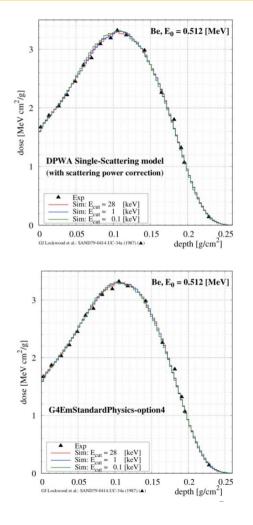


Highlight of **Geant4 Physics** from the **25**th Collaboration Meeting

Alberto Ribon (CERN EP/SFT)

SFT group meeting, 12 October 2020

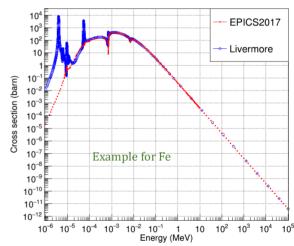

ElectroMagnetic (EM) Physics

The new model:

G4eDPWACoulombScatteringModel

- New model for e-/e+ single Coulomb scattering based on numerical Differential Cross Section (DCS) computed by ELSEPA: Dirac Partial Wave Analysis (DPWA)
 - scattering on the static-field of the nucleus screened by the atomic electrons
 - using Fermi charge distribution of the nucleus and Dirac-Fock electron densities of the atoms
 - exchange (only for e- of course), correlation-polarization (for E<10 [keV]) were applied on the top of the above static-field approximation
 - for electrons and positrons scattering on *free atoms* (described by the above scattering potential) with atomic numbers of Z = 1-103 and primary kinetic energies of 10eV 100MeV
 - see more at <u>https://indico.cern.ch/event/937007/contributions/3937722/attachments/2070119</u> <u>/3475015/MNovak_DPWAElasticModel.pdf</u>
- NOTE:
 - *absorption correction* was not included in the computation (since it's an inelastic channel)
 - most accurate free atoms DCS: accuracy might be limited when aggregation effects become important (i.e. E < ~keV)
 - the 10 eV low energy limit of the model is only for completeness

V. Ivanchenko "*Summary on G4 EM Physics*" Work made by **Mihaly Novak**


V. Ivanchenko "Summary on G4 EM Physics"

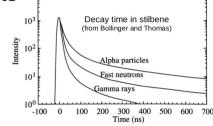
Implementation of EPICS2017 models for photons

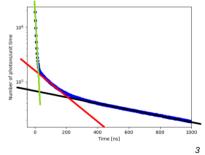
Zhuxin Li, Ph.D at CENBG

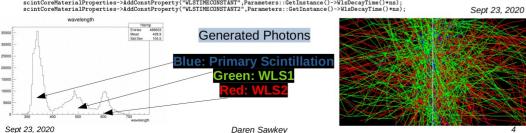
- The "Livermore" low-energy electromagnetic models are currently using the databases of EPDL97/2014
- EPICS2017: Electron Photon Interaction Cross Section library
 - Dermott Cullen <u>https://www-nds.iaea.org/epics/</u>
- Update of data and Livermore model implementations for the following photon-matter interaction processes:
 - ▶ 1) Gamma conversion
 - 2) Compton effect
 - > 3) Photoelectric effect
 - 4) Rayleigh scattering

Progress Report on Geant4 Optical Physics

Daren Sawkey


Plenary Session on Physics


New physics: Scintillation time constants 104


- In <= 10.7, have the choice of fast and slow time constants, with the same yield for all particles: OR particle specific yields, with one time constant
 - Could also write your own physics list!
- In >= 10.7, 3 time constants and particle-specific yields at the same time
- by users requests
- Both ways work now, but the old way to be deprecated in the next major release
- In 10.6: material properties SCINTILLATIONYIELD and YIELDRATIO. New method uses SCINTILLATIONYIELD and SCINTILLATIONYIELD[1/2/3]
 - In both methods SCINTILLATIONYIELD gives number of photons (per unit energy).

