CERN Workshop: Topological Effects in the Standard Model: 16 Dec. 2020

QCD instantons at hadron colliders

Valya Khoze
IPPP Durham

with Frank Krauss & Matthias Schott 1911.09726: JHEP

and Dan Milne & Michael Spannowsky 2010.02287: PRD

QCD Instantons

- Yang-Mills vacuum has a nontrivial structure
- Instantons are tunnelling solutions between the vacua.
- At the classical level there is no barrier in QCD. The sphaleron is a quantum effect
- Transitions between the vacua change chirality (result of the ABJ anomaly).
- All light quark-anti-quark pairs must participate in the reaction
- Not described by perturbation theory.

$$g+g \rightarrow n_g \times g + \sum_{f=1}^{N_f} (q_{Rf} + \bar{q}_{Lf})$$

QCD Instantons

Instanton-induced processes with 2 gluons in the initial state:

(tends to be large ~1/alpha_s)

Can also have quark-initiated processes e.g.:

$$u_L + \bar{u}_R \to n_g \times g + \sum_{f=1}^{N_f - 1} (q_{Rf} + \bar{q}_{Lf}),$$
 $u_L + d_L \to n_g \times g + u_R + d_R + \sum_{f=1}^{N_f - 2} (q_{Rf} + \bar{q}_{Lf})$

$$g+g \rightarrow n_g \times g + \sum_{f=1}^{N_f} (q_{Rf} + \bar{q}_{Lf})$$

The amplitude takes the form of an integral over instanton collective coordinates. The classical result (leading order in the instanton perturbation theory) is simply:

$$S_I = \frac{8\pi^2}{g^2} = \frac{2\pi}{\alpha_s(\mu_r)}$$
 ('t Hooft) factor by the instanton action
$$S_I = \frac{8\pi^2}{g^2} = \frac{2\pi}{\alpha_s(\mu_r)}$$

$$\vdots$$

$$A_{2 \to n_g + 2N_f} \sim \int d^4x_0 \, d\rho \, D(\rho) \, e^{-S_I} \left[\prod_{i=1}^{n_g + 2} A_{\mathrm{LSZ}}^{a_i \, \mathrm{inst}}(p_i, \lambda_i) \right] \left[\prod_{j=1}^{2N_f} \psi_{\mathrm{LSZ}}^{(0)}(p_j, \lambda_j) \right]$$

$$\vdots$$

$$\vdots$$

- the integrand: a product of bosonic and fermionic components of the instanton field configurations
- the factorised structure implies that emission of individual particles in the final state is uncorrelated
 and mutually independent.

[this is correct at the LO in instanton pert. theory approximation] LO Instanton vertex

The Optical Theorem approach: to include final state interactions

- Cross-section is obtained by |squaring| the instanton amplitude.
- Final states have been instrumental in combatting the exp. suppression.
- Now also the interactions between the final states (and the improvement on the pointlike I-vertex) are taken into account.
- Use the Optical Theorem to compute *Im* part of the 2->2 amplitude in around the Instanton-Anti-instanton configuration.
- Varying the energy E changes the dominant value of I-Ibar separation R. At R=0 instanton and anti-instanton mutually annihilate.
- The suppression of the EW instanton crosssection is gradually reduced at lower R(E).

VVK & Ringwald 1991

The Optical Theorem approach: to include final state interactions

Instanton — anti-instanton valley configuration has Q=0; it interpolates between infinitely separated instanton—anti-instanton and the perturbative vacuum at R=0

- Exponential suppression is gradually reduced at lower R (Energy-dependent)
- no radiative corrections from hard initial states included in this approximation

$$\sigma_{\text{tot}}^{(\text{cl) inst}} = \frac{1}{s} \operatorname{Im} \mathcal{A}_{4}^{I\bar{I}}(p_{1}, p_{2}, -p_{1}, -p_{2})$$

$$\simeq \frac{1}{s} \operatorname{Im} \int_{0}^{\infty} d\rho \int_{0}^{\infty} d\bar{\rho} \int d^{4}R \int d\Omega \ D(\rho)D(\bar{\rho}) \ e^{-S_{I\bar{I}}} \ \mathcal{K}_{\text{ferm}} \times$$

$$A_{LSZ}^{\text{inst}}(p_{1}) A_{LSZ}^{\text{inst}}(p_{2}) A_{LSZ}^{\overline{\text{inst}}}(-p_{1}) A_{LSZ}^{\overline{\text{inst}}}(-p_{2}),$$

