Calculations of QCD Instanton Processes in Deep Inelastic Scattering

Andreas Ringwald
Topological Effects in the Standard Model
Virtual Workshop
16 Dec 2020

New Physics within the Standard Model

 Standard Model of electroweak (QFD) and strong (QCD) interactions extremely successful

$$\mathcal{L} = -\frac{1}{4} W_a^{\mu\nu} W_{\mu\nu}^a - \frac{1}{4} B^{\mu\nu} B_{\mu\nu} + (D_{\mu}\phi)^{\dagger} (D^{\mu}\phi) - \mu^2 |\phi|^2 - \lambda |\phi|^4$$

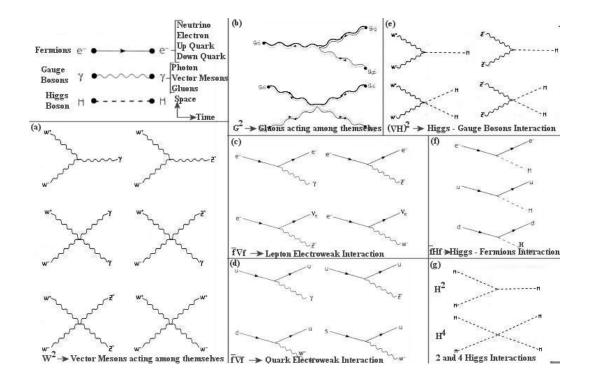
$$+ \sum_i \left(\bar{L}^i i \not \!\!D L^i + \bar{R}^i i \not \!\!D R^i + \bar{Q}_L^i i \not \!\!D Q_L^i + \bar{u}_R^i i \not \!\!D u_R^i + \bar{d}_R^i i \not \!\!D d_R^i \right)$$

$$- \sqrt{2} \sum_{ij} \left(\lambda^{ij} \bar{L}^i \phi R^j + \lambda^{ij}_d \bar{Q}_L^i \phi d_R^j + \lambda^{ij}_u \bar{Q}_L^i \phi^c u_R^j + \text{h.c.} \right)$$

$$- \frac{1}{4} G_a^{\mu\nu} G_{\mu\nu}^a + \sum_f \bar{q}^f i \not \!\!D_{QCD} q^f$$

New Physics within the Standard Model

- Standard Model of electroweak (QFD) and strong (QCD) interactions extremely successful
 - Success based on ordinary perturbation theory, that is on ordinary Feynman diagrams



$$\mathcal{L} = -\frac{1}{4} W_a^{\mu\nu} W_{\mu\nu}^a - \frac{1}{4} B^{\mu\nu} B_{\mu\nu} + (D_{\mu}\phi)^{\dagger} (D^{\mu}\phi) - \mu^2 |\phi|^2 - \lambda |\phi|^4$$

$$+ \sum_i \left(\bar{L}^i i \not \!\!D L^i + \bar{R}^i i \not \!\!D R^i + \bar{Q}_L^i i \not \!\!D Q_L^i + \bar{u}_R^i i \not \!\!D u_R^i + \bar{d}_R^i i \not \!\!D d_R^i \right)$$

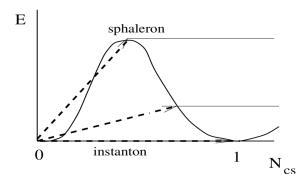
$$- \sqrt{2} \sum_{ij} \left(\lambda^{ij} \bar{L}^i \phi R^j + \lambda_d^{ij} \bar{Q}_L^i \phi d_R^j + \lambda_u^{ij} \bar{Q}_L^i \phi^c u_R^j + \text{h.c.} \right)$$

$$- \frac{1}{4} G_a^{\mu\nu} G_{\mu\nu}^a + \sum_f \bar{q}^f i \not \!\!D_{QCD} q^f$$

New Physics within the Standard Model

- Standard Model of electroweak (QFD) and strong (QCD) interactions extremely successful
 - Success based on ordinary perturbation theory, that is on ordinary Feynman diagrams
- There are processes inaccessible to ordinary perturbation theory
 - B+L/Chirality-violating processes in QFD/QCD
- Induced by topological fluctuations of non-Abelian gauge fields, in particular instantons

