# QCD instantons at hadron colliders 

Valya Khoze<br>IPPP Durham

with Frank Krauss \& Matthias Schott 1911.09726 : JHEP and Dan Milne \& Michael Spannowsky 2010.02287 : PRD

## QCD Instantons

- Yang-Mills vacuum has a nontrivial structure
- Instantons are tunnelling solutions between the vacua.
- At the classical level there is no barrier in QCD. The sphaleron is a quantum effect
- Transitions between the vacua change chirality (result of the ABJ anomaly).
- All light quark-anti-quark pairs must participate in the reaction
- Not described by perturbation theory.


$$
g+g \rightarrow n_{g} \times g+\sum_{f=1}^{N_{f}}\left(q_{R f}+\bar{q}_{L f}\right)
$$

## QCD Instantons

Instanton-induced processes with 2 gluons in the initial state:


Can also have quark-initiated processes e.g. :

$$
\begin{aligned}
& u_{L}+\bar{u}_{R} \rightarrow n_{g} \times g+\sum_{f=1}^{N_{f}-1}\left(q_{R f}+\bar{q}_{L f}\right), \\
& u_{L}+d_{L} \rightarrow n_{g} \times g+u_{R}+d_{R}+\sum_{f=1}^{N_{f}-2}\left(q_{R f}+\bar{q}_{L f}\right)
\end{aligned}
$$

$$
g+g \rightarrow n_{g} \times g+\sum_{f=1}^{N_{f}}\left(q_{R f}+\bar{q}_{L f}\right)
$$

The amplitude takes the form of an integral over instanton collective coordinates.
The classical result (leading order in the instanton perturbation theory) is simply:


- the integrand: a product of bosonic and fermionic components of the instanton field configurations - the factorised structure implies that emission of individual particles in the final state is uncorrelated and mutually independent.
[this is correct at the LO in instanton pert. theory approximation]
LO Instanton vertex



## The Optical Theorem approach: to include final state interactions

$$
\hat{\sigma}_{\mathrm{tot}}^{\mathrm{inst}}=\frac{1}{E^{2}} \operatorname{Im} \mathcal{A}_{4}^{I \bar{I}}\left(p_{1}, p_{2},-p_{1},-p_{2}\right)
$$

- Cross-section is obtained by |squaring| the instanton amplitude.
- Final states have been instrumental in combatting the exp. suppression.
- Now also the interactions between the
 final states (and the improvement on the pointlike I-vertex) are taken into account.
- Use the Optical Theorem to compute Im part of the $2->2$ amplitude in around the Instanton-Anti-instanton configuration.
- Varying the energy E changes the dominant value of I-Ibar separation R . At $\mathrm{R}=0$ instanton and anti-instanton mutually annihilate.
- The suppression of the EW instanton crosssection is gradually reduced at lower $R(E)$.


VVK \& Ringwald 1991

## The Optical Theorem approach: to include final state interactions

- Instanton - anti-instanton valley configuration has $\mathrm{Q}=0$; it interpolates between infinitely separated instanton-anti-instanton and the perturbative vacuum at $R=0$

- Exponential suppression is gradually reduced at lower R (Energy-dependent)
- no radiative corrections from hard initial states included in this approximation

$$
\begin{aligned}
& \sigma_{\mathrm{tot}}^{(\mathrm{cl}) \mathrm{inst}}= \frac{1}{s} \operatorname{Im} \mathcal{A}_{4}^{I \bar{I}}\left(p_{1}, p_{2},-p_{1},-p_{2}\right) \\
& \simeq \frac{1}{s} \operatorname{Im} \int_{0}^{\infty} d \rho \int_{0}^{\infty} d \bar{\rho} \int d^{4} R \int d \Omega D(\rho) D(\bar{\rho}) e^{-S_{I \bar{I}}} \mathcal{K}_{\mathrm{ferm}} \times \\
& A_{L S Z}^{\mathrm{inst}}\left(p_{1}\right) A_{L S Z}^{\mathrm{inst}}\left(p_{2}\right) A_{L S Z}^{\overline{\mathrm{inst}}}\left(-p_{1}\right) A_{L S Z}^{\overline{\mathrm{inst}}}\left(-p_{2}\right), \\
& \vdots
\end{aligned}
$$

$$
\mathcal{S}(\chi) \simeq 1-6 / \chi^{4}+24 / \chi^{6}+\ldots \quad \chi=\frac{R}{\rho}
$$

$$
S_{I \bar{I}}(\rho, \bar{\rho}, R)=\frac{4 \pi}{\alpha_{s}\left(\mu_{r}\right)} \mathcal{S}
$$




