
Main sources of theoretical 
uncertainties (for discussion)

• (1) QCD Instanton rates are interesting in the regime where they become large — 
lower end of partonic energies 10-80 GeV.  The weak coupling approximation used in 
the semiclassical calculation can be problematic. How to address: vary s’ minimal 
partonic energy cutoff and note the value of alpha_s. 

• (2) What is the role of higher-order corrections to the Mueller’s term in the exponent? 

• (3) Possible corrections to the instanton-anti-instanton interaction at medium instanton 
separations in the optical theorem approach. 

• (4) Non-factorisation of the determinants in the instanton-anti-instanton background in 
the optical theorem. (Instanton densities D(rho) do not factorise at finite R/rho~1.5 - 2) 

• (5) Choice of the RG scale mu = 1/rho. (can vary by a factor of 2 to test) 

• A practical point for future progress is to test theory normalisation of predicted QCD 
instanton rates with data. [The unbiased and un-tuned theory prediction is promising.]



partonic cross-sections

200 400 600 800 1000
s� (GeV)

10-7

0.001

10.000

105

109
��tot(pb)

�� tot( s� )

p
s0 [GeV] 1/⇢ [GeV] ↵S(1/⇢) hngi �̂ [pb]

10.7 0.99 0.416 4.59 4.922 · 109

11.4 1.04 0.405 4.68 3.652 · 109

13.4 1.16 0.382 4.90 1.671 · 109

15.7 1.31 0.360 5.13 728.9 · 106

22.9 1.76 0.315 5.44 85.94 · 106

29.7 2.12 0.293 6.02 17.25 · 106

40.8 2.72 0.267 6.47 2.121 · 106

56.1 3.50 0.245 6.92 229.0 · 103

61.8 3.64 0.223 7.28 72.97 · 103

89.6 4.98 0.206 7.67 2.733 · 103

118.0 6.21 0.195 8.25 235.4

174.4 8.72 0.180 8.60 6.720

246.9 11.76 0.169 9.04 0.284

349.9 15.90 0.159 9.49 0.012

496.3 21.58 0.150 9.93 5.112 · 10�4

704.8 29.37 0.142 10.37 21.65 · 10�6

1001.8 40.07 0.135 10.81 0.9017 · 10�6

1425.6 54.83 0.128 11.26 36.45 · 10�9

2030.6 75.21 0.122 11.70 1.419 · 10�9

2895.5 103.4 0.117 12.14 52.07 · 10�12

Table 1. Data points for the inverse instanton radius, 1/⇢, a leading-order value of ↵s, the expected
number of gluons, hngi and the partonic instanton cross-sections �̂(s0) of Eqs. (2.52)-(2.54) in the
range of 10 GeV – 3 TeV.

with

! ferm =
3⇡

8

1

z3/2
2F1

✓
3

2
,
3

2
; 4; 1�

1

z2

◆
, z =

1

2
(2 + �2 + �

p
4 + �2) . (2.58)

But because the fermions are not strictly massless, it is also possible to produce fewer than
5 qRq̄L pairs by saturating fermion zero modes with the fermion mass. In this case we have,

(4⇥ qRq̄L) : Kferm = (m5⇢)
2(! ferm)

8 = (m5u/
p

s0)2(! ferm)
8 . (2.59)

This formula applies in the regime 0 < m5⇢ . 1. When m5⇢ > 1, the instanton cannot
resolve the fifth quark and one than uses Kferm = (! ferm)8.

In Fig. 6 we plot the instanton production cross-section �̂inst
tot computed in (2.52)-(2.54) as

a function of
p
s0 in picobarns for producing ng gluons and Nf quark-anti-quark pairs in

the final state. The plot on the left is for Nf = 4 and the plot on the right is for Nf = 5.

