

LHC SIGNATURES OF QCD AND EW INSTANTONS

TOPOLOGICAL EFFECTS IN THE SM

DEC. 18TH, 2020

SIMONE AMOROSO (DESY)

INTRODUCTION

Topological phenomena, and Instantons in the SM are a well established (and rich) field since the 70s

- Quite some activity in the 90s in studying possible manifestation of these processes at high-energy colliders
- Besides the HERA QCD Instanton searches, very little happened since then
- * What can the LHC tell us about SM Instantons?

EW SPHALERONS SIGNATURE

- * A $\Delta N_{CS} = 1$ Sphaleron transition should give rise to 12 fermions (7 quarks, 3 leptons), violating
- Additionally, expect to be produced in association with a large number (1/ α) of γ , Z, W, H bosons
- The process of interest at colliders is then:

$$q + q \rightarrow 7\bar{q} + 3\bar{\ell} + n_B W/Z/\gamma/H$$

Recently revamped interest due to claims [<u>1710.07223</u>] of crosssection being unsuppressed at ~LHC energies

SIGNATURES

- Simulation of Sphaleron processes at colliders first implemented in HERWIG with the HERBVI plugin [9504232]
- Recently re-implemented in Herwig7 [<u>1910.04761</u>]
- CMS using "own" generator, BaryoGen [<u>1805.02786</u>], which ignores the associated boson production
- Expect a very high multiplicity final state with many high-p_T objects (leptons, γ , jets, b-jets) [1910.04761]

EXPERIMENTAL CONSIDERATIONS

- * No problems with trigger, any high-p⊤ trigger would fire
- Reconstruction efficiency would be high for ~all of the Sphaleron decay products
- No need for any complicated analysis strategy, just count the leptons and jets (b-jets if you want)
- Nothing even remotely similar to this in the SM, can define background free signal regions: single event == discovery
- No way this could have escaped detection in experiments, plenty of searches for multi-V/H production, tt+X, ...

EW SPHALERONS AT COLLIDERS

- Despite recent claims, production of SM EW sphalerons at (present and future) high-energy colliders is ~impossible
- Does this hold for generic SM extensions? Could anyone think of ways to make Sphaleron transitions "easier" at colliders?
 - Likely excluded by cosmological/astrophysical evidence?
 - Shall/can we look for Gia's saturon model? It seemed to be not substantially different from the QBH we already search for
- Sphaleron signature is distinct and unlike anything we typically search for at hadron colliders
- Even if impossible in the SM it could probably still be considered as a useful BSM benchmark

QCD INSTANTON SIGNATURE

* A $\Delta N_{CS} = 1$ transition should give rise to 2N_f fermions pairs of different chiralities, and an additional large number of gluons

$$g + g \to n_g \times g + \sum_{f=1}^{N_f} (q_{Rf} + \bar{q}_{Lf})$$
$$u_L + \bar{u}_R \to n_g \times g + \sum_{f=1}^{N_f - 1} (q_{Rf} + \bar{q}_{Lf})$$

Cross-sections so far calculated for gluon initiated processes

- Dominant contribution due to PDFs
- Need to cut-off contribution of largesize instants (initial state/virtuality)

CROSS-SECTIONS

Instanton cross-section as a function of the partonic com energy, and the number of associated gluons expected, from <u>2010.02287</u>

$\sqrt{\hat{s}} \; [\text{GeV}]$	50	100	150	200	300	400	500
$\langle n_g angle$	9.43	11.2	12.22	12.94	13.96	14.68	15.23
$\hat{\sigma}_{ m tot}^{ m inst}$ [pb]	207.33×10^{3}	1.29×10^{3}	53.1	5.21	165.73×10^{-3}	13.65×10^{-3}	1.89×10^{-3}

Also computed for an additional jet with $p_T > 150$ GeV

$\sqrt{\hat{s}} [\text{GeV}]$	310	350	375	400	450	500
$\hat{\sigma}_{ m tot}^{ m inst}$ [pb]	3.42×10^{-23}	1.35×10^{-18}	1.06×10^{-17}	1.13×10^{-16}	9.23×10^{-16}	3.10×10^{-15}

And resulting cross-sections in pp/ppbar at various energies

E_{\min} [GeV]	50	100	150	200	300	400	500
$\sigma_{p\bar{p} \rightarrow I}$	$2.62 \ \mu b$	2.61 nb	29.6 pb	1.59 pb	6.94 fb	105 ab	3.06 ab
$\sqrt{s_{p\bar{p}}}$ =1.96 TeV							
$\sigma_{pp \rightarrow I}$	58.19 μb	129.70 nb	2.769 nb	270.61 pb	3.04 pb	114.04 fb	8.293 fb
$\sqrt{s_{pp}}$ =14 TeV							
$\sigma_{pp \rightarrow I}$	$211.0~\mu{\rm b}$	400.9 nb	9.51 nb	1.02 nb	13.3 pb	$559.3 \mathrm{~fb}$	46.3 fb
$\sqrt{s_{pp}}$ =30 TeV							
$\sigma_{pp \rightarrow I}$	771.0 μb	$2.12 \ \mu b$	48.3 nb	5.65 nb	88.3 pb	4.42 pb	$395.0~{\rm fb}$
$\sqrt{s_{pp}}$ =100 TeV							