$$S(\chi) \simeq 1 - 6/\chi^4 + 24/\chi^6 + \dots \qquad \chi = \frac{R}{\rho}$$

$$S_{I\bar{I}}(\rho, \bar{\rho}, R) = \frac{4\pi}{\alpha_s(\mu_r)} S$$

$$S_{I\bar{I}}(\rho, \bar{\rho},$$

- Exponential suppression is gradually reduced at lower and lower $x = \frac{R}{\rho}$
- no radiative corrections from hard initial states included in this approximation

$$D(\rho, \mu_r) = \kappa \frac{1}{\rho^5} \left(\frac{2\pi}{\alpha_s(\mu_r)} \right)^6 (\rho \mu_r)^{b_0}$$

$$\sigma_{\text{tot}}^{(\text{cl) inst}} = \frac{1}{s} \operatorname{Im} \mathcal{A}_{4}^{I\bar{I}}(p_{1}, p_{2}, -p_{1}, -p_{2})$$

$$\simeq \frac{1}{s} \operatorname{Im} \int_{0}^{\infty} d\rho \int_{0}^{\infty} d\bar{\rho} \int d^{4}R \int d\Omega \ D(\rho)D(\bar{\rho}) \ e^{-S_{I\bar{I}}} \ \mathcal{K}_{\text{ferm}} \times$$

$$A_{LSZ}^{\text{inst}}(p_{1}) A_{LSZ}^{\text{inst}}(p_{2}) A_{LSZ}^{\overline{\text{inst}}}(-p_{1}) A_{LSZ}^{\overline{\text{inst}}}(-p_{2}),$$

fermion prefactor from Nf qq-bar pairs

$$A_{LSZ}^{\text{inst}}(p_1) A_{LSZ}^{\text{inst}}(p_2) A_{LSZ}^{\overline{\text{inst}}}(-p_1) A_{LSZ}^{\overline{\text{inst}}}(-p_2) = \frac{1}{36} \left(\frac{2\pi^2}{q} \rho^2 \sqrt{s'} \right)^4 e^{iR \cdot (p_1 + p_2)}$$

$$\frac{1}{36} \left(\frac{2\pi^2}{g} \rho^2 \sqrt{s'} \right)^4 e^{iR \cdot (p_1 + p_2)}$$

But the instanton size has not been stabilised. In QCD - rho is a classically flat direction need to include and re-sum quantum corrections!

$$\exp\left(R_0\sqrt{s} - \frac{4\pi}{\alpha_s(\mu_r)}\hat{\mathcal{S}}(z)\right)$$

in the EW theory:

$$G_{4\,\mathrm{Eucl}} \sim \int d^4R \; d\rho_I d\rho_{\bar{I}} \ldots \exp\left[i(p_1+p_2)\cdot R - S_{I\bar{I}}(z) - \pi^2 v^2(\rho_I^2+\rho_{\bar{I}}^2)\right] - \pi^2 v^2(\rho_I^2+\rho_{\bar{I}}^2)$$
 instanton instanton separation sizes
$$z \sim \frac{R^2+\rho_I^2+\rho_I^2}{\rho_I\rho_I} \qquad \text{Higgs vev: EW theory - not QCD!}$$

$$\sigma_{B+L} \sim \mathrm{Im} \int d^4R \; d\rho_I d\rho_{\bar{I}} \ldots \exp\left[ER - S_{I\bar{I}}(R) - \pi^2 v^2(\rho_I^2+\rho_{\bar{I}}^2)\right]$$
 Higgs vev cuts-off large instantons

Exponential suppression is gradually reduced with energy [in the EW theory]

In QCD:

$$G_{4\,\mathrm{Eucl}} \sim \int d^4R \; d\rho_I d\rho_{\bar{I}} \ldots \exp\left[i(p_1+p_2)\cdot R - S_{I\bar{I}}(z)\right] - \text{new in QCD}$$
 instanton sizes
$$z \sim \frac{R^2 + \rho_I^2 + \rho_{\bar{I}}^2}{\rho_I \rho_{\bar{I}}}$$
 Quantum effects to cut-off Instanton size integrations
$$\sigma_{B+L} \sim \mathrm{Im} \; \int d^4R \; d\rho_I d\rho_{\bar{I}} \ldots \exp\left[ER - S_{I\bar{I}}(R) - \text{new in QCD}\right]$$

propagator in the instanton background

$$G_{\mu\nu}^{ab}(p_1, p_2) \rightarrow -\frac{g^2 \rho^2 s}{64\pi^2} \log(s) A_{\mu}^a(p_1) A_{\nu}^b(p_2)$$

$$p_1^2 = 0 = p_2^2, \quad 2p_1p_2 = s \gg 1/\rho^2$$

Include now higher order corrections in the high-energy limit:

$$\sum_{r=1}^{N} \frac{1}{r!} \left(-\frac{g^2 \rho^2 s}{64\pi^2} \log(s) \right)^r A_{\mu}^a(p_1) A_{\nu}^b(p_2)$$