A selection of our theory prediction data-points for parton-level instanton processes is
presented in Table 1 for a broad partonic energy range 10GeV <

p
s0 < 2TeV.
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2nd Approach:  VVK, Milne, Spannowsky 

hadronic total cross-section

p
ŝ [GeV] 50 100 150 200 300 400 500

hngi 9.43 11.2 12.22 12.94 13.96 14.68 15.23
�̂
inst
tot [pb] 207.33⇥103 1.29⇥103 53.1 5.21 165.73⇥10�3 13.65⇥10�3 1.89⇥10�3

Table 1. The instanton cross-section presented for a range of partonic C.o.M. energies
p
ŝ = E

and the mean number of gluons at this energy calculated using Eq. (2.46).

Emin [GeV] 50 100 150 200 300 400 500
�pp̄!I 2.62 µb 2.61 nb 29.6 pb 1.59 pb 6.94 fb 105 ab 3.06 ab
p
spp̄=1.96 TeV

�pp!I 58.19 µb 129.70 nb 2.769 nb 270.61 pb 3.04 pb 114.04 fb 8.293 fb
p
spp=14 TeV

�pp!I 211.0 µb 400.9 nb 9.51 nb 1.02 nb 13.3 pb 559.3 fb 46.3 fb
p
spp=30 TeV

�pp!I 771.0 µb 2.12 µb 48.3 nb 5.65 nb 88.3 pb 4.42 pb 395.0 fb
p
spp=100 TeV

Table 2. Hadronic cross-sections for QCD instanton processes at a range of colliders with different
C.o.M. energies p

spp̄ evaluated using Eq. (2.43). The minimal allowed partonic energy is Emin =
p
ŝmin.

Table 2. These are calculated using the usual formula

�pp!I (ŝ > ŝmin) =

Z
spp

ŝmin

dx1dx2 f
�
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2
�
f
�
x2, Q

2
�
�̂ (ŝ = x1x2spp) (2.43)

where spp is the centre-of-mass energy of the hadron collider, �̂ is the partonic instanton
cross-section and ŝmin is the minimum invariant mass squared of the produced system. NB
here we are only considering the gluon initiated process, otherwise we require a sum over
such integrals.

2.5 Mean number of final state gluons

In our approach of computing the total partonic cross-section via the optical theorem in
(2.35), (2.36) we have already effectively summed over the number gluons ng in the final
state. This sum can be uncovered by using the series expansion (2.31) of the exponent of
the instanton–anti-instanton action on the right hand side of (2.36),
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The mean value of ng (i.e. the value that gives the dominant contribution to the integral)
is then easily found to be given by the expectation value of the interaction potential,

hngi = hUinti , (2.45)
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p
ŝ [GeV] 50 100 150 200 300 400 500

hngi 9.43 11.2 12.22 12.94 13.96 14.68 15.23
�̂
inst
tot [pb] 207.33⇥103 1.29⇥103 53.1 5.21 165.73⇥10�3 13.65⇥10�3 1.89⇥10�3

Table 1. The instanton cross-section presented for a range of partonic C.o.M. energies
p
ŝ = E

and the mean number of gluons at this energy calculated using Eq. (2.46).

Emin [GeV] 50 100 150 200 300 400 500
�pp̄!I 2.62 µb 2.61 nb 29.6 pb 1.59 pb 6.94 fb 105 ab 3.06 ab
p
spp̄=1.96 TeV

�pp!I 58.19 µb 129.70 nb 2.769 nb 270.61 pb 3.04 pb 114.04 fb 8.293 fb
p
spp=14 TeV

�pp!I 211.0 µb 400.9 nb 9.51 nb 1.02 nb 13.3 pb 559.3 fb 46.3 fb
p
spp=30 TeV

�pp!I 771.0 µb 2.12 µb 48.3 nb 5.65 nb 88.3 pb 4.42 pb 395.0 fb
p
spp=100 TeV

Table 2. Hadronic cross-sections for QCD instanton processes at a range of colliders with different
C.o.M. energies p

spp̄ evaluated using Eq. (2.43). The minimal allowed partonic energy is Emin =
p
ŝmin.

