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Abstract: Remarks on potential numerical systematics in the evaluation of instanton-
induced multiparton production

1 Introduction

This note addresses the papers in ref. [1, 2], presenting calcuations of QCD-instanton in-
duced multi-parton final states at hadron colliders. The note is a contribtion to a discus-
sion session of the Workshop on “Topological Effects in the Standard Model: Instantons,
Sphalerons and Beyond at LHC”, https://indico.cern.ch/event/965112/. I will not
address here the underlying formalism used in refs. [1, 2]. I may have a few minor issues
to raise, likely due to my own ignorance, but they tend to be technical and not suitable for
discussion at the Workshop. They are also rather independent of the remarks presented
below, which focus on possible systematics that should still be attached to the results in
[1, 2], even accepting as correct the overall theoretical formulation. This is perhaps more
interesting for the Workshop discussions, since it puts in perspective the interpretation of
the LHC searches for final states induced by QCD instantons.
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2 Results and remarks

The amplitude for the instanton-induced production of ng gluons and nf quark-antiquark
pairs is given in ref. [1] as:

A(2→ ng + 2nf ) ∼
∫ ∞

0
dρ2

(
ρ2
)ng+nf−1

e
− 2π
αs(1/ρ)

−αs(1/ρ)
16π

E2ρ2 log(E2ρ2) (1)

where ρ is the instanton radius, and E =
√
ŝ is the partonic CM energy. As in ref. [1],

we neglect overall constants, wave function normalization factors, etc. The second term in
the exponent, proportional to ρ2 log(E2ρ2), reflects the Mueller’s form-factor, discussed in
refs. [3–5].

Remark 1. From dimensional analysis, the amplitude given above scales with E as follows:

A ∝ E−2(ng+nf+b0/2) ∝ E−2(ng+nf )

(
Λ

E

)b0
. (2)

The second expression highlights the fact that, while (nf +ng) powers of 1/E2 are matched
by the energy dependence of the wave function normalization of the external states and by
the final phase-space integration, leading to dim(σ)=-2, the b0 powers of 1/E are matched
instead by the QCD scale Λ, which therefore must appear in the amplitude expression.
This is the consequence of the power suppressed nature of this non-perturbative amplitude,
embodied by the contribution exp(−2π/αs(1/ρ)). This means that the amplitude has an
intrinsic Λb0 dependence. More on this later.

As indicated in ref. [1], the amplitude can be evaluated in the saddle-point approximation,
where, leaving out again constant numerical factors:

A ∼
∫ ∞

0
dρ2ef(ρ2) = ef(ρ̄)

√
1

−f ′′(ρ̄)
(3)

where
f(ρ2) = (ng + nf − 1 + b0/2) log ρ2 − αs(1/ρ)

16π
E2ρ2 log(E2ρ2) , (4)

The saddle point ρ̄ is defined through:

∂f(ρ2)/∂ρ2 =
A

ρ2
− E2

16π
αs(1/ρ) log(E2ρ2) +O(α2

s) = 0 at ρ = ρ̄ (5)

where A = ng + nf − 1 + b0/2. We used the a-posteriori knowledge that E2ρ2 >> 1, to
neglect in the derivative a term of order 1 w.r.t. log(E2ρ2).

Remark 2. Notice that we neglected here terms formally of higher powers of αs. Some
arise by including the term proportional to ∂αs(1/ρ)/∂ρ2 ∼ b0α

2
s(1/ρ) in the derivative of

f(ρ), others would arise in taking the NLO beta-fuction rather than the LO one, others,
unknown, arise from NLO corrections to the function f(ρ) itself. Since we cannot control



the exact form of these higher order terms, we stick to the strict LO expression, but must
keep in mind their existence for the assessment of the systematics of the final result.

An approximate solution of the saddle-point condition leads to the relation:

1

ρ̄2
= ηαs(ηE

2) log(1/η) E2 +O(α2
s) (6)

where η = 1/(16πA). This approximate solution to eq. 5 agrees to within 10% with the
exact solution, leading to a value of the inverse instanton radius of ε = 1/ρ̄ = γE, with γ
in the range of 1/20− 1/30 for E ∼ 100− 3000 GeV, consistent with the findings of Fig. 4
of ref. [2].

Evaluating f ′′(ρ) at the saddle point gives

f ′′(ρ̄) = −A
ρ̄4

(1 +O(αs)) (7)

and, putting things back into eq. 3 and neglecting overall constant factors, we obtain:

A ∼
(

Λ

E

)b0 ( 1

E

)ng+nf
[

1

αs(ηE2)[1 +O(αs)]

]ng+nf+b0/2

; . (8)

Remark 3. I see here two separate sources of potential systematics.

1. The first one is the Λb0 term upfront. On one side this inherits the intrinsic 1%
uncertainty on αs(MZ). But ∆Λ/Λ ∼ ∆αs/αs × log(MZ/Λ) ∼ 6%, leading to
∆A/A ∼ ±60%, which is negligible overall. On the other hand, the choice of the
perturbative order at which Λ is estimated is not well defined, and the difference
between LO and NLO Λ is large. For example, to obtain αs(MZ) = 0.12 from the
1-loop evolution we get Λ ∼ 100 MeV, while at 2-loop we get Λ ∼ 260 MeV. So,
in the cross section σ ∝ A2 there is a potential systematics factor in the range of
2±b0 ∼ [4× 10−3 − 250].

2. There is an independent uncertainty arising from the O(αs) corrections indicated
in eq. 8. These are independent of the LO vs NLO issue raised in the previous
point: in the previous point we dealt with the order at which the leading power-
suppressed instanton action, exp(−2π/αs) is calculated. Here we are dealing with
higher-order corrections to Mueller’s form factor. It is reasonable to expect these
O(αs) uncertainties to be limited to a ±20%, but when raised to the power of (ng +

nf + b0/2) this can become an overall factor of (1.2/0.8)(ng+nf+b0/2) ≥ 50 for the
amplitude, and greatly more for the cross sections.

More in general, the relation between renormalization scale µr and the instanton radius,
µrρ = 1, which is chosen in ref. [1] to arrive at the initial expression of eq. 1, is subject to
the usual factor of 2 uncertanity. The legitimate choice of µrρ = [0.5 − 2] would lead to
a factor of [0.5 − 2] rescaling of Λ in the argument of αs, leading again to a systematics
similar to what discussed at point 1 above.



3 Conclusions

In conclusion, it appears that there could be large sources of systematics associated to
the predictions for instanton-induced QCD processes at the LHC. If the analysis reported
in this note is correct, it is fair to admit that these uncertainties cover several orders
of magnitude. This does not remove interest in the search for such final states, but a
possible lack of evidence does not lead to the immediate conclusion that instantons “do not
exist”, but simply that their actual production rate is unfortunately on the lower end of the
systematics, wrt to the central baseline rates discussed in refs. [1, 2].
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