Mueller 1991

Mueller 1991

$$\hat{\sigma}_{\text{tot}}^{\text{inst}} \simeq \frac{1}{s'} \operatorname{Im} \frac{\kappa^2 \pi^4}{36 \cdot 4} \int \frac{d\rho}{\rho^5} \int \frac{d\bar{\rho}}{\bar{\rho}^5} \int d^4 R \int d\Omega \left(\frac{2\pi}{\alpha_s(\mu_r)} \right)^{14} (\rho^2 \sqrt{s'})^2 (\bar{\rho}^2 \sqrt{s'})^2 \mathcal{K}_{\text{ferm}}$$

$$(\rho \mu_r)^{b_0} (\bar{\rho} \mu_r)^{b_0} \exp \left(R_0 \sqrt{s'} - \frac{4\pi}{\alpha_s(\mu_r)} \hat{\mathcal{S}}(z) - \frac{\alpha_s(\mu_r)}{16\pi} (\rho^2 + \bar{\rho}^2) s' \log \left(\frac{s'}{\mu_r^2} \right) \right)$$

Instanton size is cut-off by $\sim \sqrt{s}$ this is what sets the effective QCD sphlarenon scale

Mueller's result for quantum corrections due to in-in states interactions

Basically, in QCD one can never reach the effective sphaleron barrier — it's hight grows with the energy.

=> Among other things, no problems with unitarity.

This is the main idea of the approach:

[1] VVK, Krauss, Schott[2] VVK, Milne, Spannowsky

$$\hat{\sigma}_{\text{tot}}^{\text{inst}} \simeq \frac{1}{s'} \operatorname{Im} \frac{\kappa^2 \pi^4}{36 \cdot 4} \int \frac{d\rho}{\rho^5} \int \frac{d\bar{\rho}}{\bar{\rho}^5} \int d^4 R \int d\Omega \left(\frac{2\pi}{\alpha_s(\mu_r)} \right)^{14} (\rho^2 \sqrt{s'})^2 (\bar{\rho}^2 \sqrt{s'})^2 \mathcal{K}_{\text{ferm}}$$

$$(\rho \mu_r)^{b_0} (\bar{\rho} \mu_r)^{b_0} \exp \left(R_0 \sqrt{s'} - \frac{4\pi}{\alpha_s(\mu_r)} \hat{\mathcal{S}}(z) - \frac{\alpha_s(\mu_r)}{16\pi} (\rho^2 + \bar{\rho}^2) s' \log \left(\frac{s'}{\mu_r^2} \right) \right)$$

1. Extermise the holy-grail function in the exponent by finding a saddle-point in variables:

$$\tilde{\rho} = \frac{\alpha_s(\rho)}{4\pi} \sqrt{s} \rho, \qquad \chi = \frac{R}{\rho}$$

$$\mathcal{F} = \rho \chi \sqrt{s} - \frac{4\pi}{\alpha_s(\rho)} \mathcal{S}(\chi) - \frac{\alpha_s(\rho)}{4\pi} \rho^2 s \log(\sqrt{s}\rho)$$

$$\hat{\sigma}_{\text{tot}}^{\text{inst}} \simeq \frac{1}{s'} \operatorname{Im} \frac{\kappa^2 \pi^4}{36 \cdot 4} \int \frac{d\rho}{\rho^5} \int \frac{d\bar{\rho}}{\bar{\rho}^5} \int d^4R \int d\Omega \left(\frac{2\pi}{\alpha_s(\mu_r)} \right)^{14} (\rho^2 \sqrt{s'})^2 (\bar{\rho}^2 \sqrt{s'})^2 \mathcal{K}_{\text{ferm}}$$

$$(\rho \mu_r)^{b_0} (\bar{\rho} \mu_r)^{b_0} \exp \left(R_0 \sqrt{s'} - \frac{4\pi}{\alpha_s(\mu_r)} \hat{\mathcal{S}}(z) - \frac{\alpha_s(\mu_r)}{16\pi} (\rho^2 + \bar{\rho}^2) s' \log \left(\frac{s'}{\mu_r^2} \right) \right)$$
1st Approach: VVK, Krauss, Schott