- Exponential suppression is gradually reduced at lower and lower $\chi=\frac{R}{\rho}$
- no radiative corrections from hard initial states included in this approximation

$$
\begin{aligned}
& D\left(\rho, \mu_{r}\right)=\kappa \frac{1}{\rho^{5}}\left(\frac{2 \pi}{\alpha_{s}\left(\mu_{r}\right)}\right)^{6}\left(\rho \mu_{r}\right)^{b_{0}} \\
& \sigma_{\text {tot }}^{(\mathrm{cl}) \mathrm{inst}}=\frac{1}{s} \operatorname{Im} \mathcal{A}_{4}^{I \bar{I}}\left(p_{1}, p_{2},-p_{1},-p_{2}\right) \\
& \simeq \frac{1}{s} \operatorname{Im} \int_{0}^{\infty} d \rho \int_{0}^{\infty} d \bar{\rho} \int d^{4} R \int d \Omega \underset{\sim}{\nabla}(\rho) D(\bar{\rho}) e^{-S_{I \bar{I}}} \mathcal{K}_{\mathrm{ferm}} \times \\
& A_{L S Z}^{\mathrm{inst}}\left(p_{1}\right) A_{L S Z}^{\mathrm{inst}}\left(p_{2}\right) A_{L S Z}^{\overline{\mathrm{inst}}}\left(-p_{1}\right) A_{L S Z}^{\overline{\mathrm{inst}}}\left(-p_{2}\right), \\
& \text { fermion prefactor } \\
& \text { from Nf qq-bar pairs } \\
& A_{L S Z}^{\text {inst }}\left(p_{1}\right) A_{L S Z}^{\text {inst }}\left(p_{2}\right) A_{L S Z}^{\overline{\text { inst }}}\left(-p_{1}\right) A_{L S Z}^{\overline{\text { inst }}}\left(-p_{2}\right)=\frac{1}{36}\left(\frac{2 \pi^{2}}{g} \rho^{2} \sqrt{s^{\prime}}\right)^{4} e^{i R \cdot\left(p_{1}+p_{2}\right)} \\
& \text { But the instanton size has not been stabilised. } \\
& \text { In QCD - rho is a classically flat direction - } \\
& \text { need to include and re-sum quantum corrections! }
\end{aligned}
$$

## in the EW theory:



- Exponential suppression is gradually reduced with energy [in the EW theory]


## In QCD:



## Initial state interactions in the instanton approach

LO instanton process

$p_{2}$
Mo
$A\left(p_{2}\right) \quad$ own

NLO instanton process

OM~
propagator in the instanton background

$$
\begin{aligned}
& G_{\mu \nu}^{a b}\left(p_{1}, p_{2}\right) \rightarrow-\frac{g^{2} \rho^{2} s}{64 \pi^{2}} \log (s) A_{\mu}^{a}\left(p_{1}\right) A_{\nu}^{b}\left(p_{2}\right) \\
& p_{1}^{2}=0=p_{2}^{2}, \quad 2 p_{1} p_{2}=s \gg 1 / \rho^{2}
\end{aligned}
$$

Include now higher order corrections in the high-energy limit:

$$
\sum_{r=1}^{N} \frac{1}{r!}\left(-\frac{g^{2} \rho^{2} s}{64 \pi^{2}} \log (s)\right)^{r} A_{\mu}^{a}\left(p_{1}\right) A_{\nu}^{b}\left(p_{2}\right)
$$




$+\ldots$

$$
e^{-\left(\alpha_{s}\left(\mu_{r}\right) / 16 \pi\right) \rho^{2} E^{2} \log E^{2} / \mu_{r}^{2}}
$$