[Belavin et al. `75; `t Hooft `76]



- ullet $B+L/Q_5$ are anomalous, [Adler `69; Bell,Jackiw `69; Bardeen `69] $\Delta(B+L) = -2\,n_g\,\Delta N_{
 m CS}[W]$ $\Delta Q_5 = 2\,n_f\,\Delta N_{
 m CS}[G]$
- Topological fluctuations of the gauge fields W/G, i.e. fluctuations with integer $\triangle N_{\rm CS} \neq 0$, induce anomalous processes
- ullet Instanton: lowest Euclidean action configuration with $\Delta N_{
 m CS}=1\Rightarrow$ tunneling
- Sphaleron: lowest static energy configuration with $N_{\rm CS}=1/2 \Rightarrow$ barrier

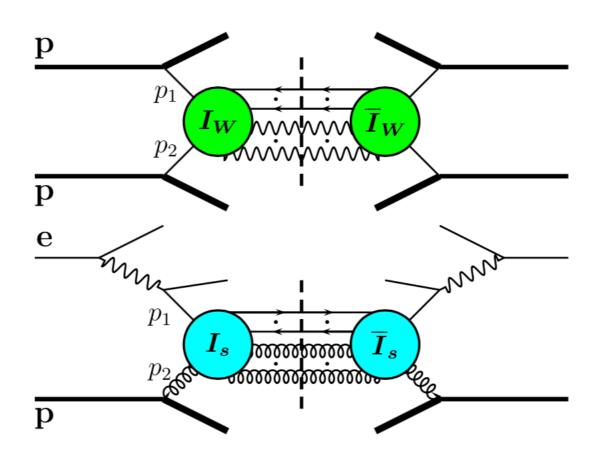
New Physics within the Standard Model

- Standard Model of electroweak (QFD) and strong (QCD) interactions extremely successful
 - Success based on ordinary perturbation theory, that is on ordinary Feynman diagrams
- There are processes inaccessible to ordinary perturbation theory
 - B+L/Chirality-violating processes in QFD/QCD
- Induced by topological fluctuations of non-Abelian gauge fields, in particular instantons

[Belavin et al. `75; `t Hooft `76]

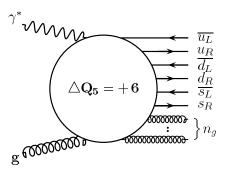
- Are anomalous instanton-induced events directly observable at high-energy colliders?
 - Electroweak B+L violation at SSC? [AR `90; Espinosa `90;...]
 - QCD-instanton induced processes in Deep Inelastic Scattering (DIS) at HERA?

 [AR,F. Schrempp `94;...]



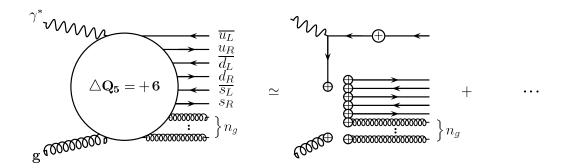
Generic Processes

Generic QCD-instanton-induced chirality-violating processes in DIS:



Generic Processes

Generic QCD-instanton-induced chirality-violating processes in DIS:



• In instanton-perturbation theory, amplitude given in terms of integral over instanton collective coordinates:

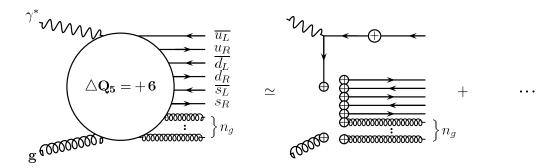
$$\mathcal{T}_{\mu \, \mu'}^{a \, a_1 \dots a_{n_g}} \left(\gamma^* + g \to \sum_{\text{flavours}}^{n_f} \left[\overline{q_L} + q_R \right] + n_g \, g \right) = \int_0^\infty \frac{d\rho}{\rho^5} \, d(\rho, \mu_r) \, \int dU \, \mathcal{A}_{\mu \, \mu'}^{a \, a_1 \dots a_{n_g}} (\rho, U)$$

