Main sources of theoretical uncertainties (for discussion)

- (1) QCD Instanton rates are interesting in the regime where they become large lower end of partonic energies 10-80 GeV. The weak coupling approximation used in the semiclassical calculation can be problematic. How to address: vary s' minimal partonic energy cutoff and note the value of alpha_s.
- (2) What is the role of higher-order corrections to the Mueller's term in the exponent?
- (3) Possible corrections to the instanton-anti-instanton interaction at medium instanton separations in the optical theorem approach.
- (4) Non-factorisation of the determinants in the instanton-anti-instanton background in the optical theorem. (Instanton densities D(rho) do not factorise at finite R/rho~1.5 2)
- (5) Choice of the RG scale mu = 1/rho. (can vary by a factor of 2 to test)
- A practical point for future progress is to test theory normalisation of predicted QCD instanton rates with data. [The unbiased and un-tuned theory prediction is promising.]

(1)

partonic cross-sections

1st Approach: VVK, Krauss, Schott

hadronic total cross-section

$$\sigma_{pp \to I} (\hat{s} > \hat{s}_{\min}) = \int_{\hat{s}_{min}}^{s_{pp}} dx_1 dx_2 \quad f(x_1, Q^2) f(x_2, Q^2) \hat{\sigma} (\hat{s} = x_1 x_2 s_{pp})$$

practical approach: vary minimal E

E_{\min} [GeV]	50	100	150	200	300	400	500
$\sigma_{par p o I}$	$2.62 \; \mu { m b}$	2.61 nb	29.6 pb	1.59 pb	6.94 fb	105 ab	3.06 ab
$\sqrt{s_{p\bar{p}}}$ =1.96 TeV							
$\sigma_{pp o I}$	$58.19 \; \mu \rm b$	129.70 nb	2.769 nb	270.61 pb	3.04 pb	114.04 fb	8.293 fb
$\sqrt{s_{pp}}$ =14 TeV							
$\sigma_{pp o I}$	$211.0 \; \mu \rm b$	400.9 nb	9.51 nb	1.02 nb	13.3 pb	559.3 fb	46.3 fb
$\sqrt{s_{pp}}$ =30 TeV							
$\sigma_{pp o I}$	$771.0 \; \mu {\rm b}$	$2.12 \; \mu { m b}$	48.3 nb	5.65 nb	88.3 pb	4.42 pb	395.0 fb
$\sqrt{s_{pp}}$ =100 TeV							

2nd Approach: VVK, Milne, Spannowsky

(2)

$$\hat{\sigma}_{\text{tot}}^{\text{inst}} \simeq \frac{1}{s'} \operatorname{Im} \frac{\kappa^2 \pi^4}{36 \cdot 4} \int \frac{d\rho}{\rho^5} \int \frac{d\bar{\rho}}{\bar{\rho}^5} \int d^4 R \int d\Omega \left(\frac{2\pi}{\alpha_s(\mu_r)} \right)^{14} (\rho^2 \sqrt{s'})^2 (\bar{\rho}^2 \sqrt{s'})^2 \mathcal{K}_{\text{ferm}}$$

$$(\rho \mu_r)^{b_0} (\bar{\rho} \mu_r)^{b_0} \exp \left(R_0 \sqrt{s'} - \frac{4\pi}{\alpha_s(\mu_r)} \hat{\mathcal{S}}(z) - \frac{\alpha_s(\mu_r)}{16\pi} (\rho^2 + \bar{\rho}^2) s' \log \left(\frac{s'}{\mu_r^2} \right) \right)$$

Only initial-initial quantum corrections are included which is the correct approach for optical theorem.

Final-final and initial-final corrections already accounted for in the instanton-anti-instanton interactions.

[Was explicitly verified for final-final corrections by Mueller.]

Initial-final effects ... related to next point in (3)

Even higher order in alpha_s corrections? Non-exponentiated additive corrections?

Effect of higher order corrections to Mueller's term in the exponent ??

