
The SHINE framework

Antoni Marcinek

Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland

SHINE Autumn School, 2 November 2020, Zoom

Antoni Marcinek (IFJ PAN) The SHINE framework SHINE Autumn School on Zoom, Nov 2020 1 / 22

The SHINE framework

https://gitlab.cern.ch/na61-software/framework/Shine

What it is
SHINE is a software library and a set of executables for offline data processing
in the NA61/SHINE experiment and some online tasks (QA, monitoring).

online — during data taking, offline — once data is written to storage
(CASTOR/EOS)

It derives from the Pierre Auger Observatory experiment Offline Software and
shares some core components with it.

The role of the framework
defines the event structure and tools to handle it (IO, graphical event browser)

provides detector description

provides the set of applications required for common and centralized tasks:
reconstruction, MC, QA

provides utilities for development of more specific tasks: calibration, analysis

Antoni Marcinek (IFJ PAN) The SHINE framework SHINE Autumn School on Zoom, Nov 2020 2 / 22

https://gitlab.cern.ch/na61-software/framework/Shine

Beyond the framework

Data base
https://gitlab.cern.ch/na61-database/DB

holds calibration constants in the form of XML and ASCII files along with XML
tables (called global keys) to match a single parameter to versions of constants

Non-framework software
https://gitlab.cern.ch/na61-software

doesn’t use SHINE (online software, legacy calibration)

uses SHINE but is too specific for the main SHINE project (calibration, analysis)

Antoni Marcinek (IFJ PAN) The SHINE framework SHINE Autumn School on Zoom, Nov 2020 3 / 22

https://gitlab.cern.ch/na61-database/DB
https://gitlab.cern.ch/na61-software

What you should (already) know

Things which you need to know if you want to use or develop SHINE:
Linux — we don’t support other systems; it is the system of our main production
environment at CERN (lxplus and lxbatch)

windows is probably impossible beyond virtual machines
macOS might be possible (macOS is unix-based), but you are on your own

basic Git usage (see next slide)
intermediate C++ learn it!

it is your main tool in the field whether you like it or not
there are good free sources of knowledge:
Thinking in C++ by Bruce Eckel
https://www.mindviewllc.com/quicklinks/

ROOT toolkit (SHINE still uses ancient ROOT 5, but for your macros you can
use ROOT 6 with modern C++ support) read the docs:
reference manual and the users guide, especially chapters

Histograms, Graphics and the Graphical User Interface, Fitting histograms
Input/Output, Trees, Object Ownership
Math Libraries in ROOT

Antoni Marcinek (IFJ PAN) The SHINE framework SHINE Autumn School on Zoom, Nov 2020 4 / 22

https://git-scm.com/
https://www.mindviewllc.com/quicklinks/
https://root.cern.ch/
https://root.cern/doc/master/index.html
https://root.cern/root/htmldoc/guides/users-guide/ROOTUsersGuide.html

Git — not only for SHINE, but everything you do

http://www-cs-students.stanford.edu/~blynn/gitmagic
https://git-scm.com/book/en/v2

Proper config
For every machine you are working on (laptop, desktop, lxplus)

Put this as ∼/.gitignore_global
Execute filling properly your data:

git config --global user.name "first.name last.name"
git config --global user.email "your.primary@email.address"
git config --global http.emptyAuth true
git config --global core.excludesfile ~/.gitignore_global

CERN recommends usage of Kerberos with GitLab. Note that some of you have
several accounts (e.g. for other experiments) → in this case use SSH protocol to
communicate with GitLab (see KB0003137)

Proper usage
Do development on a new branch: git checkout -b mynewbranch
merge to / rebase onto master after git pull on master

Antoni Marcinek (IFJ PAN) The SHINE framework SHINE Autumn School on Zoom, Nov 2020 5 / 22

http://www-cs-students.stanford.edu/~blynn/gitmagic
https://git-scm.com/book/en/v2
https://twiki.cern.ch/twiki/pub/NA61/GitHOWTOs/gitignore_global
https://gitlab.cern.ch
https://cern.service-now.com/service-portal/?id=kb_article&n=KB0003137

