#### SHINE Reconstruction Software Overview CERN Collaboration Meeting, 2/11/20 Brant Rumberger

University of Colorado Boulder





#### Overview

- Introduction
  - TPC Reconstruction Chain
  - Additional Reconstruction Modules
  - Calibration / Analysis modules

# Introduction

- This talk will cover major reconstruction software modules
- Will use terminology from SHINE software framework
- Will assume familiarity with TPC operational principles
- If you're not familiar with these terms or want a definition, please ask!

#### SHINE TPC Reconstruction Chain



## **TPC Clusterization**

- TPC raw data organized & stored in 2D pixel structure
  - Pixel local x-coordinate: Pad center X
  - Pixel local y-coordinate:

$$y_{cluster} = y_{wireplane} - v_{drift} \cdot (timebin + t_0)$$

Pixel local z-coordinate: Padrow center Z

- Threshold clusterizer searches for distinct signal "islands" in each padrow plane
  - User-defined threshold for starting clusterization
  - Different threshold for continuing clusterization
- Weighted mean of each "island" calculated in (x,y)
- 3D point recorded & stored: Cluster
  - Other properties calculated: <code>\SigmaADC</code>,  $\sigma_x$ ,  $\sigma_y$ ...





# **TPC Local Tracking**

 Tackles pattern recognition problem

- Cellular-Automatonbased Reconstruction Alogrithm
- Algorithm works in Several steps:
  - 1) Link construction
  - 2) Link filtering
  - 3) Track candidate organization
  - 4) Local track fitting

5) Local track merging



# TPC Global Tracking & Vertex Tracking

- Local tracks extrapolated to other TPC planes
- Other local tracks organized in list by "compatibility"
  - Defined using tuneable weights for each track parameter
- Best candidates accepted, merged, re-fit
- Main vertex finder & fitter extrapolates global tracks to seed vertex position
- Compatible tracks entered into fit
  - Fit options: 2D, 3D, BPD-constrained
- Tracks re-fit with main vertex position



# Long Target Vertex Finder

- Optional module can be run instead of MainVertexModule
- Extrapolates tracks to BPD fit line
- Creates origin point at point of closest approach
- Useful for online data taking monitoring, etc





#### **SHINE Reconstruction Chain**



#### Beam Position Detector Reconstruction

- Signals in BPD strips fit in both X and Y
- Reconstructed BPD clusters fit to straight line
- Decisions made regarding:
  - Quality of BPD measurements: eBadBPD1-3, eOutlier, etc
  - BPDs to enter track trajectory fit



# **Time Of Flight Reconstruction**

- Matches Time-of-Flight hits with vertex tracks
- Searches for hits in ToF L/R
  - Performs quick fit to MTPC clusters on Vertex Tracks
  - Extrapolates to ToF plane and searches for hit
  - If pixel has valid TDC & QDC, add to track
- Extendable to F-TOF walls



#### **Additional Modules**

#### SHINE Reconstruction Chain + **Calibration Modules**



#### **ExB** Position Corrector

- Corrects reconstructed cluster positions due to ExB effects
- Occurs in regions where B not parallel to E
- Corrected position calculated using drift time & 5<sup>th</sup>-order RK ODE integrator
- Must be done before tracking:
  - Improved extrapolation to other TPCs
  - More accurate momentum estimation



# **Residual Corrections Module**

- Applies positiondependent correction to cluster positions
- Correction based on average deviation from track fits in region
- Applied before tracking module is run



# V0 Finder & Fitter

- Searches for secondary decays in TPCs
- For reconstructed positive tracks:
  - Loops through negative tracks
  - Calculates the DCA
  - If small enough, re-fits with common vertex
  - If acceptable, keeps vertex & fitted tracks



# **DEDX Calculator Module**

- Applies calibration constants to correct reconstructed cluster charge
  - Some corrections dependent on track properties (angles, etc)
- Calculates cluster dE/dx (based on TPC pad length & trajectory)
- Corrections applied:
  - Atmospheric pressure
  - Threshold loss (based on track angles)
  - Time correction
  - Y-dependence correction
  - Sector constants correction
  - Chip gain correction
  - Angle correction



dE/dx, All Particles

## **Potential Points Module**

- Calculates number of clusters each vertex track could possibly have
- Ratio used in analysis
- Very low ratio indicates problem with track reconstruction:
  - Detector inefficiency
  - Track is a decay product
  - Other issues



Number of Clusters: 8 Number of Potential Points: 10

#### Thanks!