Daren Sawkev

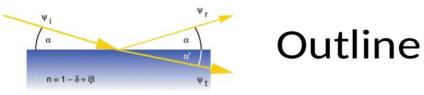
- Fraction of photons in channel 1 is SCINTILLATIONYIELD1/(SCINTILLATIONYIELD1 + SCINTILLATIONYIELD2 + SCINTILLATIONYIELD3) etc.
- Change material property names from [FAST/SLOW]TIMECONSTANT etc. to SCINTILLATIONTIMECONSTANT[1/2/3] etc.
- · Analogous names for particles: PROTONSCINTILLATIONYIELD1 etc.

- New physics: Two WaveLengthShifting Process
- Process (and slide) by Alex Howard, Imperial College
- Since beta release a simple "clone" of the existing WLS has been included in G4OpticalPhysics constructor
- Cannot convolve the response function as it's a discrete mechanism
 - either WLS-1 or WLS-2 and some transfer from WLS-1 to WLS-2
- Try it with OpNovice2/wls.mac
- Identical interface append "2":

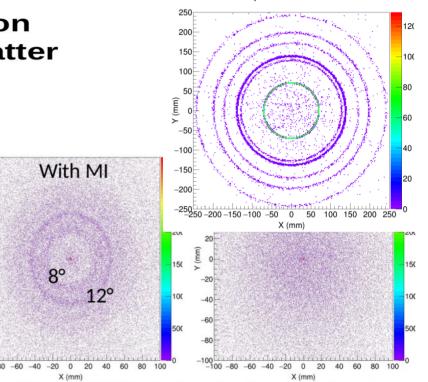
scintCoreMaterialProperties->AddProperty("WLSCOMPONENT",wls1SpecVector); scintCoreMaterialProperties->AddProperty("WLSCOMPONENT",wls2SpecVector); scintCoreMaterialProperties->AddProperty("WLSABSLENGTH",Wls1AbsEnergy,Wls1AbsLength,WLS1_ABS_ENTRIES); scintCoreMaterialProperties->AddProperty("WLSABSLENGTH",Wls2AbsEnergy,Wls2AbsLength,WLS2_ABS_ENTRIES);

scintCoreMaterialProperties->AddConstProperty("WLSTIMECONSTANT", Parameters::GetInstance()->WlsDecayTime()*ns);

Parallel Session on EM physics

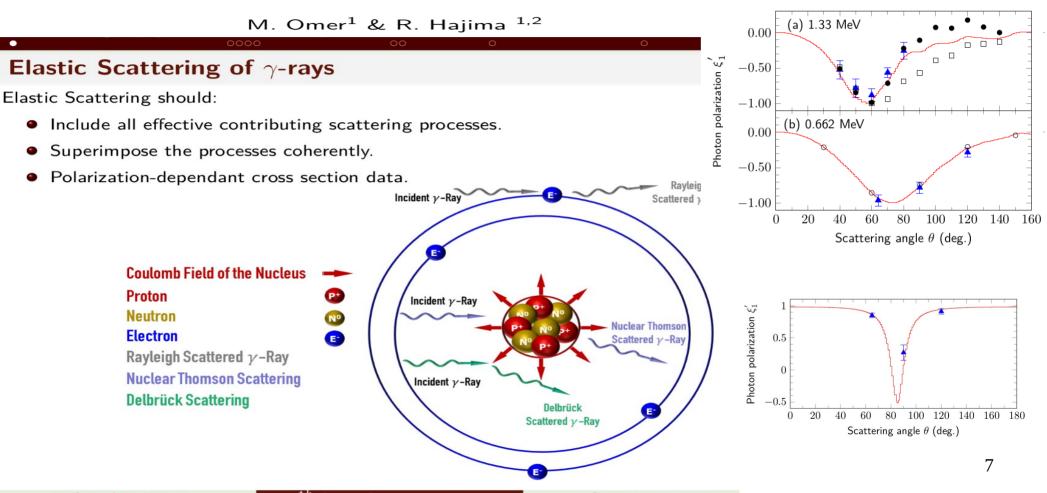

Simple test: diffraction of a 8 keV X-ray beam from a thin "slab" of a graphite powder.