1. Extermise the holy-grail function in the exponent by finding a saddle-point in variables:

$$\mathcal{F} = \rho \chi \sqrt{s} - \frac{4\pi}{\alpha_s(\rho)} \mathcal{S}(\chi) - \frac{\alpha_s(\rho)}{4\pi} \rho^2 s \log(\sqrt{s}\rho)$$

$$\tilde{\rho} = \frac{\alpha_s(\rho)}{4\pi} \sqrt{s} \rho \,, \qquad \chi = \frac{R}{\rho} \qquad \qquad \text{saddle-point values}$$

$$-\text{II action} \qquad \qquad -\text{S} \qquad \qquad \text{in units of } \frac{4\pi}{\alpha_s}$$

$$u = \sqrt{s}/\mu = \sqrt{s} \rho$$

$$\hat{\sigma}_{\rm tot}^{\rm inst} \simeq \frac{1}{s'} \operatorname{Im} \frac{\kappa^2 \pi^4}{36 \cdot 4} \int \frac{d\rho}{\rho^5} \int \frac{d\bar{\rho}}{\bar{\rho}^5} \int d^4R \int d\Omega \left(\frac{2\pi}{\alpha_s(\mu_r)} \right)^{14} (\rho^2 \sqrt{s'})^2 (\bar{\rho}^2 \sqrt{s'})^2 \mathcal{K}_{\rm ferm}$$

$$(\rho \mu_r)^{b_0} (\bar{\rho} \mu_r)^{b_0} \exp \left(R_0 \sqrt{s'} - \frac{4\pi}{\alpha_s(\mu_r)} \hat{\mathcal{S}}(z) - \frac{\alpha_s(\mu_r)}{16\pi} (\rho^2 + \bar{\rho}^2) s' \log \left(\frac{s'}{\mu_r^2} \right) \right)$$
st Approach: VVK, Krauss, Schott

1st Approach: VVK, Krauss, Schott

1. Extermise the holy-grail function in the exponent by finding a $\mathcal{F}=
ho\chi\sqrt{s}-rac{4\pi}{\alpha_s(
ho)}\mathcal{S}(\chi)-rac{lpha_s(
ho)}{4\pi}
ho^2s\,\log(\sqrt{s}
ho)$ saddle-point in variables:

$$ilde{
ho} = rac{lpha_s(
ho)}{4\pi} \sqrt{s}
ho \,, \qquad \chi = rac{R}{
ho}$$

- 2. Carry out all integrations using the steepest descent method evaluating the determinants of quadratic fluctuations around the saddle-point solution
- 3. Pre-factors are very large they compete with the semiclassical exponent which is very small!

Results

Results and partonic cross-section

$\sqrt{s'}$ [GeV]	$1/\rho$ [GeV]	$\alpha_S(1/\rho)$	$\langle n_g \rangle$	$\hat{\sigma}$ [pb]
10.7	0.99	0.416	4.59	$4.922 \cdot 10^9$
11.4	1.04	0.405	4.68	$3.652 \cdot 10^9$
13.4	1.16	0.382	4.90	$1.671 \cdot 10^9$
15.7	1.31	0.360	5.13	$728.9 \cdot 10^6$
22.9	1.76	0.315	5.44 $ $	$85.94 \cdot 10^6$
29.7	2.12	0.293	6.02	$17.25 \cdot 10^6$
40.8	2.72	0.267	6.47	$2.121 \cdot 10^6$
56.1	3.50	0.245	6.92	$229.0 \cdot 10^3$
61.8	3.64	0.223	7.28	$72.97 \cdot 10^3$
89.6	4.98	0.206	7.67	$2.733 \cdot 10^3$
118.0	6.21	0.195	8.25	235.4
174.4	8.72	0.180	8.60	6.720
246.9	11.76	0.169	9.04	0.284
349.9	15.90	0.159	9.49	0.012
496.3	21.58	0.150	9.93	$5.112 \cdot 10^{-4}$
704.8	29.37	0.142	10.37	$21.65 \cdot 10^{-6}$
1001.8	40.07	0.135	10.81	$0.9017 \cdot 10^{-6}$
1425.6	54.83	0.128	11.26	$36.45 \cdot 10^{-9}$
2030.6	75.21	0.122	11.70	$1.419 \cdot 10^{-9}$
2895.5	103.4	0.117	12.14	$52.07 \cdot 10^{-12}$

HOW QCD instantons address criticism of EW sphaleron production in high-E collisions:

The sphaleron is a semiclassical configuration with

$$\text{Size}_{\text{sph}} \sim m_W^{-1}$$
, $E_{\text{sph}} = \text{few} \times m_W/\alpha_W \simeq 10 \,\text{TeV}$.