Other useful tools and skills

good text editor with syntax highlighting (e.g. Vim, Emacs)
https://www.vim.org/
http://www.viemu.com/a-why-vi-vim.html
https://www.gnu.org/software/emacs/

LATEX beamer (used to prepare this presentation; useful for iterative
presentations of your results when you include loads of pictures)
https://ctan.org/pkg/beamer

XML and XML schema
https://www.w3schools.com/xml/default.asp
https://www.w3schools.com/xml/schema_intro.asp

object-oriented design (OOD)
https://en.wikipedia.org/wiki/Object-oriented_design
https://en.wikipedia.org/wiki/Design_Patterns

test-driven development (TDD)
https://en.wikipedia.org/wiki/Test-driven_development
https://martinfowler.com/articles/mocksArentStubs.html

Antoni Marcinek (IFJ PAN) The SHINE framework SHINE Autumn School on Zoom, Nov 2020 6 / 22

https://www.vim.org/
http://www.viemu.com/a-why-vi-vim.html
https://www.gnu.org/software/emacs/
https://ctan.org/pkg/beamer
https://www.w3schools.com/xml/default.asp
https://www.w3schools.com/xml/schema_intro.asp
https://en.wikipedia.org/wiki/Object-oriented_design
https://en.wikipedia.org/wiki/Design_Patterns
https://en.wikipedia.org/wiki/Test-driven_development
https://martinfowler.com/articles/mocksArentStubs.html

Where to search for documentation

https://twiki.cern.ch/twiki/bin/viewauth/NA61/SHINEOfflineHome
https://shinedoc.web.cern.ch/shinedoc/doxygen/

The main sources of SHINE wisdom
The SHINE TWiki (not the main
TWiki of the experiment) →
Searchable doxygen-generated
documentation

↓

Antoni Marcinek (IFJ PAN) The SHINE framework SHINE Autumn School on Zoom, Nov 2020 7 / 22

https://twiki.cern.ch/twiki/bin/viewauth/NA61/SHINEOfflineHome
https://shinedoc.web.cern.ch/shinedoc/doxygen/

Where to search for documentation

https://twiki.cern.ch/twiki/bin/viewauth/NA61/SHINEOfflineHome
https://shinedoc.web.cern.ch/shinedoc/doxygen/

The main sources of SHINE wisdom
The SHINE TWiki (not the main
TWiki of the experiment) →
Searchable doxygen-generated
documentation (explore it!)

↓

Antoni Marcinek (IFJ PAN) The SHINE framework SHINE Autumn School on Zoom, Nov 2020 7 / 22

https://twiki.cern.ch/twiki/bin/viewauth/NA61/SHINEOfflineHome
https://shinedoc.web.cern.ch/shinedoc/doxygen/

Where to search for documentation cont.

Releases and the way to set the environment to use SHINE on lxplus and in
batch scripts are documented on the TWiki
https://twiki.cern.ch/twiki/bin/view/NA61/SHINEReleases

If you have questions, write to the na61-soft@cern.ch. We have a JIRA
system, but it should be used as a beefed-up TODO list, i.e. no questions, only
statements of problems to fix.
Additional texts are shipped with SHINE itself in the Documentation/ directory,
see subdirectories

DB
ReferenceManual
DetectorManagersAndModules
CalibrationChain

although don’t start with it, as it is known to be incomplete and/or out-dated
(see e.g. [SHINE-366])

We search for the documentation manager: [SHINE-118]

Antoni Marcinek (IFJ PAN) The SHINE framework SHINE Autumn School on Zoom, Nov 2020 8 / 22

https://twiki.cern.ch/twiki/bin/view/NA61/SHINEReleases
https://gitlab.cern.ch/na61-software/framework/Shine/-/tree/master/Documentation
https://its.cern.ch/jira/browse/SHINE-366
https://its.cern.ch/jira/browse/SHINE-118

Structure of the framework
Explore it from top to bottom. Especially
Program Steering and Configuration
has very basic information, e.g. how modules and
managers obtain their configuration via the
fwk::CentralConfig from XML files, describes
bootstrap.xml file.