Mueller 1991

## Combined effect of initial and final states interactions in QCD

$$
\begin{aligned}
& \hat{\sigma}_{\text {tot }}^{\text {inst }} \simeq \frac{1}{s^{\prime}} \operatorname{Im} \frac{\kappa^{2} \pi^{4}}{36 \cdot 4} \int \frac{d \rho}{\rho^{5}} \int \frac{d \bar{\rho}}{\bar{\rho}^{5}} \int d^{4} R \int d \Omega\left(\frac{2 \pi}{\alpha_{s}\left(\mu_{r}\right)}\right)^{14}\left(\rho^{2} \sqrt{s^{\prime}}\right)^{2}\left(\bar{\rho}^{2} \sqrt{s^{\prime}}\right)^{2} \mathcal{K}_{\text {ferm }} \\
&\left(\rho \mu_{r}\right)^{b_{0}}\left(\bar{\rho} \mu_{r}\right)^{b_{0}} \exp \left(R_{0} \sqrt{s^{\prime}}-\frac{4 \pi}{\alpha_{s}\left(\mu_{r}\right)} \hat{\mathcal{S}}(z)-\frac{\alpha_{s}\left(\mu_{r}\right)}{16 \pi}\left(\rho^{2}+\bar{\rho}^{2}\right) s^{\prime} \log \left(\frac{s^{\prime}}{\mu_{r}^{2}}\right)\right) \\
& \\
& \quad \begin{array}{l}
\text { Instanton size is cut-off by } \sim \sqrt{s} \\
\text { this is what sets the } \\
\text { effective QCD sphlarenon scale }
\end{array} \vdots \\
& \vdots
\end{aligned}
$$

Basically, in QCD one can never reach the effective sphaleron barrier - it's hight grows with the energy.
=> Among other things, no problems with unitarity.

This is the main idea of the approach:
[1] VVK, Krauss, Schott
[2] VVK, Milne, Spannowsky

## Combined effect of initial and final states interactions in QCD

$$
\begin{aligned}
\hat{\sigma}_{\text {tot }}^{\text {inst }} \simeq & \frac{1}{s^{\prime}} \operatorname{Im} \frac{\kappa^{2} \pi^{4}}{36 \cdot 4} \int \frac{d \rho}{\rho^{5}} \int \frac{d \bar{\rho}}{\bar{\rho}^{5}} \int d^{4} R \int d \Omega\left(\frac{2 \pi}{\alpha_{s}\left(\mu_{r}\right)}\right)^{14}\left(\rho^{2} \sqrt{s^{\prime}}\right)^{2}\left(\bar{\rho}^{2} \sqrt{s^{\prime}}\right)^{2} \mathcal{K}_{\text {ferm }} \\
& \left(\rho \mu_{r}\right)^{b_{0}}\left(\bar{\rho} \mu_{r}\right)^{b_{0}} \exp \left(R_{0} \sqrt{s^{\prime}}-\frac{4 \pi}{\alpha_{s}\left(\mu_{r}\right)} \hat{\mathcal{S}}(z)-\frac{\alpha_{s}\left(\mu_{r}\right)}{16 \pi}\left(\rho^{2}+\bar{\rho}^{2}\right) s^{\prime} \log \left(\frac{s^{\prime}}{\mu_{r}^{2}}\right)\right)
\end{aligned}
$$

1. Extermise the holy-grail function in the exponent by finding a saddle-point in variables:

$$
\tilde{\rho}=\frac{\alpha_{s}(\rho)}{4 \pi} \sqrt{s} \rho, \quad \chi=\frac{R}{\rho}
$$

$$
\mathcal{F}=\rho \chi \sqrt{s}-\frac{4 \pi}{\alpha_{s}(\rho)} \mathcal{S}(\chi)-\frac{\alpha_{s}(\rho)}{4 \pi} \rho^{2} s \log (\sqrt{s} \rho)
$$