Table 2. These are calculated using the usual formula
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Z
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where spp is the centre-of-mass energy of the hadron collider, �̂ is the partonic instanton
cross-section and ŝmin is the minimum invariant mass squared of the produced system. NB
here we are only considering the gluon initiated process, otherwise we require a sum over
such integrals.

2.5 Mean number of final state gluons

In our approach of computing the total partonic cross-section via the optical theorem in
(2.35), (2.36) we have already effectively summed over the number gluons ng in the final
state. This sum can be uncovered by using the series expansion (2.31) of the exponent of
the instanton–anti-instanton action on the right hand side of (2.36),

G(r0, E) =
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The mean value of ng (i.e. the value that gives the dominant contribution to the integral)
is then easily found to be given by the expectation value of the interaction potential,

hngi = hUinti , (2.45)
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Effect of higher order corrections to 
Mueller’s term in the exponent ??

front of the exponent in (2.6). This amounts to inserting propagators in the instanton back-
ground between pairs of gluon fields in the pre-exponential factor in (2.6) and re-summing
the resulting perturbation theory. This programme has been carried out by Mueller in
[26, 35]. It was shown that the quantum corrections due to interactions of the initial states
exponentiate and the resulting expression for the resummed quantum corrections gives the
factor e�↵s ⇢2s0 log s0 for the instanton, and the analogous factor for the anti-instanton in the
optical theorem expressions (2.6) and (2.23).

We thus obtain the quantum-corrected expression for the instanton production cross-
section,

�̂inst
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(2.24)

The expression (2.24) is the key technical input on which the results this paper are
based. It combines the semi-classical instanton contribution to the total cross-section in-
cluding the effects of final state interactions derived in Ref. [25], with the resummed quan-
tum corrections in the initial state that were computed by Mueller in Ref. [35]. It is easily
verified that the initial state interactions quantum effect provides an exponential cut-off
of the large instanton/anti-instanton sizes; the cut-off scale is set by the (partonic) energy
scale s0 log s0 of the scattering process, and further it contains a factor of ↵s, as it should
in the radiative corrections.

2.3 The saddle-point solution and the instanton cross-section

Now we can search for the saddle-point in Rµ, ⇢ and ⇢̄ that extremises the function in the
exponent in (2.24). The instanton–anti-instanton separation coordinate is stabilised along
the R0 direction due to the interplay between the R0

p
s0 and �

4⇡
↵s(µr)

Ŝ(z) factors in the
exponent. The saddle-point is at R = R0, and to simplify our notation we will re-write the
first term as R

p
s0 at the saddle-point. Furthermore, the symmetry between the instanton

and anti-instanton configuration in the forward elastic scattering amplitude dictates that
the saddle-point value of ⇢ will be equal to ⇢̄. So, in obtaining the saddle-point solution,
we can set ⇢̄ = ⇢ and search for the extremum of the ‘holy-grail’ function,

F = R
p

s0 �
4⇡

↵s(µr)
S(R/⇢) �

↵s(µr)

8⇡
⇢2s0 log(s0/µ2

r) , (2.25)

that appears in the exponent in (2.24).
To emphasise the applicability of the saddle-point approximation to the integral (2.24),

we chose the rescaled dimensionless integration variables,

⇢̃ =
↵s(µr)

4⇡

p

s0⇢ , � =
R

⇢
, (2.26)
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        VVK, Milne, Spannowsky

(2)

Only initial-initial quantum corrections are included 
which is the correct approach for optical theorem. 

Final-final and initial-final corrections already accounted  
for in the instanton-anti-instanton interactions.  

[Was explicitly verified for final-final corrections by Mueller.] 

Initial-final effects … related to next point in (3) 

Even higher order in alpha_s corrections? 
Non-exponentiated additive corrections? 



front of the exponent in (2.6). This amounts to inserting propagators in the instanton back-
ground between pairs of gluon fields in the pre-exponential factor in (2.6) and re-summing
the resulting perturbation theory. This programme has been carried out by Mueller in
[26, 35]. It was shown that the quantum corrections due to interactions of the initial states
exponentiate and the resulting expression for the resummed quantum corrections gives the
factor e�↵s ⇢2s0 log s0 for the instanton, and the analogous factor for the anti-instanton in the
optical theorem expressions (2.6) and (2.23).