Detector User Interface: start with
det::Detector class; it is the interface to the
detector information for use in modules; gets data
through the backend

Managers — Detector Backend — read detector
information from DB and other files on request
from the det::Detector components

SHOE — the event structure (see talk by Michael)

Run — similar description as Event, but valid for
all events in the file

Offline I/O — SHOE files and other formats that
SHINE can translate into SHOE

Antoni Marcinek (IFJ PAN) The SHINE framework SHINE Autumn School on Zoom, Nov 2020 9 / 22

Structure of the framework cont.
Utilities — for use in modules, managers, external
analysis and calibration software

Modules — process events, steered via XML by
the fwk::RunController

Legacy — wrapped NA49 reconstruction software
written in C and Fortran, the only reason for 32bit
builds

Antoni Marcinek (IFJ PAN) The SHINE framework SHINE Autumn School on Zoom, Nov 2020 10 / 22

Structure of the sources directory

Applications: examples, validation tests; some cleanup is in order [SHINE-119]

CMakeModules and CMakeTests: components of the build system

Data: small data files needed in tests

EventIO: data files handlling

Framework: steering, detector interface and backend, Event structure

Tools: executables sources and scripts

Antoni Marcinek (IFJ PAN) The SHINE framework SHINE Autumn School on Zoom, Nov 2020 11 / 22

https://its.cern.ch/jira/browse/SHINE-119

Structure of the installation directory

apps = Applications
bin

ShineOffline — runs sequence of modules given a bootstrap.xml file
createShineModuleSkeleton.py — use this to implement your own module
eventBrowser — get a SHOE file and see the events (you’ve already seen plots
from the browser)
shoot — ROOT linked with SHINE

config: module and manager XML and XML schema (XSD) files
data = Data
doc = Documentation
include: header files divided according to namespaces (differently than in
sources)
lib: libraries that you can link with your software if you need SHINE elements
scripts: environment setting on lxplus + other scripts (I don’t know myself what
they are. . .)

Antoni Marcinek (IFJ PAN) The SHINE framework SHINE Autumn School on Zoom, Nov 2020 12 / 22

Managers

Detector Backend — read detector information from DB and other files on
request from the det::Detector.
det::Detector learns about the available managers from a
DManagerRegister configuration entry, e.g. from the DB:

Managers work in a chain of responsibility, so if BPDStripGainXMLManager
provides BPD strip gains for a given run number/time stamp, the
BPDStripGainFixedManager is ignored.

Antoni Marcinek (IFJ PAN) The SHINE framework SHINE Autumn School on Zoom, Nov 2020 13 / 22

https://gitlab.cern.ch/na61-database/DB/-/blob/master/Shine/detConfig/ManagerConfig/V18C/DManagerRegisterConfig.xml

Managers cont.

Different types of managers:
Static: represent things that we know for sure after given data set is taken, e.g.
cabling; xml files in SHINE repository
Fixed: provide dummy values of calibration parameters for tests; xml files in SHINE
repository
XML, ASCII, Text, etc.: provide proper values of calibration parameters; files in the
DB because calibration constants are obtained iteratively and may have different
versions for the same time stamp

Laziness: det::Detector asks only for properties that the user wants, so if the
user code never cares about TPCs, no information about TPCs is read from DB.
There is some granularity to this, so e.g. asking for any TPC value causes all of
them to be read.
Caching: det::Detector caches values with validity run number/time ranges
provided by managers, so doesn’t ask for everything in every event — updates
only invalid information; most of properties (the largest ones) are read only once
per data file processing.
Easy to test: managers only read data from files, so tests need to check few
data entries and the overall logic (e.g. if validity ranges are properly treated);
test through the detector interface!