## Combined effect of initial and final states interactions in QCD

$$
\begin{aligned}
\hat{\sigma}_{\text {tot }}^{\text {inst }} \simeq & \frac{1}{s^{\prime}} \operatorname{Im} \frac{\kappa^{2} \pi^{4}}{36 \cdot 4} \int \frac{d \rho}{\rho^{5}} \int \frac{d \bar{\rho}}{\bar{\rho}^{5}} \int d^{4} R \int d \Omega\left(\frac{2 \pi}{\alpha_{s}\left(\mu_{r}\right)}\right)^{14}\left(\rho^{2} \sqrt{s^{\prime}}\right)^{2}\left(\bar{\rho}^{2} \sqrt{s^{\prime}}\right)^{2} \mathcal{K}_{\text {ferm }} \\
& \left(\rho \mu_{r}\right)^{b_{0}}\left(\bar{\rho} \mu_{r}\right)^{b_{0}} \exp \left(R_{0} \sqrt{s^{\prime}}-\frac{4 \pi}{\alpha_{s}\left(\mu_{r}\right)} \hat{\mathcal{S}}(z)-\frac{\alpha_{s}\left(\mu_{r}\right)}{16 \pi}\left(\rho^{2}+\bar{\rho}^{2}\right) s^{\prime} \log \left(\frac{s^{\prime}}{\mu_{r}^{2}}\right)\right)
\end{aligned}
$$

1st Approach: VVK, Krauss, Schott

1. Extermise the holy-grail function in the exponent by finding a saddle-point in variables:

$$
\mathcal{F}=\rho \chi \sqrt{s}-\frac{4 \pi}{\alpha_{s}(\rho)} \mathcal{S}(\chi)-\frac{\alpha_{s}(\rho)}{4 \pi} \rho^{2} s \log (\sqrt{s} \rho)
$$

$$
\tilde{\rho}=\frac{\alpha_{s}(\rho)}{4 \pi} \sqrt{s} \rho, \quad \chi=\frac{R}{\rho}
$$

## Combined effect of initial and final states interactions in QCD

$$
\begin{aligned}
\hat{\sigma}_{\text {tot }}^{\text {inst }} \simeq & \frac{1}{s^{\prime}} \operatorname{Im} \frac{\kappa^{2} \pi^{4}}{36 \cdot 4} \int \frac{d \rho}{\rho^{5}} \int \frac{d \bar{\rho}}{\bar{\rho}^{5}} \int d^{4} R \int d \Omega\left(\frac{2 \pi}{\alpha_{s}\left(\mu_{r}\right)}\right)^{14}\left(\rho^{2} \sqrt{s^{\prime}}\right)^{2}\left(\bar{\rho}^{2} \sqrt{s^{\prime}}\right)^{2} \mathcal{K}_{\text {ferm }} \\
& \left(\rho \mu_{r}\right)^{b_{0}}\left(\bar{\rho} \mu_{r}\right)^{b_{0}} \exp \left(R_{0} \sqrt{s^{\prime}}-\frac{4 \pi}{\alpha_{s}\left(\mu_{r}\right)} \hat{\mathcal{S}}(z)-\frac{\alpha_{s}\left(\mu_{r}\right)}{16 \pi}\left(\rho^{2}+\bar{\rho}^{2}\right) s^{\prime} \log \left(\frac{s^{\prime}}{\mu_{r}^{2}}\right)\right)
\end{aligned}
$$

1st Approach: VVK, Krauss, Schott

1. Extermise the holy-grail function in the exponent by finding a saddle-point in variables:

$$
\mathcal{F}=\rho \chi \sqrt{s}-\frac{4 \pi}{\alpha_{s}(\rho)} \mathcal{S}(\chi)-\frac{\alpha_{s}(\rho)}{4 \pi} \rho^{2} s \log (\sqrt{s} \rho)
$$

$$
\tilde{\rho}=\frac{\alpha_{s}(\rho)}{4 \pi} \sqrt{s} \rho, \quad \chi=\frac{R}{\rho}
$$

2. Carry out all integrations using the steepest descent method evaluating the determinants of quadratic fluctuations around the saddle-point solution
3. Pre-factors are very large - they compete with the semiclassical exponent which is very small!