CROSS-SECTIONS

Cross-section quickly dropping with the instanton mass

- Need to find balance between a decently large cross-section and sufficiently high mass (to get high-pT decay products)
- The dependence on the pp centre-of-mass energy is somewhat different between the Instanton and SM pQCD jet production or soft QCD models
 - But models of the total cross-section are usually "tuned" to data

SIGNAL SIMULATION

- Relies on the process implementation in Sherpa [1911.09726]
 - Partonic cross-sections from tabulated calculation
 - Minimal $\sqrt{s'}$ fixes the factorisation scale $\mu_F = 1/\rho$
 - Instanton decay products consist of $q\bar{q}$ pairs as long as:
 - Quark mass smaller than partonic energy
 - Total Instanton mass smaller than partonic energy
 - An additional Poisson distributed number of gluons is added as long as total mass is below the parsonic energy
 - Particles are decayed isotropically in their rest frame and boosted back to the lab frame
- Likely ignores dependence of the active flavours on the instanton size/partonic energy
- Implementation in Herwig7 exists, but lacking partonic crosssection dependence

JET OBSERVABLES

anti-k_T jets, R=0.4, p_T>10 GeV

TRACK OBSERVABLES

12

tracks p_T>500 MeV, $|\eta|$ <2.5

PARTICLE COMPOSITION

- we should expect a different particle composition of the instanton events
 - We see a somewhat larger fraction of strange, charm and bottom particles in Instanton events than in QCD
 - Also larger number of displaced tracks, similar to the expectation for ttbar production (b-quarks?)

TRIGGERS

- Instanton cross-section is large, but events not easy to trigger
- Jet triggers
 - Single jet trigger: p_T>500 GeV -> no way
 - Multijet triggers: p_T >100 GeV -> still too high thresholds topological selections could help (i.e. event shapes)?
 - Can lower the rate by prescaling, but significantly reduces the collected statistics (factors 10 1000)
- Leptons
 - Leptons from semileptonic B/C-hadrons? -> too soft
- Minimum Bias triggers
 - Only require a few high-p_T tracks -> high acceptance
 - Typically used for monitoring and luminosity measurements
 - Very high prescales, will only get small fraction of total lumi

ATLAS TRIGGERS

SEARCH STRATEGIES

***** The soft QCD regime (20 < m< 40 GeV and 40 < m< 80 GeV)

- Very large signal cross-sections, but approaching the regime where cross-sections might not be anymore reliable
- Background dominated by soft QCD, described by phenomenological models fitted to data with large uncertainties
- Two regions to exploit the different fall-off of the cross-section for Instantons and softQCD as a function of mass
- The hard QCD regime (200 GeV <m_l< 300 GeV)
 - Instanton cross-sections are much smaller, and events hard to trigger but events look more striking
 - Background dominated by (perturbative) QCD jet production Known to NNLO, uncertainties at the level of several percent
- The top-quark regime (300 GeV <m < 500 GeV)</p>
 - In this high mass regime can also try to find regions dominated by top-quark pair production.
 - Can use semi-/dileptonic decays in data as control regions

ANALYSIS OPTIMISATION

- Tried to optimise possible Instanton signal regions
 - SM backgrounds generated with Pythia8
 - Detector simulation with Delphes
- Three signal regions defined for each regime
 - Standard: applies selections on Ntrk, Njets and ml/Ntrk
 - Event-shape: applies in addition requirements on the Broadening and Thrust observables
 - Tight: Applies a further requirement on displaced tracks
- In addition define two regions which are signal depleted and could be used to validate the background
 - Or to directly estimate it with an "ABCD" like approach
 - Obtained relaxing or reverting some of the signal requirements