Antoni Marcinek (IFJ PAN) The SHINE framework SHINE Autumn School on Zoom, Nov 2020 14 / 22

Modules

Modules — process events, steered via XML by the fwk::RunController
Every module needs to implement only 3 methods:

Init: parses XML config
Process: does the actual event processing
Finish: non-necessary for majority of modules, e.g. write out files

Start implementation running the createShineModuleSkeleton.py script.

fwk::RunController learns about modules to run from ModuleSequence.xml
file (see next page).
Difficult to test: it is rather complicated to prepare the input (e.g. clusters for a
tracking module) and the expected values are usually not know. Therefore unit
tests can check the overall logic, e.g.:

Modules/..../testBPDReconstructorSG.cc
Modules/..../testTOFPotentialHitFinderSG.cc

while most of the functionality is checked in integration tests running on real
data and comparing contents of the resulting event(s) to reference values, e.g.:

Applications/IntegrationTests/..../TPCDEDXCalculatorSG
Applications/Standard/Validation/Reconstruction

Antoni Marcinek (IFJ PAN) The SHINE framework SHINE Autumn School on Zoom, Nov 2020 15 / 22

Module sequence

Antoni Marcinek (IFJ PAN) The SHINE framework SHINE Autumn School on Zoom, Nov 2020 16 / 22

Utilities: units

SHINE pays attention to units, neither framework nor user code should make
any assumptions on the units of quantities that it uses.

If a value is read from an external library or a file, or it is assigned as a constant
in the code, multiply by a unit:
// Mass() returns GeV
const double mass = TDatabasePDG::Instance()->GetParticle("pi+")->Mass() * utl::GeV;

// The ASCII file assumes GeV
double pCut;
cutsFile >> pCut;
pCut *= utl::GeV;

const double ptCut = 100 * utl::MeV;

If a value is written to screen, file, etc., divide by a unit:
// prints "The pion mass is: 139.57 MeV"
cout << "The pion mass is: " << mass / utl::MeV << " MeV" << endl;

TH1D hPt("hPt", ";p_{T} [GeV];counts", 100, 0, 2);
(...)
if (pt > ptCut && p > pCut) // here we don't need to care about the units

hPt.Fill(pt / utl::GeV); // here we need to

Antoni Marcinek (IFJ PAN) The SHINE framework SHINE Autumn School on Zoom, Nov 2020 17 / 22

https://gitlab.cern.ch/na61-software/framework/Shine/-/blob/master/Utilities/Units/ShineUnits.h

Utilities: units and the XML configuration

Our XML reader handles units for us.
XML file:
<?xml version="1.0" encoding="iso-8859-1"?>

<TargetConfig
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="[SCHEMAPATH]/TargetConfig_DBFormat.xsd">

<materialDensity unit="g/cm3"> 11.34 </materialDensity>
<materialInteractionLength unit="g/cm2"> 199.6 </materialInteractionLength>
<materialMolarMass unit="g/mol"> 207.2 </materialMolarMass>
<centerX unit="cm"> 0 </centerX>
<centerY unit="cm"> 0 </centerY>
<centerZ unit="cm"> -602.3 </centerZ>

</TargetConfig>

C++ code:
// get data from XML; targetConfig is utl::Branch
const double centerZ = targetConfig.GetChild("centerZ").Get<double>();
const double density = targetConfig.GetChild("materialDensity").Get<double>();

// prints "target position is -6.023 meters"
cout << "target position is " << centerZ / utl::m << " meters" << endl;

// Units support arithmetic
// prints "target density is 11340 kg/m3"
cout << "target density is " << density / (utl::kg / utl::m3) << " kg/m3" << endl;

Antoni Marcinek (IFJ PAN) The SHINE framework SHINE Autumn School on Zoom, Nov 2020 18 / 22

Contributing

Please read and follow the coding conventions (now easier with clang-format)!