It is 'made out' of $\sim 1/\alpha_W$ particles (i.e. it decays into $\sim 1/\alpha_W$ W's, Z's, H's).

$$2_{\text{initial hard partons}} \rightarrow \text{Sphaleron} \rightarrow (\sim 1/\alpha_W)_{\text{soft final quanta}}$$

The sphaleron production out of 2 hard partons is unlikely.

Fig. 3. "You can't make a fish in a pp collider."

from Mattis PRpts 1991

But in QCD instantons are small

[A `small fish' compared to the EW case]

This criticism does not apply to our QCD calculation

2nd more direct approach: VVK, Milne, Spannowsky

compute all (but one) collective coordinate integrals numerically using numerical techniques

introduce dimensionless integration variables,

$$r_0 = R_0 E$$
, $r = |\vec{R}| E$,
 $y = \rho \bar{\rho} E^2$, $x = \rho/\bar{\rho}$,

numerically evaluate (no saddle point approximation needed):

$$G(r_0, E) = \frac{\kappa^2 \pi^4}{2^{17}} \sqrt{\frac{\pi}{3}} \int_0^\infty r^2 dr \int_0^\infty \frac{dx}{x} \int_0^\infty \frac{dy}{y} \left(\frac{4\pi}{\alpha_s}\right)^{21/2} \left(\frac{1}{1 - \mathcal{S}(z)}\right)^{7/2}$$

$$\mathcal{K}_{\text{ferm}}(z) \exp\left(-\frac{4\pi}{\alpha_s} \mathcal{S}(z) - \frac{\alpha_s}{4\pi} \frac{x + 1/x}{4} y \log y\right).$$

and use this to compute the final integral (in the saddle-point approximation to get Im):

$$\hat{\sigma}_{\text{tot}}^{\text{inst}}(E) = \frac{1}{E^2} \operatorname{Im} \int_{-\infty}^{+\infty} dr_0 \, e^{r_0} \, G(r_0, E) \,,$$

Results and partonic cross-section

$\sqrt{\hat{s}} [\text{GeV}]$	50	100	150	200	300	400	500
$\langle n_g \rangle$	9.43	11.2	12.22	12.94	13.96	14.68	15.23
$\hat{\sigma}_{ ext{tot}}^{ ext{inst}} ext{ [pb]}$	207.33×10^3	1.29×10^3	53.1	5.21	165.73×10^{-3}	13.65×10^{-3}	1.89×10^{-3}

$$G(r_0, E) = \frac{\kappa^2 \pi^4}{2^{17}} \sqrt{\frac{\pi}{3}} \int_0^\infty r^2 dr \int_0^\infty \frac{dx}{x} \int_0^\infty \frac{dy}{y} \left(\frac{4\pi}{\alpha_s}\right)^{21/2} \left(\frac{1}{1 - \mathcal{S}(z)}\right)^{7/2} \mathcal{K}_{\text{ferm}}$$

$$\sum_{n_g = 0}^\infty \frac{1}{n_g!} (U_{\text{int}})^{n_g} \exp\left(-\frac{4\pi}{\alpha_s} - \frac{\alpha_s}{4\pi} \frac{x + 1/x}{4} y \log y\right).$$

$$\langle n_g \rangle = \langle U_{\rm int} \rangle$$

hadronic total cross-section

$$\sigma_{pp\to I} (\hat{s} > \hat{s}_{\min}) = \int_{\hat{s}_{min}}^{s_{pp}} dx_1 dx_2 \quad f(x_1, Q^2) f(x_2, Q^2) \hat{\sigma} (\hat{s} = x_1 x_2 s_{pp})$$