THE SOFT QCD REGIME

	Si	Signal Region		Control Region	
	Standard	Event-	Tight	A	В
		Shape			
Invariant mass of rec. tracks (Instanton Mass), m_I		20 GeV	$< m_I < 40$) GeV	
Selection Requir	ction Requirements				
Number of rec. tracks, N_{Trk}	>20	>20	>20	>15	>20
Number of rec. tracks/Instanton mass, m_I/N_{Trk}	<1.5	< 1.5	< 1.5	>2.0	< 1.5
Number of Jets, N_{Jets}	=0	=0	=0	=0	=0
Broadening, $\mathcal{B}_{\text{Tracks}}$		>0.3	>0.3	>0.3	> 0.3
Thrust, $\mathcal{T}_{\mathrm{Tracks}}$		>0.3	>0.3	> 0.3	> 0.3
Number of displaced vertices, $N_{\text{Displaced}}$			>6		<4
Expected Events for $\int Ldt = 1 \mathrm{pb}^{-1}$ in the Signal Region ($\mathcal{S} > 0.85$)					
N_{Signal}	$1.1 \cdot 10^{7}$	$8.9 \cdot 10^6$	$5.9 \cdot 10^6$	<1	$6.8 \cdot 10^{5}$
$N_{Background}$	$6.2 \cdot 10^{6}$	$4.3 \cdot 10^{6}$	$1.8 \cdot 10^5$	$3 \cdot 10^5$.	$3.3 \cdot 10^6$

Huge number of signal events expected even in just 1 pb⁻¹

- Would allow for clear observation of this process
- Yet unclear how well we can describe soft QCD backgrounds
- Assumed an uncertainty of 20-40% from comparisons of different models (H7/Sherpa/Pythia8)

THE HARD QCD REGIME

	Signal Region		Control Region		
	Standard	Event-	Tight	А	В
		Shape			
Invariant mass of rec. tracks (Instanton Mass), m_I 200 GeV $< m_I < 300$ GeV					
Selection Requirem	ents				
Number of rec. tracks, N_{Trk}	>80	>80	>80	$>\!\!80$	$>\!80$
Number of rec. tracks/Instanton mass, $m_I/N_{\rm Trk}$	<3.0	< 3.0	< 3.0	>3.0	<3.0
Number of Jets, N_{Jets}	3-6	3-6	3-6	3-6	3-6
Broadening, $\mathcal{B}_{\text{Tracks}}$		>0.3	>0.3	> 0.3	> 0.3
Thrust, $\mathcal{T}_{\text{Tracks}}$		> 0.3	> 0.3	> 0.3	> 0.3
Number of displaced vertices, $N_{\text{Displaced}}$			>15		$< \! 10$
Results					
Expected Events for $\int Ldt = 1 \mathrm{pb}^{-1}$ in the Signal Region ($\mathcal{S} > 0.85$)					
N_{Signal}	5.6	1.0	0.54	0.04	0.21
$N_{Background}$	1900	9.6	0.64	200	1100

- Tight selection would allow a S/B ~ 1
- But an observation would only be possible with 10 pb⁻¹

THE TOP REGIME

	Signal Region		Control Region		ion	
	Standard	Event-	Tight	А	В	С
		Shape				
Invariant mass of rec. tracks m_I	300 C	${ m GeV} < m_I$	< 500 Ge	V		
Selection Requi	rements					
Number of rec. tracks, N_{Trk}	-	-	-			
Number of rec. tracks/inst. mass, $m_I/N_{\rm Trk}$	< 3.0	< 3.0	< 3.0	>3.0	< 3.0	< 3.0
Number of Jets, N_{Jets}	>7	>7	>7	>7	>7	>5
Broadening, $\mathcal{B}_{\text{Tracks}}$		> 0.3	> 0.3	> 0.3	> 0.3	> 0.3
Thrust, $\mathcal{T}_{\text{Tracks}}$		> 0.3	> 0.3	>0.3	> 0.3	>0.3
Number of displaced vertices, $N_{\text{Displaced}}$			>20		$<\!\!15$	>20
Identified Leptons	-	-	-	-	-	1
Expected Events for $\int Ldt = 1 \mathrm{pb}^{-1}$ in the Signal Region ($\mathcal{S} > 0.85$)						
N_{Signal}	0.007	0.004	0.0021	0.002	0.0003	-
$N_{Background}$	0.204	0.015	0.0074	33	0.0022	0.002

✤ For the tight region S/B of only ~0.3

- In 10 fb⁻¹ we would only get 2 events
 - Likely hopeless, consistent with [2010.02287]

EXPECTED REACH

We can now derive the expected 95% upper limits on the Instanton

- With 1 pb⁻¹ can exclude there nominal cross-section up to 150 GeV
- Reach~250 GeV and > 400 GeV with 100 pb⁻¹ and 10 fb⁻¹
- Interesting limits even if the cross-sections are only valid to within a couple order of magnitudes

CAN WE TUNE THE INSTANTON AWAY?