We thus obtain the quantum-corrected expression for the instanton production cross-
section,
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(2.24)

The expression (2.24) is the key technical input on which the results this paper are
based. It combines the semi-classical instanton contribution to the total cross-section in-
cluding the effects of final state interactions derived in Ref. [25], with the resummed quan-
tum corrections in the initial state that were computed by Mueller in Ref. [35]. It is easily
verified that the initial state interactions quantum effect provides an exponential cut-off
of the large instanton/anti-instanton sizes; the cut-off scale is set by the (partonic) energy
scale s0 log s0 of the scattering process, and further it contains a factor of ↵s, as it should
in the radiative corrections.

2.3 The saddle-point solution and the instanton cross-section

Now we can search for the saddle-point in Rµ, ⇢ and ⇢̄ that extremises the function in the
exponent in (2.24). The instanton–anti-instanton separation coordinate is stabilised along
the R0 direction due to the interplay between the R0

p
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↵s(µr)

Ŝ(z) factors in the
exponent. The saddle-point is at R = R0, and to simplify our notation we will re-write the
first term as R

p
s0 at the saddle-point. Furthermore, the symmetry between the instanton

and anti-instanton configuration in the forward elastic scattering amplitude dictates that
the saddle-point value of ⇢ will be equal to ⇢̄. So, in obtaining the saddle-point solution,
we can set ⇢̄ = ⇢ and search for the extremum of the ‘holy-grail’ function,

F = R
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that appears in the exponent in (2.24).
To emphasise the applicability of the saddle-point approximation to the integral (2.24),

we chose the rescaled dimensionless integration variables,
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first term as R
p
s at the saddle-point. Furthermore, the symmetry between the instanton

and anti-instanton configuration in the forward elastic scattering amplitude dictates that
the saddle-point value of ⇢ will be equal to ⇢̄. So, in obtaining the saddle-point solution,
we can set ⇢̄ = ⇢ and search for the extremum of the ‘holy-grail’ function,

F = R
p
s �

4⇡

↵s(µr)
S(R/⇢) �

↵s(µr)

8⇡
⇢2s log(s/µ2

r) , (2.22)

that appears in the exponent in (2.21).
To emphasise the applicability of the saddle-point approximation to the integral (2.21),

we chose the rescaled dimensionless integration variables,

⇢̃ =
↵s(µr)

4⇡

p
s⇢ , � =

R

⇢
, (2.23)

and write the holy-grail function (2.22) as,

F =
4⇡

↵s(µr)
F (⇢̃,�) , F = ⇢̃ � � S(�) � ⇢̃2 log(

p
s/µr) . (2.24)

Instanton calculations are based on a semi-classical approach that is valid in a weak-coupling
regime, hence the overall factor 4⇡

↵s(µr)
� 1 in front of F justifies the steepest descent

approach where the integrand in (2.21) is dominated by the the saddle-point of F (⇢̃,�) in
(2.24).

Before proceeding to solve the sdalle-point equations that extremise the holy-grail func-
tion F above, we would like to comment on how to select the value of the renormalisation
scale µr. Recall that the integrand in (2.21) contains the factor,

(⇢µr)
b0(⇢̄µr)

b0 e
� 4⇡

↵s(µr) = e
� 2⇡

↵s(1/⇢)
� 2⇡

↵s(1/⇢̄) , (2.25)

where (⇢µr)b0 and (⇢̄µr)b0 come from the instanton and the anti-instanton measure D(⇢)

and D(⇢̄), and the factor e�
4⇡

↵s(µr) accounts for the instanton and the anti-instanton action
contributions in the the dilute limit. The r.h.s. of (2.25) is RG-invariant at one-loop, it
does not depend on the choice of µr, instead the scale of the running coupling constant is
set at the inverse instanton and anti-instanton sizes.