## Results

1st Approach: VVK, Krauss, Schott


## Results and partonic cross-section

| $\sqrt{s^{\prime}}[\mathrm{GeV}]$ | $1 / \rho[\mathrm{GeV}]$ | $\alpha_{S}(1 / \rho)$ | $\left\langle n_{g}\right\rangle$ | $\hat{\sigma}[\mathrm{pb}]$ |
| ---: | ---: | ---: | ---: | ---: |
| 10.7 | 0.99 | 0.416 | 4.59 | $4.922 \cdot 10^{9}$ |
| 11.4 | 1.04 | 0.405 | 4.68 | $3.652 \cdot 10^{9}$ |
| 13.4 | 1.16 | 0.382 | 4.90 | $1.671 \cdot 10^{9}$ |
| 15.7 | 1.31 | 0.360 | 5.13 | $728.9 \cdot 10^{6}$ |
| 22.9 | 1.76 | 0.315 | 5.44 | $85.94 \cdot 10^{6}$ |
| 29.7 | 2.12 | 0.293 | 6.02 | $17.25 \cdot 10^{6}$ |
| 40.8 | 2.72 | 0.267 | 6.47 | $2.121 \cdot 10^{6}$ |
| 56.1 | 3.50 | 0.245 | 6.92 | $229.0 \cdot 10^{3}$ |
| 61.8 | 3.64 | 0.223 | 7.28 | $72.97 \cdot 10^{3}$ |
| 89.6 | 4.98 | 0.206 | 7.67 | $2.733 \cdot 10^{3}$ |
| 118.0 | 6.21 | 0.195 | 8.25 | 235.4 |
| 174.4 | 8.72 | 0.180 | 8.60 | 6.720 |
| 246.9 | 11.76 | 0.169 | 9.04 | 0.284 |
| 349.9 | 15.90 | 0.159 | 9.49 | 0.012 |
| 496.3 | 21.58 | 0.150 | 9.93 | $5.112 \cdot 10^{-4}$ |
| 704.8 | 29.37 | 0.142 | 10.37 | $21.65 \cdot 10^{-6}$ |
| 1001.8 | 40.07 | 0.135 | 10.81 | $0.9017 \cdot 10^{-6}$ |
| 1425.6 | 54.83 | 0.128 | 11.26 | $36.45 \cdot 10^{-9}$ |
| 2030.6 | 75.21 | 0.122 | 11.70 | $1.419 \cdot 10^{-9}$ |
| 2895.5 | 103.4 | 0.117 | 12.14 | $52.07 \cdot 10^{-12}$ |



HOW QCD instantons address criticism of EW sphaleron production in high-E collisions:

The sphaleron is a semiclassical configuration with

$$
\text { Size }_{\text {sph }} \sim m_{W}^{-1}, \quad E_{\text {sph }}=\text { few } \times m_{W} / \alpha_{W} \simeq 10 \mathrm{TeV} .
$$

It is 'made out' of $\sim 1 / \alpha_{W}$ particles (i.e. it decays into $\sim 1 / \alpha_{W}$ W's, Z's, H's).

$$
2_{\text {initial hard partons }} \rightarrow \text { Sphaleron } \rightarrow\left(\sim 1 / \alpha_{W}\right)_{\text {soft final quanta }}
$$

The sphaleron production out of 2 hard partons is unlikely.


Fig. 3. "You can't make a fish in a pp collider."
from Mattis PRpts 1991

But in QCD instantons are small
[A `small fish' compared to the EW case]

This criticism does not apply to our QCD calculation

2nd more direct approach: VVK, Milne, Spannowsky
compute all (but one) collective coordinate integrals numerically using numerical techniques
introduce dimensionless integration variables,

$$
\begin{aligned}
r_{0} & =R_{0} E, \quad r=|\vec{R}| E \\
y & =\rho \bar{\rho} E^{2}, \quad x=\rho / \bar{\rho}
\end{aligned}
$$

numerically evaluate (no saddle point approximation needed):

$$
\begin{aligned}
& G\left(r_{0}, E\right)=\frac{\kappa^{2} \pi^{4}}{2^{17}} \sqrt{\frac{\pi}{3}} \int_{0}^{\infty} r^{2} d r \int_{0}^{\infty} \frac{d x}{x} \int_{0}^{\infty} \frac{d y}{y}\left(\frac{4 \pi}{\alpha_{s}}\right)^{21 / 2}\left(\frac{1}{1-\mathcal{S}(z)}\right)^{7 / 2} \\
& \mathcal{K}_{\text {ferm }}(z) \exp \left(-\frac{4 \pi}{\alpha_{s}} \mathcal{S}(z)-\frac{\alpha_{s}}{4 \pi} \frac{x+1 / x}{4} y \log y\right)
\end{aligned}
$$

and use this to compute the final integral (in the saddle-point approximation to get Im):

$$
\hat{\sigma}_{\text {tot }}^{\text {inst }}(E)=\frac{1}{E^{2}} \operatorname{Im} \int_{-\infty}^{+\infty} d r_{0} e^{r_{0}} G\left(r_{0}, E\right)
$$

