tagging).
- Veto protons for μ^+ tagging using NN for proton ID.
- ✦ For events with ≥ 2 candidate tracks calculate a NN value for each candidate track using two separate NN trainings for the two samples:
 - Tracks reaching outer yoke: use training with all events with ≥ 2 candidate tracks, NN_1 ;
 - Tracks NOT reaching outer yoke: use training with events with ≥ 2 candidate tracks & μ^{\mp} NOT reaching outer yoke (NN₂), multiply NN₂ values by optimized constant c = 15.0.
- ◆ Select the single negative/positive track in the event with the highest NN output:

Event sample	Selected track	Tagging efficiency
FHC ν_{μ} CC	μ^-	99.1%
RHC $ar{ u}_{\mu}$ CC	μ^+	99.3%

REJECTION OF NC BACKGROUND


- + Focus on tagged tracks NOT reaching outer yoke ($\sim 30\%$ of μ^- , 14% of μ^+):
 - NC background from tagged tracks reaching outer yoke $\sim 0.1\%$;
 - For tracks reaching outer yoke external muon identifier provides additional rejection.

✦ Three rejection criteria available:

- Energy deposition and topology (interactions) in ECAL;
- Track variables related to the kinematic tagging;
- Event kinematics based on isolation & transverse plane kinematics.

 \implies Specific cuts applied will depend on the particular physics analysis

- ◆ For the selection of CC interactions on hydrogen only µ[±] tagging needed: kinematic selection of H reduces NC backgrounds to < 10⁻³.
- ◆ Initial optimization of μ^{\pm} identification without global event kinematics. ⇒ Apply initial loose ECAL identification with NN>0.36 (to be optimized)

Tagged tracks reaching barrel ECAL and NOT reaching outer yoke

REJECTION OF WRONG SIGN BACKGROUND

+ For each event apply BOTH μ^- and μ^+ tagging

 \implies Select single μ^- and single μ^+ candidate within same event

✤ If wrong sign candidate exists:

- Reject events with wrong sign candidate reaching outer yoke;
- Reject events with wrong sign candidate identified in ECAL if right sign one NOT reaching outer yoke.

⇒ Efficient tagging allows use of magnet yoke to filter out wrong sign background

Event selection	Efficiency	${\it Purity}\ u_{\mu} {\it CC} + ar{ u}_{\mu} {\it CC} + {\it NC}$	Wrong sign contamination
$\begin{array}{c} \textit{RHC} \ \mu^+ \ \textit{selection} \\ \textit{RHC} \ \mu^- \ \textit{selection} \end{array}$	98.7 %	93.6 %	0.7 %
	95.6 %	90.7 %	1.4 %

6

Event selection	Efficiency	$egin{array}{l} {\it Purity} \ u_{\mu} {\it CC} + ar{ u}_{\mu} {\it CC} + {\it NC} \end{array}$	Wrong sign contamination
$RHC \ \mu^+$ selection $RHC \ \mu^-$ selection	98.5 %	93.8 %	0.7 %
	94.6 %	91.0 %	1.4 %

Selection assuming 100% ID efficiency for tracks reaching outer yoke (external identifier)

Backup slides