The things to be done should be described and discussed using JIRA:
https://its.cern.ch/jira/projects/SHINE

Don’t use it to ask questions! Send e-mails to na61-soft@cern.ch.
If you want an issue to be solved in the coming release, set Fix Version to next.
It doesn’t mean I will solve it, it means I will not make a release until it is solved.

Don’t use cout/cerr, but SHINE’y ways to communicate information to users:
WARNING, ERROR, INFO with conditions on the ErrorLogger’s verbosity.
[SHINE-SHINE-392]

Learn about SHINE units.

Learn to use git properly — next page

If you push commits to SHINE, GitLab runs builds and tests in an environment
matching lxplus. Expect e-mail in case it fails.

Antoni Marcinek (IFJ PAN) The SHINE framework SHINE Autumn School on Zoom, Nov 2020 19 / 22

https://twiki.cern.ch/twiki/bin/view/NA61/CppCodingConventions
https://its.cern.ch/jira/projects/SHINE
https://its.cern.ch/jira/browse/SHINE-SHINE-392

Contributing — git with GitLab

On every push an e-mail is sent to na61-soft@cern.ch summarizing the
commits included in the push

If you include something like ‘see SHINE-100’ in the commit message, then
GitLab will create a comment in the respective JIRA issue linking to the commit.

If you write something like ‘closes SHINE-100’, then GitLab will tell JIRA that the
respective issue should be closed.
After some experimenting I find the following as the best way to reference JIRA
issues in git commit messages:
[SHINE-392] Add new verbosity level eProgress and make it default

Closes SHINE-392

Note that we don't advertise the 'progress' level in modules' xml files
as it doesn't make much sense to set it given what is its intent: for
regular modules it should be consistent with 'silent'.

See how to write good commit messages.

Avoid single work + merge commits. Have merge commits with several work
commits and several remote commits.

Use graphical tool like gitk to look at the sequence of commits before pushing
them, especially after git rebase.

Antoni Marcinek (IFJ PAN) The SHINE framework SHINE Autumn School on Zoom, Nov 2020 20 / 22

https://chris.beams.io/posts/git-commit/

GitLab CI — pipelines
CI setup is versioned along with SHINE and visible to every developer
Dedicated nodes are based on lxplus setup using Puppet
All branches are checked
Pipeline is divided into stages making it easier to understand what fails:

Pipeline consists of many jobs, some running in parallel:

Easy to extend, jobs conditional, pipelines can trigger downstream pipelines
Antoni Marcinek (IFJ PAN) The SHINE framework SHINE Autumn School on Zoom, Nov 2020 21 / 22

GitLab CI — tests

Test summaries are browsable from the pipeline view:

Detailed reports available as xml files:

Antoni Marcinek (IFJ PAN) The SHINE framework SHINE Autumn School on Zoom, Nov 2020 22 / 22

GitLab CI — tests

Test summaries are browsable from the pipeline view:

Detailed reports available as xml files:

Antoni Marcinek (IFJ PAN) The SHINE framework SHINE Autumn School on Zoom, Nov 2020 22 / 22

GitLab CI — tests

Test summaries are browsable from the pipeline view:

Detailed reports available as xml files:

Antoni Marcinek (IFJ PAN) The SHINE framework SHINE Autumn School on Zoom, Nov 2020 22 / 22

GitLab CI — tests

Test summaries are browsable from the pipeline view:

Detailed reports available as xml files:

Antoni Marcinek (IFJ PAN) The SHINE framework SHINE Autumn School on Zoom, Nov 2020 22 / 22

	Introduction
	Prerequisite knowledge and skills
	SHINE documentation
	Structure of the framework
	Some details
	Managers
	Modules
	Units

	Development infrastructure and instructions
	Contributing
	GitLab CI