Spatial Distribution


Refinement and extension of photon coherent interaction models with matter

G. Paternò

INFN Sezione di Ferrara, Dipartimento di Fisica e Scienze della Terra, Università di Ferrara


- Development of interference effects in coherent X-ray scattering model.
- Development of diffraction process in polycrystalline materials.
- Development of refraction/reflection of X-rays.

Scattering of a 20 keV photon beam in a human breast sample

Models for low-energy gamma elastic scattering

Parallel Session on EM physics

M. Omer & R. Hajima

25th Geant4 Collaboration Meeting

Parallel Session on EM physics

Overview of pre-chemical aspects of Geant4-DNA and initial radiological yields

<u>Wook-Geun Shin</u>, Jose Ramos-Mendez, Bruce Faddegon, Chul Hee Min, Sebastien Incerti

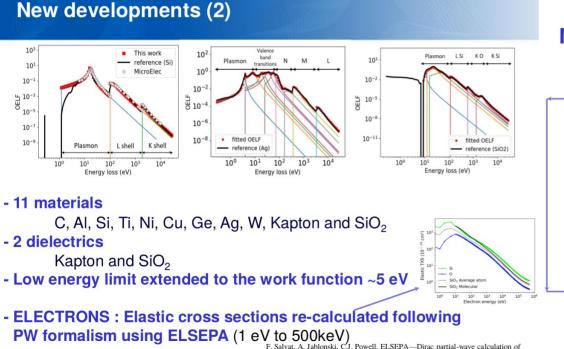
Impact of pre-chemical stage on biological damage

- This stage determines the number (and distribution) of chemical species induced by physical interactions at early time (1 ps).
- However, it is still impossible to understand mechanistically femtosecond-scale aspects of pre-chemical stage.
- Thus, the pre-chemical parameters are adjusted for calculating G-values to match experimental data in this study.

Purpose of this study

- To find out the optimal pre-chemical model for water radiolysis
- The models used in Geant4-DNA are corrected in order to be consistent with original papers
 - 1) Electron thermalization model
 - 2) Physico-chemical interactions
 - 3) Dissociation channels

GEANT4 MicroElec module 2020 update


Parallel Session on EM physics

Q.Gibaru, P. Caron, <u>C.Inguimbert</u>, M. Raine, D. Lambert

elastic scattering of electrons and positrons by atoms, positive ions and molecules.

Computer Physics Communications. 165 (2005) 157-190.

GEANT4 MicroElec module : current state

MICROELEC :

- Low energy transport module
- [~eV, ~keV] electrons
- > ~50 keV/amu protons & ions
- Based on complex dielectric function (OELF),
- Extended Drude model
- Silicon material
- low energy limit : 16 eV

NEEDs:

- Extending to other materials
- Extending to other applications (≠ microelectronics)
- Improving the reliability specially for protons & ions

Hadronic Physics (HAD)

11

String Models (FTF & QGS)

- Completed the extension to deal with nuclear interactions of charm & bottom hadrons, available in physics lists in 10.7
 - Simple 1-channel, fully-hadronic decays defined for heavy hadrons
 - Applied only for secondary heavy hadrons
 - QGS used above 12 GeV in QGS-based physics lists
- FTF : improved algorithm of string formation
 - To better describe Pt-Xf correlations in NA49 158 GeV/c p-p data
- QGS : improved treatment of anti-baryon interactions
 - In QGS-based physics lists, used QGSP above 12 GeV for : antiproton , antineutron , hyperons and anti-hyperons
- On-going work on neutrino / lepton / gamma nuclear