Figure 19. Predicted distribution of the event thrust of the MONASH softQCD tune of PYTHIA8 as well as a modified version with significantly enhanced multiple parton interaction probability (MPI:ALPHASVALUE = 0.150) in comparison to the measurement at 13 TeV of the ATLAS Collaboration [50]

Figure 20. Predicted distribution of the charged particle spectrum vs. η of the MONASH *softQCD* tune of PYTHIA8 as well as a modified version with significantly enhanced multiple parton interaction probability (MPI:ALPHASVALUE = 0.150) in comparison to the measurement at 7 TeV of the ATLAS Collaboration [48]

Modelling of soft QCD processes relies on models fitted to data

- Could this procedure have fitted the Instanton away?
- Simple test within Pythia of trying to reproduce a more Instanton like configuration. Possible but not describing data anymore
- More thorough tests obviously welcome

RECASTING EXISTING DATA

Eur. Phys. J. C 76 (2016) 502.

- ATLAS 13 TeV measurement of charged particles in Minimum Bias events
 - Track pT requirement of 100 MeV
- Nch/Nevt prediction depends on the total cross-section models
 - But the η dependence is consistently well described
- We have seen the Instanton would predict a much more central distribution for this observable
- Can we already constrain Instanton production using this data?

A FIRST LIMIT

- We have passed our Pythia8 and Instanton signal events through the Rivet implementation of the analysis selection
- Signal added to the softQCD background with a scaling factor μ
 - Background uncertainty from comparison of Pythia/H7/Sherpa
 - Signal uncertainty from comparison of Sherpa/H7
- Scaling fitted to data to derive a 95% CL limit [2012.09120] I/N_{ev} dN_{trk}/dη p_>100 MeV, lηl<2.5, 13 TeV QCD Instanton Comparison to ATLAS (STDM-2015-17) Different correlation 8.5 SoftQCD assumed for the bkg 9% Instanton Contribution 8 For a $\sigma = 71 \mu b^{-1}$ and a 7.5 signal efficiency of ~90%, exclude cross-sections: 6.5 6 $\sigma_I < 2.1 - 6.4 \text{ mb}$ 2.5 -15 05 1.52

ηl

INSTANTONS IN DRELL-YAN $u_L + \bar{u}_L \rightarrow \gamma^* + \bar{d}_R + d_R + \bar{s}_R + s_R + n_g g$ $\hookrightarrow \ell^+ + \ell^-$ Nucl.Phys. B754 (2006) 107

Instanton contributions distort the angular distribution in DY

- Solutions large at small q_T and high virtuality
- High virtualities to cut-off large-size instantons
- \Rightarrow Large violation of the Lam-Tung relation A₀-A₂=0 expected
 - Consequence of the helicity flip of the initial-state quarks
- Obviously a regime where other effects are important
 - Soft-gluon resummation, TMDs, Boer-Mulders, ...
- Could we get a full calculation of the effect?
- Maybe more relevant for low-energy/fixed-target experiments

SUMMARY

* EW sphaleron transitions are an experimentalist's dream

- Spectacular signature, no chance of missing it
- Unfortunately not possible in the SM
- Can we expect similar signatures in BSM extensions?
- QCD Instanton production more promising
 - At high masses difficult to collect enough events
 - Analysis of small/dedicated datasets at low-mass should be possible and would be very sensitive
 - Even inclusive Minimum Bias measurements would have sensitivity
- How dependent are these conclusions on the assumed models?

BACKUP

$\sqrt{s'}$ [GeV]	$1/\rho$ [GeV]	$\alpha_S(1/ ho)$	$\langle n_g \rangle$	$\hat{\sigma}$ [pb]
10.7	0.99	0.416	4.59	$4.922 \cdot 10^{9}$
11.4	1.04	0.405	4.68	$3.652\cdot 10^9$
13.4	1.16	0.382	4.90	$1.671 \cdot 10^{9}$
15.7	1.31	0.360	5.13	$728.9 \cdot 10^{6}$
22.9	1.76	0.315	5.44	$85.94 \cdot 10^{6}$
29.7	2.12	0.293	6.02	$17.25 \cdot 10^{6}$
40.8	2.72	0.267	6.47	$2.121 \cdot 10^{6}$
56.1	3.50	0.245	6.92	$229.0 \cdot 10^{3}$
61.8	3.64	0.223	7.28	$72.97 \cdot 10^3$
89.6	4.98	0.206	7.67	$2.733 \cdot 10^3$
118.0	6.21	0.195	8.25	235.4
174.4	8.72	0.180	8.60	6.720
246.9	11.76	0.169	9.04	0.284
349.9	15.90	0.159	9.49	0.012
496.3	21.58	0.150	9.93	$5.112 \cdot 10^{-4}$
704.8	29.37	0.142	10.37	$21.65 \cdot 10^{-6}$
1001.8	40.07	0.135	10.81	$0.9017 \cdot 10^{-6}$
1425.6	54.83	0.128	11.26	$36.45 \cdot 10^{-9}$
2030.6	75.21	0.122	11.70	$1.419 \cdot 10^{-9}$
2895.5	103.4	0.117	12.14	$52.07 \cdot 10^{-12}$

####