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• no comments on the overall theoretical framework or detailed aspects of the calculations


• take for granted the approach, and just explore the impact on LHC predictions of possible 
sources of implicit assumptions that are nevertheless subject to systematics


• …. for more details, see the note attached to this item on Indico

https://arxiv.org/abs/2010.02287
https://arxiv.org/abs/1911.09726


𝒜(2 → ng + 2nf ) ∼ ∫
∞

0
dρ2 (ρ2)ng+nf−1 e− 2π

αs(1/ρ) − αs(1/ρ)
16π E2ρ2 log(E2ρ2)

From Ref [1], neglecting overall factors like constants or wave function normalizations:

To reach this expression, the relation ρ μR  = 1 has been imposed 
between the renormalization scale μR and the instanton radius ρ

𝒜 ∝ E−2(ng+nf ) ( Λ
E )

b0

Remark on energy dependence:

b0=11–2/3 nf

These powers of E will be matched in the calculation of 
the cross section by powers of E from the phase-space 
and from the normalization of the external states

These b0 powers of ΛQCD are a 
reflection of the non-
perturbative nature of the 
instanton action, and are an 
intrinsic feature of the 
transition amplitude



𝒜 ∼ ∫
∞

0
dρ2 ef(ρ2) = ef(ρ̄) 2π

−f′ ′ (ρ̄)

f(ρ2) = (ng + nf − 1 + b0/2) log ρ2 −
αs(1/ρ)

16π
E2ρ2 log(E2ρ2)

∂f
∂ρ2

|ρ=ρ̄ = 0

Saddle-point evaluation of the amplitude:

with ρ̄ defined by

1
ρ̄2

=
E2

16π A
αs(1/ρ̄) log(E2ρ̄2) + 𝒪(α2

s ) A = ng + nf − 1 +
b0

2

implies
∂f

∂ρ2
|ρ=ρ̄ = 0

Remark on O(αS):

Corrections of higher order in αS arise by taking the 
derivative of f(ρ) (eg ∂α/∂ρ2 ~ β(α)α2). It makes no sense 
to keep these, since there is no full control of all other 
sources of O(αS) corrections in f(ρ)



1
ρ̄2

= [ η αs(ηE2) log(1/η) ] E2 + 𝒪(α2
s )

η =
1

16π A
∼ ( 1

30 )
2

for (ng, nf ) = (10,5)

Approximate solution of the saddle point condition (within 10% of the exact numerical solution)

where:
2010.02287

(3000,100) => 
1/ρ = E / 30

E(GeV)

1/
ρ 

(G
eV

)

Remark

The relative suppression from the Mueller’s factor is 
only very slowly dependent on E… the dramatic drop of 
cross section at high-E is mostly due to the 1/En  terms

αs(1/ρ̄2) ρ̄2E2 ∼ [ η log(1/η) ]−1 = const



𝒜 ∼ ( Λ
E )

b0

( 1
E )

ng+nf

[ 1
αs(ηE2)[1 + O(αs)] ]

ng+nf +b0/2

Final result, up to overall constants:

Remarks • Which numerical value for Λ?

• αS1-loop(MZ , Λ) = 0.120 => Λ = 100 MeV

• αS2-loop(MZ , Λ) = 0.120 => Λ = 260 MeV

• ⇒ σ ~ |𝒜|2 can vary in a range 2±b0 σ0  ~ [0.04 — 250] σ0


• O(αS) effects:

• ng+nf+b0/2 > 10 for ng>1

• If O(αS)~±20% ⇒ Δ𝒜 / 𝒜 ~ (1.2/0.8)ng+nf+b0/2 ~ 50


• More in general: 

• if we had set ρ μR  =  λ instead of 1, with λ ∈ [0.5,2], variations of size 

similar to those listed above would have arisen


• Less clear what are the potential systematics in the modeling of the detailed 
final-state structure: impact on event simulation, kinematical distributions, 
bg suppression, differentiation of possible signals from BSM sources of 
“soft-bombs-like” final states, …  Maybe discussed on Friday?

Conclusions
• Potential for large sources of systematics, leading to uncertainties covering several orders of 

magnitude. 

• This does not remove interest in the search for such final states, but a possible lack of evidence does 

not lead to the immediate conclusion that instantons ``do not exist'', but simply that their actual 
production rate is unfortunately on the lower end of the systematics, wrt to the central baseline rates