HADRONIC PHYSICS AND PHYSICS LIST DESIGN

Plenary Session on Physics

V. Ivanchenko CERN & Tomsk State University, Tomsk, Russia

New utilities for hadron physics configuration

- G4HadParticles returns several lists of particle PDG codes
 - std::vector<G4int>& G4HadParticles::GetKaons();
 - std::vector<G4int>& G4HadParticles::GetHyperons);
 - std::vector<G4int>& G4HadParticles::GetAntiHyperons();
 - ..
- G4HadProcesses return pointers to hadronic processes per particle and allows adding extra cross section per particle
 - G4HadronicProcess * G4HadProcesses::FindInelasticProcess(const G4String& partname);
 - G4HadronicProcess* G4HadProcesses::FindInelasticProcess(const G4String& partname);
 - G4bool G4HadronicProcesses::AddInelasticCrossSection(const G4ParticleDefinition*, G4VCrossSectionDataSet* my_xs);
- G4HadronicBuilder build standard set of models and cross sections for group of particles
 - G4HadronicBuilder::BuildHyperonsFTFP_BERT();
 - G4HadronicBuilder::BuildBCHadronsFTFP_BERT();
 - G4HadronicBuilder::BuildHyperonsQGSP_BERT();

Variation of hadronic cross sections

- For study of systematic uncertainty due to simulation we may considered following approach:
 - For hadronic models we propose to use different Physics Lists
 - FTFP_BERT -> QGSP_BIC, FTFP_INCLXX, or QBBC
 - For cross sections we may propose to use a factor to vary cross section value
 - +- 5-10% would be within Geant4 accuracy
- Cross section factors are defined via G4HadronicParameters class:
 - G4bool ApplyFactorXS() const; // false by default
 - G4double XSFactorNucleonInelastic() const ;
 - G4double XSFactorNucleonElastic() const ;
 - G4double XSFactorPionInelastic() const ;
 - G4double XSFactorPionElastic() const ;
 - G4double XSFactorHadronInelastic() const ;
 - G4double XSFactorHadronElastic() const ;
 - G4double XSFactorEM() const ;

User must change the flag and set corresponding factor via C++ interface

Recent developments and prospects of ParticleHP

SaG4n: Simulation of (α,xn) reactions with Geant4

Emilio Mendoza Cembranos, Daniel Cano Ott

CIEMAT

We have been investigating the performance of Geant4 in the simulation of **neutrons generated by** α -decay, via (α ,xn) reactions.

Motivation:

- Low background experiments. (e.g. dark matter detection).

- Nuclear technology.

- ...

We have published a paper \rightarrow <u>E. Mendoza et al.</u>, *Neutron production induced* by α -decay with Geant4, NIMA 960, 163659 (2020)

New neutron library G4NDL4.6

G4NDL4.5 \rightarrow incident neutron data library used up to Geant4.10.5. It comes mainly from ENDF/B-VII.1.

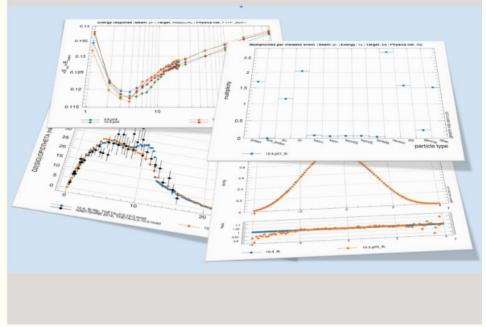
G4NDL4.6 \rightarrow incident neutron data library used in Geant4.10.6. It is JEFF-3.3.