• Size ρ and color orientation U

$$A_{\mu}^{(I)}(x;\rho,U) = -\frac{i}{g} \frac{\rho^2}{x^2} U \frac{\sigma_{\mu} \overline{x} - x_{\mu}}{x^2 + \rho^2} U^{\dagger} \qquad \mathcal{L}\left(A_{\mu}^{(I)}(x;\rho,U)\right) = \frac{12}{\pi \alpha_s} \cdot \frac{\rho^4}{(x^2 + \rho^2)^4} \qquad S\left[A_{\mu}^{(I)}\right] = \frac{2\pi}{\alpha_s}$$

Generic Processes

Generic QCD-instanton-induced chirality-violating processes in DIS:



• In instanton-perturbation theory, amplitude given in terms of integral over instanton collective coordinates:

$$\mathcal{T}_{\mu \, \mu'}^{a \, a_1 \dots a_{n_g}} \left(\gamma^* + g \to \sum_{\text{flavours}}^{n_f} \left[\overline{q_L} + q_R \right] + n_g \, g \right) = \int_0^\infty \frac{d\rho}{\rho^5} \, d(\rho, \mu_r) \, \int dU \, \mathcal{A}_{\mu \, \mu'}^{a \, a_1 \dots a_{n_g}} (\rho, U)$$

• Size distribution, for $\alpha_s(\mu_r) \log(\rho \mu_r) \ll 1$:

['t Hooft '76; Bernard '79; Morris et al. '85]

$$d(\rho, \mu_r) = d \left(\frac{2\pi}{\alpha_s(\mu_r)} \right)^6 \exp \left[-\frac{2\pi}{\alpha_s(\mu_r)} \right] (\rho \mu_r)^{\beta_0 + \frac{\alpha_s(\mu_r)}{4\pi} (\beta_1 - 12\beta_0)}$$

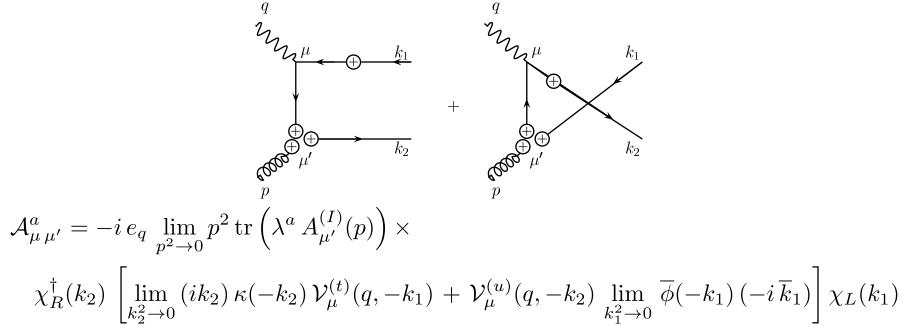
$$d = \frac{C_1}{2} e^{-3C_2 + n_f C_3}$$

$$\beta_0 = 11 - \frac{2}{3} n_f; \qquad \beta_1 = 102 - \frac{38}{3} n_f$$

Simplest Process

Simplest process, in leading-order:

[Moch,AR,F Schrempp `97]



• LSZ amputated Fourier transforms of instanton gauge field $A_{\mu'}^{(I)}$, quark zero modes, κ and $\overline{\phi}$, of the Dirac operator in instanton background, and of quark currents involving zero modes and quark propagators in instanton background:

$$\mathcal{V}_{\mu}^{(t)}(q, -k_1) \equiv \int d^4x \, \mathrm{e}^{-i\,q\cdot x} \, \left[\overline{\phi}(x) \, \overline{\sigma}_{\mu} \, \lim_{k_1^2 \to 0} \, S^{(I)}(x, -k_1) \, (-i\,\overline{k}_1) \right],$$

$$\mathcal{V}_{\mu}^{(u)}(q, -k_2) \equiv \int d^4x \, \mathrm{e}^{-i\,q\cdot x} \, \left[\lim_{k_2^2 \to 0} (ik_2) \, \overline{S}^{(I)}(-k_2, x) \, \sigma_{\mu} \, \kappa(x) \right]$$

Simplest Process

Simplest process, in leading-order:



[Moch,AR,F Schrempp '97]

$$t = (q - k_1)^2 = (p - k_2)^2$$

 $u = -t - Q^2/x$

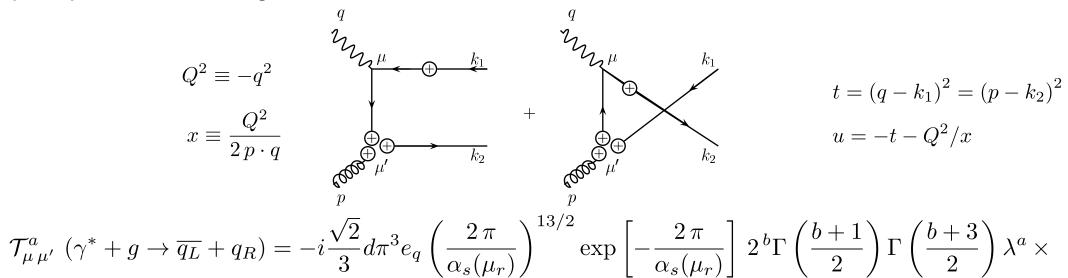
$$\left\{ egin{array}{llll} g_s & \int \omega^p \omega(oldsymbol{p},\mu_T) & & & & \\ 2 & g_s & \int \omega^p \omega(oldsymbol{p},\mu_T) & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$$

- $\text{ Quark current factor: } V_{\lambda}(q,k;\rho) \equiv \left[\frac{(q-k)_{\lambda}}{-(q-k)^2} + \frac{k_{\lambda}}{2q \cdot k}\right] \rho \sqrt{-\left(q-k\right)^2} \, K_1 \left(\rho \sqrt{-\left(q-k\right)^2}\right) \frac{k_{\lambda}}{2q \cdot k} \rho \sqrt{-q^2} \, K_1 \left(\rho \sqrt{-q^2}\right) \right]$
- Contribution of large instantons exponentially suppressed, as long as q^2 , $(q-k_1)^2$, and $(q-k_2)^2$ space-like
- In DIS ($Q^2=-q^2>0$), amplitudes well defined away from collinear singularities occuring at $t,u o 0_-$

Simplest Process

Simplest process, in leading-order:

[Moch,AR,F Schrempp '97]



$$\times \chi_R^{\dagger}(k_2) \left[\left(\sigma_{\mu'} \overline{p} - p \overline{\sigma}_{\mu'} \right) v(q, k_1; \mu_r) \overline{\sigma}_{\mu} - \sigma_{\mu} \overline{v}(q, k_2; \mu_r) \left(\sigma_{\mu'} \overline{p} - p \overline{\sigma}_{\mu'} \right) \right] \chi_L(k_1)$$

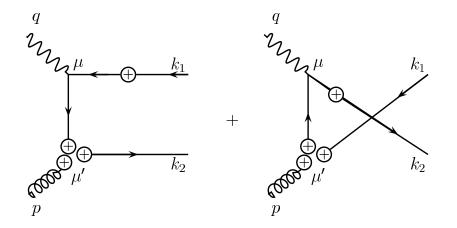
Quark current factor:

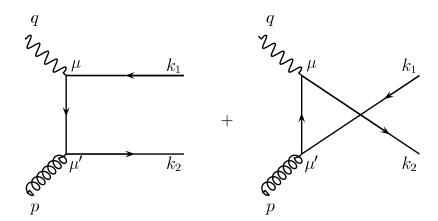
$$v_{\lambda}(q,k;\mu_r) \equiv \frac{1}{\mu_r} \left\{ \left[\frac{(q-k)_{\lambda}}{-(q-k)^2} + \frac{k_{\lambda}}{2q \cdot k} \right] \left(\frac{\mu_r}{\sqrt{-(q-k)^2}} \right)^{b+1} - \frac{k_{\lambda}}{2q \cdot k} \left(\frac{\mu_r}{\sqrt{-q^2}} \right)^{b+1} \right\}$$

Fractional power suppression in virtualities: $b \equiv \beta_0 + \frac{\alpha_s(\mu_r)}{4\pi} \; (\beta_1 - 12 \, \beta_0)$

Simplest Process

 Fixed angle cross-section of simplest QCD-instanton induced DIS process compared with analogue ordinary QCD process:





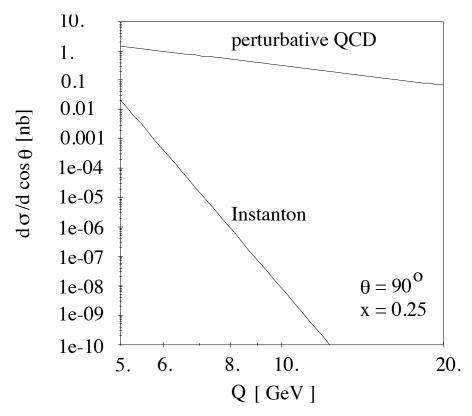
Simplest Process

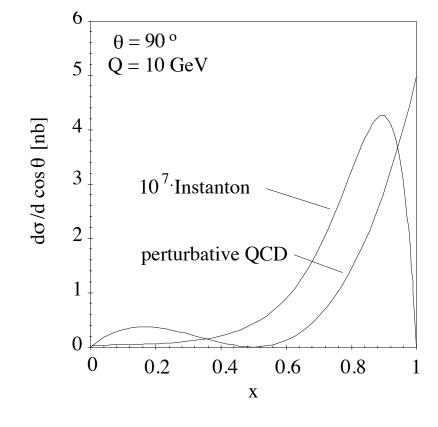
• Fixed angle cross-section of simplest QCD-instanton induced DIS process compared with analogue ordinary

QCD process:

 $t = -\frac{Q^2}{2x} \left(1 - \cos \theta \right)$

[Moch,AR,F Schrempp `97]

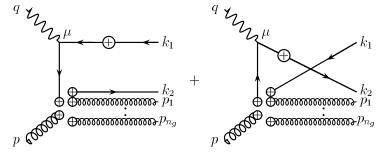




Generic Processes

Generic leading-order QCD-instanton induced process in DIS also well behaved away from collinear singu**larities** [Moch.AR.F Schrempp '97]

E.g., for $n_f = 1$:



$$\mathcal{T}_{\mu}^{a \, a_1 \dots a_{ng}} \left(\gamma^* + \mathbf{g} \to \overline{\mathbf{q}_L} + \mathbf{q}_R + n_g \, \mathbf{g} \right) = i \, e_q \, 4 \, \pi^2 \, \left(\frac{\pi^3}{\alpha_s} \right)^{\frac{n_g + 1}{2}} \int dU \int_0^\infty d\rho \, d(\rho, \mu_r) \, \rho^{2 \, n_g}$$

$$\times \operatorname{tr} \left[\lambda^a \, U \, \left[\epsilon_g(p) \cdot p - \epsilon_g(p) \, \overline{p} \right] \, U^{\dagger} \right] \prod_{i=1}^{n_g} \operatorname{tr} \left[\lambda^{a_i} \, U \, \left[\epsilon_g(p_i) \, \overline{p_i} - \epsilon_g(p_i) \cdot p_i \right] \, U^{\dagger} \right]$$

$$\times \left\{ \left[U \chi_R^{\dagger}(k_2) \epsilon \right] \left[\epsilon V(q, k_1; \rho) \overline{\sigma}_{\mu} \chi_L(k_1) \, U^{\dagger} \right] - \left[U \chi_R^{\dagger}(k_2) \sigma_{\mu} \overline{V}(q, k_2; \rho) \epsilon \right] \left[\epsilon \chi_L(k_1) \, U^{\dagger} \right] \right\}$$

Quark current factor exponentially suppresses contribution from large instantons in non-collinear DIS kinematics:
$$V_{\lambda}(q,k;\rho) \equiv \left[\frac{(q-k)_{\lambda}}{-(q-k)^2} + \frac{k_{\lambda}}{2q\cdot k}\right]\rho\sqrt{-\left(q-k\right)^2}\,K_1\left(\rho\sqrt{-\left(q-k\right)^2}\right) - \frac{k_{\lambda}}{2q\cdot k}\rho\sqrt{-q^2}\,K_1\left(\rho\sqrt{-q^2}\right)$$

Total Cross-Section

Total instanton-induced cross-section in DIS:

[AR,F Schrempp '98]

$$\hat{\sigma}_{q'p}^{(I)} \sim \int d^4R \int_0^\infty d\rho \int_0^\infty d\overline{\rho} D(\rho) D(\overline{\rho}) \int dU \dots e^{-\frac{4\pi}{\alpha_s} \Omega\left(U, \frac{R^2}{\rho \overline{\rho}}, \frac{\overline{\rho}}{\rho}\right)} e^{i(q'+p) \cdot R - Q'(\rho + \overline{\rho})}$$

- Interpretation of integration variable R_u and function Ω in terms of summation of exclusive cross-sections:
 - Energy-momentum conservation written in terms of integration over R_{μ} :

$$(2\pi)^4 \,\delta^{(4)}(p+q'-\sum_i k_i) = \int d^4R \, \exp\left[i\,(p+q'-\sum_i k_i)\cdot R\right]$$

Phase space integration over final state gluons and quarks performed via:

$$\int \frac{d^4 k_i}{(2\pi)^3} \,\delta^{(+)}(k_i^2) \,\exp\left[-i\,k_i\cdot R\right] = \frac{1}{(2\pi)^2} \,\frac{1}{-R^2 + i\epsilon R_0}$$

• Function Ω takes into account exponentiation of final state tree-graph corrections:

[Arnold, Mattis `91; A Mueller `91]

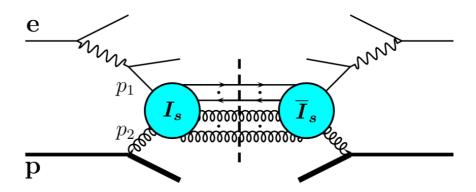
Total Cross-Section

Total instanton-induced cross-section in DIS:

[AR,F Schrempp '98]

$$\hat{\sigma}_{q'p}^{(I)} \sim \int d^4R \int_0^\infty d\rho \int_0^\infty d\overline{\rho} D(\rho) D(\overline{\rho}) \int dU \dots e^{-\frac{4\pi}{\alpha_s} \Omega\left(U, \frac{R^2}{\rho \overline{\rho}}, \frac{\overline{\rho}}{\rho}\right)} e^{i(q'+p) \cdot R - Q'(\rho + \overline{\rho})}$$

• Interpretation of integration variable R_{μ} and function Ω in terms of the instanton-anti-instanton interaction: Exploit optical theorem and instanton-anti-instanton valley method: [Zakharov `90;VV Khoze,AR `91]



Total Cross-Section

Total instanton-induced cross-section in DIS:

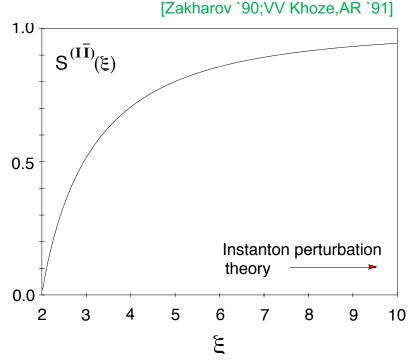
[AR,F Schrempp '98]

$$\hat{\sigma}_{q'p}^{(I)} \sim \int d^4R \int_0^{\infty} d\rho \int_0^{\infty} d\overline{\rho} D(\rho) D(\overline{\rho}) \int dU \dots e^{-\frac{4\pi}{\alpha_s} \Omega\left(U, \frac{R^2}{\rho \overline{\rho}}, \frac{\overline{\rho}}{\rho}\right)} e^{i(q'+p) \cdot R - Q'(\rho + \overline{\rho})}$$

- Interpretation of integration variable R_μ and function Ω in terms of the instanton-anti-instanton interaction:
 - Exploit optical theorem and instanton-anti-instanton valley method:
 - R_{μ} : distance between instanton and anti-instanton
 - Ω : interaction between instanton and anti-instanton: $\Omega \equiv S^{(Iar{I})} 1$
 - Classical conformal invariance:
 - Depends only on conformal distance: $\xi \equiv \frac{R^2}{\rho \overline{\rho}} + \frac{\overline{\rho}}{\overline{\rho}} + \frac{\overline{\rho}}{\overline{\rho}}$

$$\Omega(1,\xi) = -\frac{12}{f(\xi)} - \frac{96}{f(\xi)^2} + \frac{48}{f(\xi)^3} \left[3f(\xi) + 8 \right] \ln \left[\frac{1}{2\xi} \left(f(\xi) + 4 \right) \right]$$

$$f(\xi) = \xi^2 + \sqrt{\xi^2 - 4}\xi - 4$$



Total Cross-Section

Total instanton-induced cross-section in DIS:

[AR,F Schrempp '98]

$$\hat{\sigma}_{q'p}^{(I)} \sim \int d^4R \int_0^\infty d\rho \int_0^\infty d\overline{\rho} D(\rho) D(\overline{\rho}) \int dU \dots e^{-\frac{4\pi}{\alpha_s} \Omega\left(U, \frac{R^2}{\rho \overline{\rho}}, \frac{\overline{\rho}}{\rho}\right)} e^{i(q'+p) \cdot R - Q'(\rho + \overline{\rho})}$$

- Interpretation of integration variable R_{μ} and function Ω in terms of the instanton-anti-instanton interaction: Exploit optical theorem and instanton-anti-instanton valley method: [Zakharov `90;VV Khoze,AR `91]
 - R_{μ} : distance between instanton and anti-instanton
 - Ω : interaction between instanton and anti-instanton: $\Omega \equiv S^{(Iar{I})} 1$
 - Classical conformal invariance:
 - Depends only on conformal distance: $\xi \equiv \frac{R^2}{\rho \overline{\rho}} + \frac{\rho}{\overline{\rho}} + \frac{\overline{\rho}}{\rho}$
 - Leading term in asymptotic expansion for large conformal distance,

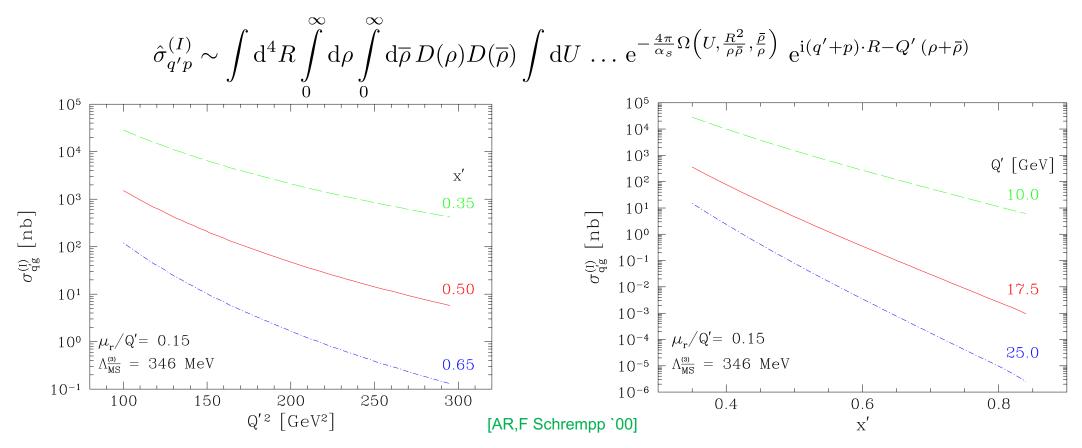
$$\Omega(\xi) = -\frac{6}{\xi^2} + \mathcal{O}(\ln(\xi)/\xi^4))$$

exactly reproduces the leading and next-to-leading final state corrections

Method effectively sums up gluonic final state tree graph corrections to leading semiclassical result

Total Cross-Section

• Saddle point evaluation of total instanton-induced cross-section in DIS: $U_* = 1, \; \rho_* = \bar{\rho}_* \sim 1/Q', \; R_*^2 \sim 1/(p+q')^2$



• Educated guess for region of validity from lattice simulations of instanton size distribution and instanton-anti-instanton interaction: $\left(\rho_*\Lambda_{\overline{\rm MS}}^{(0)}\lesssim 0.4; R_*/\rho_*\gtrsim 1\right)\Rightarrow \left(Q'\gtrsim 30.8\,\Lambda_{\overline{\rm MS}}^{(n_f)}; x'\gtrsim 0.35\right)$