## Results and partonic cross-section

| $\sqrt{\hat{s}}[\mathrm{GeV}]$ | 50 | 100 | 150 | 200 | 300 | 400 | 500 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\left\langle n_{g}\right\rangle$ | 9.43 | 11.2 | 12.22 | 12.94 | 13.96 | 14.68 | 15.23 |
| $\hat{\sigma}_{\text {tot }}^{\text {inst }}[\mathrm{pb}]$ | $207.33 \times 10^{3}$ | $1.29 \times 10^{3}$ | 53.1 | 5.21 | $165.73 \times 10^{-3}$ | $13.65 \times 10^{-3}$ | $1.89 \times 10^{-3}$ |

$$
\begin{aligned}
& G\left(r_{0}, E\right)= \frac{\kappa^{2} \pi^{4}}{2^{17}} \sqrt{\frac{\pi}{3}} \int_{0}^{\infty} r^{2} d r \int_{0}^{\infty} \frac{d x}{x} \int_{0}^{\infty} \frac{d y}{y}\left(\frac{4 \pi}{\alpha_{s}}\right)^{21 / 2}\left(\frac{1}{1-\mathcal{S}(z)}\right)^{7 / 2} \mathcal{K}_{\mathrm{ferm}} \\
& \sum_{n_{g}=0}^{\infty} \frac{1}{n_{g}!}\left(U_{\mathrm{int}}\right)^{n_{g}} \exp \left(-\frac{4 \pi}{\alpha_{s}}-\frac{\alpha_{s}}{4 \pi} \frac{x+1 / x}{4} y \log y\right) \\
&\left\langle n_{g}\right\rangle=\left\langle U_{\mathrm{int}}\right\rangle
\end{aligned}
$$

## hadronic total cross-section

$$
\sigma_{p p \rightarrow I}\left(\hat{s}>\hat{s}_{\min }\right)=\int_{\hat{s}_{\min }}^{s_{p p}} d x_{1} d x_{2} \quad f\left(x_{1}, Q^{2}\right) f\left(x_{2}, Q^{2}\right) \hat{\sigma}\left(\hat{s}=x_{1} x_{2} s_{p p}\right)
$$

| $E_{\min }[\mathrm{GeV}]$ | 50 | 100 | 150 | 200 | 300 | 400 | 500 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\sigma_{p \bar{p} \rightarrow I}$ <br> $\sqrt{s_{p \bar{p}}}=1.96 \mathrm{TeV}$ | $2.62 \mu \mathrm{~b}$ | 2.61 nb | 29.6 pb | 1.59 pb | 6.94 fb | 105 ab | 3.06 ab |
| $\sigma_{p p \rightarrow I}$ <br> $\sqrt{s_{p p}}=14 \mathrm{TeV}$ | $58.19 \mu \mathrm{~b}$ | 129.70 nb | 2.769 nb | 270.61 pb | 3.04 pb | 114.04 fb | 8.293 fb |
| $\sigma_{p p \rightarrow I}$ <br> $\sqrt{s_{p p}}=30 \mathrm{TeV}$ | $211.0 \mu \mathrm{~b}$ | 400.9 nb | 9.51 nb | 1.02 nb | 13.3 pb | 559.3 fb | 46.3 fb |
| $\sigma_{p p \rightarrow I}$ <br> $\sqrt{s_{p p}}=100 \mathrm{TeV}$ | $771.0 \mu \mathrm{~b}$ | $2.12 \mu \mathrm{~b}$ | 48.3 nb | 5.65 nb | 88.3 pb | 4.42 pb | 395.0 fb |