Main changes:

ENDF/B → JEFF

Isotopes with Z>92 now available

The main advantage of G4NDL4.6 over G4NDL4.5 is that Geant4 results are closer to MCNP when using JEFF-3.3 than when using any other library, i.e. **the performance of Geant4 seem to be the best when using JEFF-3.3**. A verification study has been


New UI commands to replace environmental variables

There are several options in ParticleHP which are controlled via environmental variables:

G4NEUTRONHP_USE_ONLY_PHOTONEVAPORATION G4NEUTRONHP_NEGLECT_DOPPLER G4PHP_NEGLECT_DOPPLER G4NEUTRONHP_SKIP_MISSING_ISOTOPES G4NEUTRONHP_PRODUCE_FISSION_FRAGMENTS G4PHP_USE_NRESP71_MODEL G4PHP_DO_NOT_ADJUST_FINAL_STATE G4NEUTRONHP_DO_NOT_ADJUST_FINAL_STATE G4NEUTRON_HP_USE_WENDT_FISSION_MODEL

Validation

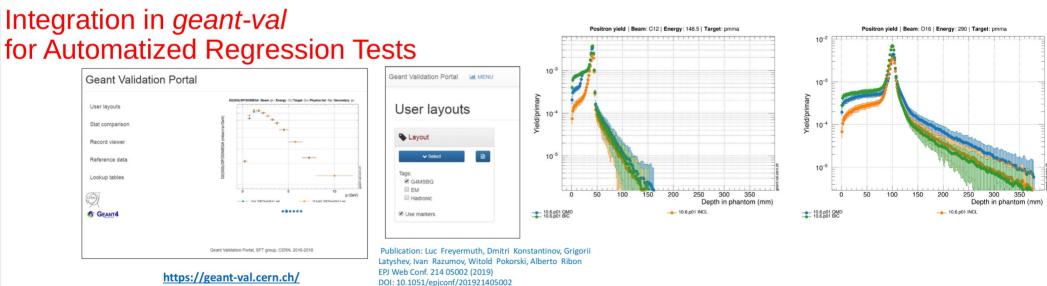
Plenary Session on G4 tools

GEANT-VAL: VALIDATION WEB APPLICATION

Dmitri Konstantinov Grigory Latyshev IHEP, Protvino IHEP, Protvino

With participation of: Witold Pokorski, Alberto Ribon, Ivan Razumov, Ioana Ifrim, Luc Feyermuth, Gonzalo De La Cruz, George Lestaris, Hans Wenzel, Julia Yarba.

Virtual Geant4 Collaboration Meeting, 2020


- The official (and now unique) validation tool of Geant4
- Used regularly for hadronic and electromagnetic showers
- Growing number of thin-target tests, for both EM and HAD physics
- Included also a suite of benchmarks relevant for medical physics

Plenary Session on Physics

G4_Med, a Geant4 benchmarking tool for medical physics applications: current status and future perspective

S. Guatelli on behalf of the G4-Med Group

P. Arce¹, D. Bolst², M-C. Bordage³, A. Chacon², P. Cirrone⁴, M.A. Cortes-Giraldo⁵, D. Cutajar², G. Cuttone⁴, L. Desorgher⁶, P. Dondero⁷, A. Dotti⁸, B. Faddegon⁹, C. Fedon¹⁰, S. Guatelli², S. Incerti¹¹, V. Ivanchenko¹², D. Konstantinov¹³, I. Kyriakou¹⁴, G. Latyshev¹³, A. Le², C. Mancini-Terracciano¹⁵, A. Mantero⁷, M. Maire¹⁶, M. Novak¹⁷, C. Omachi¹⁸, L. Pandola¹⁹, A. Perales²⁰, Y. Perrot²¹, G. Petringa⁴, J.M. Quesada⁵, J. Ramos-Méndez⁹, F. Romano²², M. Safavi-Naeini²⁵, D. Sakata², L.G. Sarmiento²³, T. Sasaki²⁴, I. Sechopoulos¹⁰, E. Simpson²⁶, T. Toshito¹⁸, D. H. Wright²⁷

G4_Med is integrated in **geant-val** to execute regularly automatized regression tests on the CERN computing infrastructure