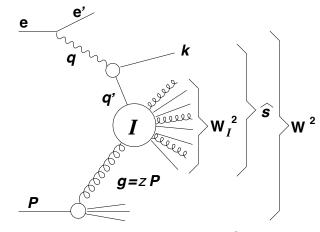
Final States in DIS

 Event generator QCINS based on instanton-antiinstanton valley approach

[Gibbs,AR,F Schrempp '95; AR,F Schrempp '00]

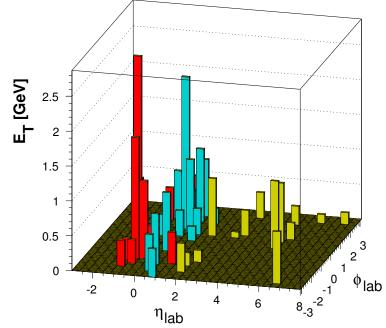
- Hard subprocess
 - Isotropic in qprime p CM system
 - Flavour democratic
 - Large parton multiplicity

$$\langle n_q + n_g \rangle = 2 n_f - 1 + \mathcal{O}(1)/\alpha_s \gtrsim 8$$



DIS variables: $S = (e + P)^{2}$ $Q^{2} = -q^{2} = -(e - e')^{2}$ $x_{\text{Bj}} = Q^{2}/(2P \cdot q)$ $W^{2} = (q + P)^{2} = Q^{2}(1/x_{\text{Bj}} - 1)$ $\hat{s} = (q + g)^{2}$ $z = x_{\text{Bj}} (1 + \hat{s}/Q^{2})$

Variables of instanton-subprocess: $Q'^2 = -q'^2 = -(q-k)^2$ $x' = Q'^2/(2 g \cdot q')$ $W_I^2 = (q'+g)^2 = Q'^2(1/x'-1)$



Final States in DIS

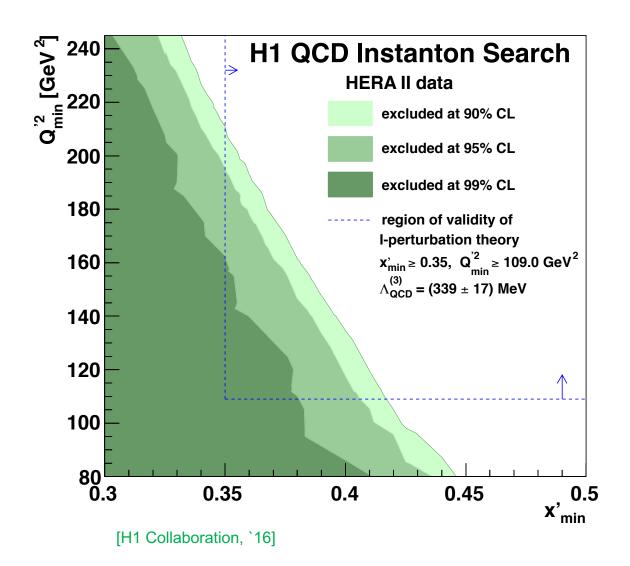
 Event generator QCINS based on instanton-antiinstanton valley approach

[Gibbs,AR,F Schrempp '95; AR,F Schrempp '00]

- Hard subprocess
 - Isotropic in qprime p CM system
 - Flavour democratic
 - Large parton multiplicity

$$\langle n_q + n_g \rangle = 2 n_f - 1 + \mathcal{O}(1)/\alpha_s \gtrsim 8$$

 Dedicated QCD-instanton searches by the H1 and ZEUS collaborations at HERA constrain the kinematic region of validity of the prediction from the instanton-anti-instanton valley approach



Summary

- QCD-instanton induced amplitudes in DIS calculable from first principles in instanton perturbation theory
- Total cross-section in pure instanton-anti-instanton valley approach tends to overshoot the HERA data in kinematic region where the probed instanton sizes and instanton-anti-instanton distances are still under perturbative control ...
- May be this problem is solved if one extends the instanton-anti-instanton valley approach by taking into
 account also initial state corrections to the total cross section ... see talk by Valya Khoze ...