VVK, Krauss, Schott VVK, Milne, Spannowsky

(3)

1.5

1.0

0.5

õ

u

22

$$\hat{\sigma}_{\rm tot}^{\rm inst} \simeq \frac{1}{s'} \operatorname{Im} \frac{\kappa^2 \pi^4}{36 \cdot 4} \int \frac{d\rho}{\rho^5} \int \frac{d\bar{\rho}}{\bar{\rho}^5} \int d^4R \int d\Omega \left(\frac{2\pi}{\alpha_s(\mu_r)}\right)^{14} (\rho^2 \sqrt{s'})^2 (\bar{\rho}^2 \sqrt{s'})^2 \, K$$

$$(\rho \mu_r)^{b_0} (\bar{\rho} \mu_r)^{b_0} \exp \left(R_0 \sqrt{s'} - \frac{4\pi}{\alpha_s(\mu_r)} \hat{\mathcal{S}}(z) - \frac{\alpha_s(\mu_r)}{16\pi} (\rho^2 + \bar{\rho}^2) \, s' \log \left(\frac{s'}{\mu_r^2}\right) \right)$$
 Effect of corrections to our instantoin-anti-instanton interactions model ?? Should not be large since chi ~1.5

Yung; VVK & Ringwald

S

28

0.4

0.0

(4) Corrections due to non-factorisation of instanton-anti-instanton determinants at chi ~1.5 ??
$$\hat{\sigma}_{tot}^{inst} \simeq \frac{1}{s'} \operatorname{Im} \frac{\kappa^2 \pi^4}{36 \cdot 4} \int \frac{d\rho}{\rho^5} \int \frac{d\bar{\rho}}{\bar{\rho}^5} \int d^4R \int d\Omega \left(\frac{2\pi}{\alpha_s(\mu_r)} \right)^{14} (\rho^2 \sqrt{s'})^2 (\bar{\rho}^2 \sqrt{s'})^2 \mathcal{K}$$

$$\left(\rho \mu_r \right)^{b_0} (\bar{\rho} \mu_r)^{b_0} \exp \left(R_0 \sqrt{s'} - \frac{4\pi}{\alpha_s(\mu_r)} \hat{\mathcal{S}}(z) - \frac{\alpha_s(\mu_r)}{16\pi} (\rho^2 + \bar{\rho}^2) \, s' \log \left(\frac{s'}{\mu_r^2} \right) \right)$$

These are the determinants of quadratic fluctuation operators in the instanton-anti-instanton background = 1-loop effects.

They were computed on far separated instanton and anti-instanton, but in fact R/rho ~1.5 - 2

The effect can be significant.

Fixing the RG scale mu at 1/rho:

Notice that the instanton integrand contains the factor:

$$(\rho\mu_r)^{b_0}(\bar{\rho}\mu_r)^{b_0}e^{-\frac{4\pi}{\alpha_s(\mu_r)}} = e^{-\frac{2\pi}{\alpha_s(1/\rho)} - \frac{2\pi}{\alpha_s(1/\bar{\rho})}}, \qquad (2.30)$$

where $(\rho\mu_r)^{b_0}$ and $(\bar{\rho}\mu_r)^{b_0}$ come from the instanton and the anti-instanton measure $D(\rho)$ and $D(\bar{\rho})$, and the factor $e^{-\frac{4\pi}{\alpha_s(\mu_r)}}$ accounts for the instanton and the anti-instanton action contributions in the dilute limit.

=> Standard instanton RG prescription: mu=1/rho

In the calculations leading to the first paper we checked that varying the RG prescription did not lead to massive changes in the results.

Main sources of theoretical uncertainties (for discussion)

- [1] QCD Instanton rates are interesting in the regime where they become large lower end of partonic energies 10-80 GeV. The weak coupling approximation used in the semiclassical calculation can be problematic. How to address: vary s' minimal partonic energy cutoff.
- [2] What is the role of higher-order corrections to the Mueller's term in the exponent?
- [3] Possible corrections to the instanton-anti-instanton interaction at medium instanton separations in the optical theorem approach.
- [4] Non-factorisation of the determinants in the instanton-anti-instanton background in the optical theorem. (Instanton densities D(rho) do not factorise at finite R/rho ~1.5 2.)
- [5] Choice of the RG scale mu = 1/rho. (can vary by a factor of 2 to test or other approaches)
- A practical point for future progress is to test theory `normalisation' of predicted QCD instanton rates with data. [The unbiased and un-tuned theory prediction is promising.]
- [This is by default a non-perturbative semiclassical computation in a (moderately) strongly interacting theory and in the regime where quantum corrections exponentiate. This is not a few % uncertainty in perturbative calculations. Can expect an overall factor of a ~100.]