If the instanton is recoiled by a high pT jet emitted from one of the initial state gluons => hadronic cross-section is tiny


$$
\exp (-Q(\rho+\bar{\rho}))=\exp \left(-\frac{Q}{E} \sqrt{y(x+1 / x+2)}\right)
$$

| $\sqrt{\hat{s}}[\mathrm{GeV}]$ | 310 | 350 | 375 | 400 | 450 | 500 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\hat{\sigma}_{\text {tot }}^{\text {inst }}[\mathrm{pb}]$ | $3.42 \times 10^{-23}$ | $1.35 \times 10^{-18}$ | $1.06 \times 10^{-17}$ | $1.13 \times 10^{-16}$ | $9.23 \times 10^{-16}$ | $3.10 \times 10^{-15}$ |

Table 3. The instanton partonic cross-section recoiled against a hard jet with $p_{T}=150 \mathrm{GeV}$ emitted from an initial state and calculated using Eq. (3.7). Results for the cross-section are shown for a range of partonic C.o.M. energies $\sqrt{\hat{s}}$.

| $\sqrt{\hat{s}}[\mathrm{GeV}]$ | 100 | 150 | 200 | 300 | 400 | 500 |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- |
| $\hat{\sigma}_{\text {tot }}^{\text {inst }}[\mathrm{pb}]$ | $1.68 \times 10^{-7}$ | $1.20 \times 10^{-9}$ | $3.24 \times 10^{-11}$ | $1.84 \times 10^{-13}$ | $4.38 \times 10^{-15}$ | $2.38 \times 10^{-16}$ |

Table 4. The cross-section presented for a range of partonic C.o.M. energies $\sqrt{\hat{s}}=E$ where the recoiled $p_{T}$ is scaled with the energy, $p_{T}=\sqrt{\hat{s}} / 3$.

## Phenomenology summary

- QCD instanton cross-sections can be very large at hadron colliders.
- Instanton events are isotropic multi-particle final states. Their event topology is very distinct (see Event shape observables next slide)
- Particles with large pT are rare. Especially hard to produce them at low partonic energies (for obvious kinematic reasons). Do not pass triggers.
- At higher (partonic) energies instanton events can pass triggers but have suppressed cross-sections.
- Propose to examine data collected with minimum bias trigger
- [Note: large theoretical uncertainty at low partonic energies (strong coupling in the IR) where the semiclassical approximation becomes suspect/invalid. Best would be to constrain theory prediction / normalisation with data.]

LHC jet reconstruction: anti-kT, R=0.4, pT>10 GeV





## Event shape observables are good. Triggering based on high pT pose problems:

Example: High-luminosity LHC
Missing transverse energy higher-level triggers require at least $E_{T \text { mis }} \geq 70 \mathrm{GeV}$ while single jet triggers are as high as $p_{T, j} \geq 360 \mathrm{GeV}$

If one of the instanton-induced partons has a transverse momentum to pass the single-jet trigger requirements, the centre-of-mass energy of the instanton $\sqrt{s^{\prime}}$ has to be at least of $\mathcal{O}(700) \mathrm{GeV}$.
=> Cross-section is too small.

Thus, one would have to resort to multijet triggers, either with four jets of $p_{T, j} \geq 85$ GeV or six jets of $p_{T, j} \geq 45 \mathrm{GeV}$. Both such trigger requirements result in for instantons fairly high partonic centre-of-mass energies of $\mathcal{O}(300) \mathrm{GeV}$. Generating 100000 signal events
=> none of the events passed trigger.

Need to be creative: low-luminosity LHC with minimal bias triggers does much better.
Can one incorporate event-shape observables into trigger strategies?
VVK, Milne, Spannowsky

## Main sources of theoretical uncertainties (for discussion)

- QCD Instanton rates are interesting in the regime where they become large - lower end of partonic energies $10-80 \mathrm{GeV}$. The weak coupling approximation used in the semiclassical calculation can be problematic. How to address: vary s' minimal partonic energy cutoff.
- What is the role of higher-order corrections to the Mueller's term in the exponent?
- Possible corrections to the instanton-anti-instanton interaction at medium instanton separations in the optical theorem approach.
- Non-factorisation of the determinants in the instanton-anti-instanton background in the optical theorem. (Instanton densities D (rho) do not factorise at finite R/rho ~1.5-2.)
- Choice of the RG scale $=1 /$ rho. (can vary by a factor of 2 or use other prescriptions to test. In Ref. [1] we checked that )
- A practical point for future progress is to test theory normalisation of predicted QCD instanton rates with data. [The unbiased and un-tuned theory prediction is promising.]