There are two methods for fixing the RG scale that one can follow; they both should give
equivalent results at the level of accuracy our semi-classical instanton approach provides.

1. The first method is to solve the saddle-point equations keeping µr fixed. The saddle-
point equations @�F = 0 and @⇢̃F = 0 arise from extremising the function

F = ⇢̃ � � S(�) � ⇢̃2 log(
p
s/µr) + 2b0

↵s(µr)

4⇡
log(⇢µr) . (2.26)

Then after finding the saddle-point solution for � and ⇢̃ we set µr = 1/⇢ at the saddle-
point value. Note that we have added the last term on the r.h.s. of (2.26) to account
for the back reaction of the (⇢µr)b0(⇢̄µr)b0 factor on the saddle-point. Of course, after
setting µr = 1/⇢ in the F computed at the saddle-point, this term disappears.
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front of the exponent in (2.6). This amounts to inserting propagators in the instanton back-
ground between pairs of gluon fields in the pre-exponential factor in (2.6) and re-summing
the resulting perturbation theory. This programme has been carried out by Mueller in
[26, 35]. It was shown that the quantum corrections due to interactions of the initial states
exponentiate and the resulting expression for the resummed quantum corrections gives the
factor e�↵s ⇢2s0 log s0 for the instanton, and the analogous factor for the anti-instanton in the
optical theorem expressions (2.6) and (2.23).

We thus obtain the quantum-corrected expression for the instanton production cross-
section,

�̂inst
tot '

1

s0
Im

2⇡4

36 · 4

Z
d⇢

⇢5

Z
d⇢̄

⇢̄5

Z
d4R

Z
d⌦

✓
2⇡

↵s(µr)

◆14

(⇢2
p

s0)2(⇢̄2
p

s0)2Kferm

(⇢µr)
b0(⇢̄µr)

b0 exp

✓
R0

p

s0 �
4⇡

↵s(µr)
Ŝ(z) �

↵s(µr)

16⇡
(⇢2 + ⇢̄2) s0 log

✓
s0

µ2
r

◆◆
.

(2.24)

The expression (2.24) is the key technical input on which the results this paper are
based. It combines the semi-classical instanton contribution to the total cross-section in-
cluding the effects of final state interactions derived in Ref. [25], with the resummed quan-
tum corrections in the initial state that were computed by Mueller in Ref. [35]. It is easily
verified that the initial state interactions quantum effect provides an exponential cut-off
of the large instanton/anti-instanton sizes; the cut-off scale is set by the (partonic) energy
scale s0 log s0 of the scattering process, and further it contains a factor of ↵s, as it should
in the radiative corrections.

2.3 The saddle-point solution and the instanton cross-section

Now we can search for the saddle-point in Rµ, ⇢ and ⇢̄ that extremises the function in the
exponent in (2.24). The instanton–anti-instanton separation coordinate is stabilised along
the R0 direction due to the interplay between the R0

p
s0 and �

4⇡
↵s(µr)

Ŝ(z) factors in the
exponent. The saddle-point is at R = R0, and to simplify our notation we will re-write the
first term as R

p
s0 at the saddle-point. Furthermore, the symmetry between the instanton

and anti-instanton configuration in the forward elastic scattering amplitude dictates that
the saddle-point value of ⇢ will be equal to ⇢̄. So, in obtaining the saddle-point solution,
we can set ⇢̄ = ⇢ and search for the extremum of the ‘holy-grail’ function,

F = R
p

s0 �
4⇡

↵s(µr)
S(R/⇢) �

↵s(µr)

8⇡
⇢2s0 log(s0/µ2

r) , (2.25)

that appears in the exponent in (2.24).
To emphasise the applicability of the saddle-point approximation to the integral (2.24),

we chose the rescaled dimensionless integration variables,

⇢̃ =
↵s(µr)

4⇡
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⇢
, (2.26)
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that appears in the exponent in (2.26).
To emphasise the applicability of the saddle-point approximation to the integral (2.26),

we chose the rescaled dimensionless integration variables,
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and write the holy-grail function (2.27) as,
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p
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Instanton calculations are based on a semi-classical approach that is valid in a weak-coupling
regime, hence the overall factor 4⇡

↵s(µr)
� 1 in front of F justifies the steepest descent

approach where the integrand in (2.26) is dominated by the the saddle-point of F (⇢̃,�) in
(2.29).