E_{\min} [GeV]	50	100	150	200	300	400	500
$\sigma_{p\bar{p} o I}$	$2.62 \; \mu { m b}$	2.61 nb	29.6 pb	1.59 pb	6.94 fb	105 ab	3.06 ab
$\sqrt{s_{p\bar{p}}}$ =1.96 TeV							
$\sigma_{pp o I}$	$58.19 \; \mu { m b}$	129.70 nb	2.769 nb	270.61 pb	3.04 pb	114.04 fb	8.293 fb
$\sqrt{s_{pp}}$ =14 TeV							
$\sigma_{pp o I}$	$211.0 \; \mu {\rm b}$	400.9 nb	9.51 nb	1.02 nb	13.3 pb	559.3 fb	46.3 fb
$\sqrt{s_{pp}}$ =30 TeV							
$\sigma_{pp o I}$	$771.0 \; \mu {\rm b}$	$2.12 \; \mu { m b}$	48.3 nb	5.65 nb	88.3 pb	4.42 pb	395.0 fb
$\sqrt{s_{pp}}$ =100 TeV							

If the instanton is recoiled by a high pT jet emitted from one of the initial state gluons => hadronic cross-section is tiny

$\sqrt{\hat{s}} [\text{GeV}]$	310	350	375	400	450	500
$\hat{\sigma}_{ ext{tot}}^{ ext{inst}} ext{ [pb]}$	3.42×10^{-23}	1.35×10^{-18}	1.06×10^{-17}	1.13×10^{-16}	9.23×10^{-16}	3.10×10^{-15}

Table 3. The instanton partonic cross-section recoiled against a hard jet with $p_T = 150$ GeV emitted from an initial state and calculated using Eq. (3.7). Results for the cross-section are shown for a range of partonic C.o.M. energies $\sqrt{\hat{s}}$.

$\sqrt{\hat{s}} [\text{GeV}]$	100	150	200	300	400	500
$\hat{\sigma}_{\mathrm{tot}}^{\mathrm{inst}}$ [pb]	1.68×10^{-7}	1.20×10^{-9}	3.24×10^{-11}	1.84×10^{-13}	4.38×10^{-15}	2.38×10^{-16}

Table 4. The cross-section presented for a range of partonic C.o.M. energies $\sqrt{\hat{s}} = E$ where the recoiled p_T is scaled with the energy, $p_T = \sqrt{\hat{s}}/3$.

Phenomenology summary

- QCD instanton cross-sections can be very large at hadron colliders.
- Instanton events are isotropic multi-particle final states. Their event topology is very distinct (see Event shape observables next slide)
- Particles with large pT are rare. Especially hard to produce them at low partonic energies (for obvious kinematic reasons). Do not pass triggers.
- At higher (partonic) energies instanton events can pass triggers but have suppressed cross-sections.
- Propose to examine data collected with minimum bias trigger
- [Note: large theoretical uncertainty at low partonic energies (strong coupling in the IR) where the semiclassical approximation becomes suspect/invalid.
 Best would be to constrain theory prediction / normalisation with data.]

Event shape observables are good. Triggering based on high pT pose problems:

Example: High-luminosity LHC

Missing transverse energy higher-level triggers require at least $E_{T \text{mis}} \geq 70 \text{ GeV}$ while single jet triggers are as high as $p_{T,j} \geq 360 \text{ GeV}$

If one of the instanton-induced partons has a transverse momentum to pass the single-jet trigger requirements, the centre-of-mass energy of the instanton $\sqrt{s'}$ has to be at least of $\mathcal{O}(700)$ GeV.

=> Cross-section is too small.

Thus, one would have to resort to multijet triggers, either with four jets of $p_{T,j} \geq 85$ GeV or six jets of $p_{T,j} \geq 45$ GeV. Both such trigger requirements result in for instantons fairly high partonic centre-of-mass energies of $\mathcal{O}(300)$ GeV. Generating 100000 signal events

=> none of the events passed trigger.

Need to be creative: low-luminosity LHC with minimal bias triggers does much better. Can one incorporate event-shape observables into trigger strategies?

Main sources of theoretical uncertainties (for discussion)

- QCD Instanton rates are interesting in the regime where they become large lower end of partonic energies 10-80 GeV. The weak coupling approximation used in the semiclassical calculation can be problematic. How to address: vary s' minimal partonic energy cutoff.
- What is the role of higher-order corrections to the Mueller's term in the exponent?
- Possible corrections to the instanton-anti-instanton interaction at medium instanton separations in the optical theorem approach.
- Non-factorisation of the determinants in the instanton-anti-instanton background in the optical theorem. (Instanton densities D(rho) do not factorise at finite R/rho ~1.5 2.)
- Choice of the RG scale = 1/rho. (can vary by a factor of 2 or use other prescriptions to test. In Ref. [1] we checked that)
- A practical point for future progress is to test theory normalisation of predicted QCD instanton rates with data. [The unbiased and un-tuned theory prediction is promising.]