Before proceeding to solve the saddle-point equations that extremise the holy-grail func-
tion F above, we would like to comment on how to select the value of the renormalisation
scale µr. Recall that the integrand in (2.26) contains the factor,
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where (⇢µr)b0 and (⇢̄µr)b0 come from the instanton and the anti-instanton measure D(⇢)

and D(⇢̄), and the factor e�
4⇡

↵s(µr) accounts for the instanton and the anti-instanton action
contributions in the dilute limit. The r.h.s. of (2.30) is RG-invariant at one-loop, it does
not depend on the choice of µr, instead the scale of the running coupling constant is set at
the inverse instanton and anti-instanton sizes.

There are two methods for fixing the RG scale that one can follow; they both should give
equivalent results at the level of accuracy our semi-classical instanton approach provides.

1. The first method is to solve the saddle-point equations keeping µr fixed. The saddle-
point equations @�F = 0 and @⇢̃F = 0 arise from extremising the function

F = ⇢̃ � � S(�) � ⇢̃2 log(
p

s0/µr) + 2b0
↵s(µr)

4⇡
log(⇢µr) . (2.31)

Then after finding the saddle-point solution for � and ⇢̃ we set µr = 1/⇢ at the saddle-
point value. Note that we have added the last term on the r.h.s. of (2.31) to account
for the back reaction of the (⇢µr)b0(⇢̄µr)b0 factor on the saddle-point. Of course, after
setting µr = 1/⇢ in the F computed at the saddle-point, this term disappears.

2. The alternative approach is set µr = 1/⇢ from the beginning. The function in the
exponent is (2.26) (note that we do not pull out the 4⇡/↵s(⇢) factor),

F = ⇢�
p

s0 �
4⇡

↵s(⇢)
S(�) �

↵s(⇢)

4⇡
⇢2s0 log(

p

s0⇢) . (2.32)

We look for the saddle-point solutions of the equations @�F = 0 and @⇢F = 0 for the
variables � and ⇢.
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Fixing the RG scale mu at 1/rho:

Notice that the instanton integrand contains the factor:

=> Standard instanton RG prescription: mu=1/rho 

In the calculations leading to the first paper we checked that varying the RG 
prescription did not lead to massive changes in the results.

(5)



Main sources of theoretical 
uncertainties (for discussion)

• [1] QCD Instanton rates are interesting in the regime where they become large — lower end 
of partonic energies 10-80 GeV.  The weak coupling approximation used in the semiclassical 
calculation can be problematic. How to address: vary s’ minimal partonic energy cutoff. 

• [2] What is the role of higher-order corrections to the Mueller’s term in the exponent? 

• [3] Possible corrections to the instanton-anti-instanton interaction at medium instanton 
separations in the optical theorem approach. 

• [4] Non-factorisation of the determinants in the instanton-anti-instanton background in the 
optical theorem. (Instanton densities D(rho) do not factorise at finite R/rho ~1.5 - 2.) 

• [5] Choice of the RG scale mu = 1/rho. (can vary by a factor of 2 to test or other approaches) 

• A practical point for future progress is to test theory `normalisation’ of predicted QCD 
instanton rates with data. [The unbiased and un-tuned theory prediction is promising.] 

• [This is by default a non-perturbative semiclassical computation in a (moderately) strongly 
interacting theory and in the regime where quantum corrections exponentiate. This is not a 
few % uncertainty in perturbative calculations. Can expect an overall factor of a ~100.]


